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Abstract

Por the nonlinear system
g=g(x)+h{x)+¢, TERM,

where g and h are isotone and antitone mappings respectively, a two-sided iterative method and the
existence theorem of & solution for the system bave been given in [2]. In this paper, a two-sided
interval iterative method is presented, the imitial condition of the two-sided iterative method is
relaxed, and the convergence of the two mathods are proved.

» | 1.
Consider a nonlinear system
z=f(z), w€BR" (1.1)
where f: B*—>R" can be expressed as
f{z) =g(x)+h(z)+e, - (1.2)

where ¢ and % are isotone and antitone mappings respectively, that is, from z<y,
we have

9(@)<g®), h(@)>h(y).
By the two—sided iterative method |
y@ P =g@®)+r(z?) +e,

- e =g(z{k}) + h(yﬂﬂll) -+ e, k= 01 11 e (1 '3)
the existence of a solubion to (1.1) is given in [1] and [2].
Assume that
YOy DO, | (1.4)

Then there exist points ¢*, z*, such that y®1y* and 2™ 2" ag k—>oo. Moreover, any
fixed point of the operator f(#) in [y®, 2] is contained in [¢*, 2*]. If f(&) is
continnous on [¢”, 2], then there exists a solution of (1.1) in [¢* 2'].

In general, ¥* and z* are not the solution of (1.1).

A method for finding the initial approximation satisfying (1.4) has been given
in [3], which ig the key to using the two—sided iterative method.

In order to relax the initial condition of the two—sided iterative method the
authors give a two-sided interval iterative. method. The initial condition of this
method is '
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[/, 2] g-[y(:t:} 2D (1.5)

Clearly condition (1.5) is much weaker than (1.4). Moreuver, when (1 4) holds,
the two methods will coincide.

In thig paper, the convergence of [¢®, z“"] t0 the unique solution of (1.1) is
given under condition (1.4). The existence and uniqueness of a solution of (1.1)
and the convergence of the two-sided interval ilerative method are proved nnder
the condition

E’/Eﬂjr 2;:0)] ¢ [yfi}r ﬁf”]: 'f,-ﬁl, 2: gl T8 -

Finally, we give a simple example for the two-sided interval iterative method.
Under the initial condition which the two—sided ifterative method fails to meet, we
obtain the existence and uniqueness of a solution of the example after one step of
iteration and the approximate solution after 15 steps, with accuracy 107°,

The notation is as follows. Let g, 2, 9, 2z, 2 € R", y<z, y<<z. Then

[y, 2 ={oly<a<sz},
Wiy, 2] =2—y,
mly, 21 =1/2 (z+y),
|z = (|2, | @3], ==+, |@n),
I={1, 2, +, m}, |
(9, 2] Sy, 2|l @nu<y, 28, 4=1, 2, -, n,
[y, z]1C [y, 2] en<y, 2452, =1, 2, -, n
and there is ¢ €I such that g; —y+2,— 2, >0,

r

[5] E](:[y.! z]%yigih Ei‘tgzh ﬂrﬂd ?_J;_yi‘{-z‘_gi:}(]’ fj,=1’ 2, vos, m,

2.

For f(x) we congider an interval operator
< F[y: Z] =G[y: Z] +H[@’: z:I +¢, (2'1)
Gly, 21=[9(y), 9(2)], Hly, 71=[r(z), h(y)]. |

Property 1. F ig an inclusion monotonic interval extension of f [4].

Property 2. If f(«) has a fixed point 4" € [y, 2], then 2" € F [y, 2].

Property 3. If [y, 2l NF[y, 2] =, then there is no solution of (1.1) in
ly, 21.

Property 4. Suppose f is coniinuous on [y, z]. Then there is a solution of
{(1.1) in [w, 2] as Fly, z] € [¢, 21.

By these important properties, we can introduce the two-sided interval iterative
algorithm.,

Initial step

Define the initial interval [, 291,

1. If [, 29 N F[y?, 29] =, then the algorithm is stopped.

2. If [y, 297 N F[¢9, 2] % &, then define [¢V, 2] = [¢/?, 2] N F [?, 2@].

Continuation step
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Assume that [y®, z®] for k31 is already defined.
1. If [y®, 2®] N Fy®, 2¥] =, then the algorithm is stopped.
2, If [y®, 2P} NF Y™, 2] +J, then define

[yw-l-l}: Z(IH-:I}] o w{k}: z{h}] M F [g{'ﬁ}’ zﬂﬂJ] .
When F[®, z91c[y®, 2] (ie. (1.4) holds), from the inclusion
monotonicity of #, we have
[y{k.}.l}; z(k+1}] =F[,y(ﬁ}’ ﬂ{h,'i]
i e. the two—sided iterative method and the two-sided interval iterative method are
coincident.

