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Abstract

It is well known that the x-condition number of & linear operator i a measurs of ill condition
with respeet to its generalized inverses and a relative error bound with respeet to the gensralized
inversss of operator T with a small perturbation operator E, namely,

2]
LE+Ey+ Ty "{T}mﬂ
il =2l

where x(T)=|T] [ T+]. The problem is whether there exists a positive number () independent of
E but dependent on 7T guch that the above relative error bound holds and w(l)<=(D),

In this papery an answer ig given to this problem. The main result is

Theorem. Let X, Y be two Banach spaces, T, E € BLX, Y] and |E| . |T+] <1. Supposs

[(T4+E)*—TH _ o |B]
T <O
Then 2(TN<<u(T), where u{T) is a positive number wndependent of B but dependent on T and
(Iy+ETH T+ E) maps (T into R(T). This theorem shows that x(T) is mimimum in the above
sence.

§ 1. Introduction

In [1], the author showed the minimum property of w—condifion number for
a linear operator, and extended the resulis of [2]. The results of [1] are only
related to the relaiive error bound of an inverse linear operator with a small
perturbation operator, or the relative error bound of the a regular solution of
linear equations with small perturbation.

In this paper, we will discuss the relative error bound of a generalized inverse
of a linear operator from a Banach space o another Banach space and a generalized
solution of liear equations whose operator has a small perturbation. In addition, we
will show the minimum property of the pseudo x—condition number. The resulls are
very extensive and the results of [1] and [2] are the obvious corollaries.

§ 2. Generalized Inverses of a Linear Operator in a Banach Space

In general, the leiters X, ¥ denote the Banach gpace, B[ X, Y] is the Banach
space consisting of all bounded linear operators from X into ¥, 2(T") and Z(T)
denote the domain and range of T respectively, and A" (') denotes the null of 7.
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e = o el K

We agsume that the closed subSpace AT of X has a topologma.l complemenﬂ

A"(T° and the closed subspace #(1') of Y has a topological complement Z(T )°,
namely

X =AM (D) Y=2(TDO2T)".
In this case, A(T) and #(T) are cloged, however a closed subspace does nob

necessarily have a topological complement. A subspace A(T) (%#(T)) has a
topological complement if and only if there exists a projector P(Q) of X(Y) onto

AT (R(TH), i.e., PX=N"(T) (QY¥ =%(1)), see [7]. Nashed pointed out thab.
if the decompositions

X =N (DYDN () Y = RT)DAT)°
exist, then there exists uniquely the generalized inverse T*=T% , (T'} o implies that
the operator 7'+ depends on the projectors P and Q) such that
PA) = RDYQAT); 4 (TH)=RT),
I BT = A (TG TTT=T; T*TT*=T* on 2(T7), (1)
T+*T=I-P; TT*=Q| sr+,

where Q| s+ is the restriction of @ on @(T*)I T+ is bounded if and only if Z(T')
ig closed in Y. n this paper, we consider the case that Z(T") is closed; then we have.

obviously

{X=JV(T)@JV (% Y=£(T)@£(T>GJ

DT+ =Y; N (T*)=R(T)", @
Z(T+)=A (1),
{ TI*T =0 THTT* =07, 3)
Tt =P yopye; T = Pgery.
From (38) we can obtain easily
{ T*Pay=T" Pyl = B (9
TP re=T; ParD=T.

In the following section, we consider the case that the perturbation S=T+ X
of T has a generalized inverse and egtimate the error bound between 8% and T*. Woe.

suppose that yo €Y, yo=y1+ys and |yo| =1 imply |y]<1.

§ 3. The Minimum Property of the Pseudo »~Condition Number

Lemma 1. Let TEB[X, Y] and suppose X =4 (YN T)" and Y =
A(TYDR(T)®. Lot Thuy ae be the generalized twverses of T with r&sp@ct o these
decommpositions. Let E€ B[X, Y] and 8 =T+ E. Suppose

| BT <1 - ®

and

(T, ET*)-1S maps A"(T into A(T). ©)

Then

XN (S)BRTY); ¥ =RE)BA(T*)

and
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| S+= ;{T*'},J{T*J
éxists. Moreover,
| 8+ =T*(I,+ET*) 1= (I,+T+E)-1T*, )
If in additéon | E|.|T*| <1, then
1T+ EY* T+ < " %IL (8)
LREEYeS i

where
#(T)=[T|-|T*|
g8 the pseudo condition number of T.

Remark. Suppose (5) holds. Then (6) also holds if either A(§)D.4" (T
(equivalently A"(E)D.4"(T)) or A(8)S%(T) (equivalently % (B)c (). In
fact, if A7(8)2.4"(T), then (Ly+ET*)™28 maps A4 (T) into 02 (T).
Similarly, if Z(EYC%#(T), then on A TL), (Ty+BT*)8 = (I,+ET*)1E =
E(I,+T*H)™* and its range is contained in (&), and hence in Z(T).

Lemma 1 can be found in [7].

Lemma 2. Lg X, ¥ be Banach spaces and w € X, 1o €Y, |ao| = |yo] =1 be
any two points. Then there