3.

In this section, a convergent analysis of the two—sided interval iterative method
is given. Let g and % be continuous on [¢¥, z¥].
Theorem 1. Let

g(z) —g(y) =>p(2—y), 22y, 0<p<l, (3.1)
Fly®, 29]c [¢?, 207, (3.2)

Then (1) therd exists a solution «* of (1.1) in [y, 2977 .
(2) the sequence given by the two—sided interval iterative algorithm satisfies

[, S [y ™D, ] (3.8)
zﬂi)__ y(ﬁ}ggﬂﬁ—l) (E{iﬁ—i} - y(k-i))’ 0< g{k—-i} <1’ (3 _4)
2" € [ [¥™, 2¥]; (3.5)
k=1
; oo ) .
(8) - &f series ?'_. : g‘%: given by g, ¢**P=1—p/q®+p is divergent, then o
=1} | .

és unigque in [y, 291, [Y®, 2®] converges to &°, and from any starting point =@ in
[¢/@, 297], the real iterative sequence
¥t = g(a®) +h(@®) +o (3.6)
converges to @*. And |
0B — " | <g* V(D g D). (8.7)
Proof. (1) has been proven in Property 4. |
(2) From (3.2), we have
(YD, 2] = F [¢®, 29] < [y, 217,
Let
[y®, 20] = F [y*D, 2 9] C [y, 2617,
From the inclugion monotonicity of ¥, Wé have
e o .@‘Hi): z(in+1)] - FI__‘U(M, z{k}] = F [gw'i}, 2{3—1)] - l‘_.v(k}’ zﬂﬁ)] .
From (8.1), we have
Yy — gy ® 40— 2D g () — g(y®=D) + g(z%-) — g(z®)
| > p(y® — y® D 420D —20) >0,

Therefore
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]:y{k+1}’ z{k+1}] = [y(?i?)] z{?ﬂl] 2
From (3.2) there exists ¢ &€ (0, 1), such that
20 — g O (5 _ (03
From (3.1) we have | |
, 2D — gD g (20) — g (4 @) >p(2O — @),
Hence ¢'Y=p. Let
2@ — WL gD (gD _ DY gD 2]
Then |
4Dy B4 g (o) + B (y®) — g (y®) —h(zP)
<g(E ) +h(g*D) — g(y*) — h 1)
—=plEr S — ) =y =y )
e 50— gy B g (=D (= DDY |g () ym)
<{A-p/¢*P+p) (ﬂ”" —y").

Let g% =1-—p/q% D+ p. Then p<g® 1. From Property 2, (3.5) holds.
(8) From (2) there exist ¢, 2*, such that y™1y", 2®]z* and

0<" —y'<a I g™ (29— ¢ @) =¢® ] (1 —p/ g% ) (P =g},
; =0 k=0 -

According to 0<p/¢™ —p<1—p<1 and since series p i (1—-¢™)/¢® ig divergent,
=

we have E (1—p/¢®+p) =0, and o =¢*=2".
For the real sequence defined by (3.6), we prove by induction that
| o ¢ [y™, 297, k=0,1, 2, .-
This is certainly true for k=0. Suppose that it holds for #=m, m:=0. Then
2 t1) f(m(mj) E F [,yfm}’ ﬁ(m}] - [y(m+1:|’ z{mﬂ}] g

Therefore
2™ [, 4],
l 7 e ) l < g T g”“’ (2 —gy®)  }im ' o — ) | =0,
=00

Remark 1. If the conditions of Theorem 1 are chanpged to
why, el <qwly, 2], y<z, 0<g<1, (3.8)
F [y{mj 207 C [y"“", 2(0)] g (3 _g)

the conclusions of Theorem 1 still hold,
Theorem 2. Let
. |9 +h(2) he—y|=q—y), |g(2) +h(y) +e—z[=qz—1y), 2=y, 0<g<1,
[, 2] EF[y®, 2], 4@ £ 4.
Thew. th&r& exists @ unique solution of (1.1) én [, 2997 4¢f and ﬂnly if the two-sided
¢nterval iterative algorithm can be contimued indefinitely. In this case it yields &
sequence {[¢\¥, 2]} for which
(1) ™, w9 [y, oM,
:%FE-'-D; 2 Ir.+1}:| o [@Im}, z‘m]
9, 41 EF [y ®, 2V], yP#aP, e€ L
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(2) wly®+D, 2* ] <quwly®, 2], 0<g<1,
im z{?ﬁ) lim gm}_

K—y o k—rm

(3) there exists @ unique solution o* == of (1.1) in [y, 2¥] and
z" == ﬁ [y(k)’ 3{}"}] y

k=0
|&* — 2% | <1/2 ¢° (2@ —y®),
where 20 =m[y®, 2%7]. |
Proof. If there exists a solution of (1.1) in [y, 2¥], then we have
m* E F [y[ﬂ)’ z{m] ;
F 4@, 207N [/, 297 % 7.
From the definition of the algorithm,' we have z* € [¥#?, 2¥]. We can easily show by
indaction that

[y®, 2] NF [y™, 2P} =D,
m*e [?}m-l-”: ﬁ{k'l'i}] .

Hence, the algorithm ig continued indefinitely and cannob be stopped.
Assume that the algorithm can be continued indefinitely.
Let -

FO = g(y®) +h(e) o, TFO=g(®) +h(®) +o.
(1) From the algorithm, we have
[y'll), z‘[i}] g [y(ﬂ}., ﬁ{ﬂ}:[ ’
If there exists ¢ €I such that
D ] = [0, 7]
from condition 1, as y§® #2{”,
yV<y®, P>

i.e.
[y‘:‘”, 207 = F, [y®, 29].

I+ will be contradictory to condition 2; hence
[P, 21 < [, = ‘”J, 5" E Y
Now let for k=m

[y{mll z(m.’t' = [y(m—:l:iJr z(ﬂi—l)] , (3 . 1{])
Py, 1™ & (3.11)
[y{m 1}} (m—1)7 LptFi [yl’.ﬂl—i.)’ z(f'ﬂ—l}], yEm—ll%zEﬂl-l} (3‘12)
hold. Then
[ D g D] ( [gfm 50m] (3.13)
[+

; e Tk, g, (3.14)
IT there exists 4 € I, such that :
' (m+1) 2D = Tyim, 2]
then from condition 1, as g™ %*=2™,
?Jim'l'l} {y(m} s max{y‘”"’, y}ém—-l}}’

ﬁlim+:l,.r:-’_-.:,,ij.._‘l:ﬁrz} w mm{z(m) ﬂl{:jl-:--:l.}}
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hold. From (8.14), we have
yEm} ....y{m—i}

, M =", (3.15)
From (3 10), we have 2™ Vsym-D ag y™Msaz™,., Therefore (3.156) will be
contradictory to (8.11). Hence
(W™D, 2] [y, ], gl
bolds. From the algorithm, we have
[g{m) ﬁmJ] ¢ L’}Em-l-l); EE’“'H'}]; z}m}%yim}_
(2) From (1), as 2 sy,
[0, #1C [, £
holds. Hence there exists ¢, < (0, 1), such that
' wly®, 7] <ga[ys®, 2]
Let g=maxgy, I'={3|2” =y, ¢€I}. As 20 =9,
icl’
200 = D o 2 = @
wly®, 2P <qw[¥®, 2]
cortainly hold. Let ¢ =max{g, 1—gq}. We have
» w[y(j-}, 2(1]] qu E’j{ﬂ'}’ zl:u)] o
Let for £=m
w [, 2™ <quwy™D, zm=D]

hold. We prove that for k=m+1 it holds too.
When F[y"™, z(™] C [¢™, z"’”] , if there exists ¢C.I such thab F [y"™, 2™] =
[5™, %™], then

(maD) | glmt D] — [gim}’ 2™
holds, if and only if y{™ =2{™ holds. In this case,
W £m+1} ,.ﬂ. m+1:I] ‘ng |:?:I’{m:1+le 'ZE"'}]
certainly holds. If F,[y™, ] [#™, #™], then
[ﬂ(m+1}, zEm+1)] =Fi [?/(mj, z(m}] .
From condition 1, we have
wlyi™P, 2 D] = wF[y™, 2™] = g,(#*) +h(§) — g(y™) = hi(y™)
chm) q<z(m}__y{m)) y{m}__q(z(m} {m})
<A—@) (@™ —yi™) <g{z™—y™).
Thereofore, as F[y™, ™) C [, 2'™], we have
a :,y{m+1} zi{iur;+:l.}-‘j %Qw [y(m)’ z(m}] .
As FLy™, o] & [, ], if ¢f™ =z, then ¢V =z"*", In this case,
{0 fm-l-IJ, zEm+1)] ggw [yiﬁm}, zifm]]

certainly holds. If y{™ s= 2™, from

(:rs~1+1}:‘F ‘ZE'"'I'H] _F Eyfm)’ zgm}] N [y(m}l ,z(m}

and (1), we have -
m Em); 5""}] :}mF‘ [y(mjj z{m}] (3.16)
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=1 ek

QT
m[y{™, 2™] <mF[y™, ™). (3.17)
As (8.16) holds, we have
ym > ymrD,  gfm >,
Hence
y£m+1} s .ygm}’ ?'-Emﬂ} i E;:mq.n’
WL‘UE"H'”, zEm+1}] =2Em+1) ___,y:m+1} #‘E£m+1} e & ysm)
’ (Y 4 — g < (1) (P =)
<g @™ —y™).
As (8.17) Lolds, we have
YO Lymel g g,
Hence |

+1 —(m+l +1
YO = gD, g =gl

31 +1 m+ | =(m+1
U Em }; zEm }] i zE 1) __yEﬂH - Z"" _yti:m+1) _,zE‘m) iz ‘.UE'"'} " (ygﬂl ) __ysﬂl})

<(1—g) (z™ — ™) <g (& —y™)-
As mentioned above, we have
) w [y D,y 0] < g [y ™, 7m]
Therefore
Yim o [¢®, 209] <lim g*ew [¢®, 2©]=0.

oo ks .
From (1), ¥®, 2 are monotonically increasing and monotonically decreasing
gequences respectively. Hence there exists z, such thab
Jim z® = lim y® =1z,
k—¥eo

—oa

(8) Let 2™ = [y®, 2®]; then y®<a®<z". From (2), we have

Jim a® =z,
Jo—smo

Let E‘“+1}=m[§f“+1>, 7307 "We have
IEJH:U_ m““[ <1/2 w@{ki—l}’ 2%+ 1-1/2 w[y”‘}, 27,
From (2) and the continuity of g and &, we have
ﬁh_lil; | Z*+ 9 — | = lim 11/2 (g(2™) +h(g™) +o+g ™) + 7 (2) +6) —2®|

k—oo

= | g(z)+h(z) +o—x]=0.
Hence z=g" is the unique solution of (1.1) in [y, 2®]. From &"€ [/ ®, 2®], we
have
|a*— a®| <1/2 (2®—y*) <1/2 ¢*(2®—y®).

From the proof of Theorem 2, we can obtain
Corollary 1. If the sequence given by the algorithm satisties

& (200 — g, (29) — By (y®) —00) + B (9 (™) + R (z™) +0i— 4i")
?T(ZEM';E{EH): 0<r<l, 6=1, 2, -, W,

where
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a; = { L, 885" —g(z0) —hi(y®) ~ 6,0,
" lo, asg® — 0 (2®) — b, (™) —,<<0;
B — { 1, a8 gi(y®)+h(E®) +o,—y® =0,
0, as gi(y®) 4~ (2®) 4+, —y® <0

end af +bf>>1, the conclusions of Theorem 2 hold.

A special case of Corollary 1 is
Corollary 2. Suppose there exists € (0, 1), such that

YO<g Yy +h(EZ) +e, g@)+h(2) +o—y=r(z—y)

or |
g(ZP) +h(yP) +e<2®, 2—g(2) =~k (y) —e=r(z—y).
Then the conclusions of Theorem 2 hold, and we have |

y(k},(\:g (y{h}) +4- A (zﬂi}) +o =§'jm+1}
or | _

203> g (2%) +-A(y®) 40 =20+,
Remark 2. If the conditions of Theorem 2 are changed to
, WPy, 21<q(z—y), y<z 0<g<l,

the conclusions of Theorem 2 still hold.
Ezample 1. Let
0.123—0.142+

2 10\ [
f (@) =((i.1w§——0.1a:§——2)" [y®, #%1 = _(0)’ («/ﬁ)]

F[-Iy.? z]= . 0 2 a 0 )
O.1y2—0.1z1+2 0122—3!1"]‘2

Fy®, 207 = ’:( :gi ), (zi)]g [, 297,

The lash relation does not satisfy the initial condition of the two-sided iterative
method. We use the two-sided interval iterative method to give

o n[[3)17],

0.8190\ /3.6810
(2) D] e P [ (D] & ’
™, #71 =Fly®,2%] {(0.3190)’(3.6810”:@ 771

According to Remark 1 there exists 2 unique solution #* of this example in

[0, 227, , |
[®, 7 "/ 0.6552 ) 3.3447)'

o —_
: |\ 0.6552 /7 \ 8.8447 /|’

1.9962 2.,0051
15) (15)7 _
Ly, 257 [(1.9962)’ (2.0051 )]’

|&"—m [y, 2] | <1073, o*= (2, 2).
Remark 8. When initial values satisfy |
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[y, 20 CF[y®, 2] (3.18)
the above two methods will fail. A method is given in [6] by which one can solve

(1.1) under condition (3.18). A method for an arbitrary initial condition is given
in [7]. |
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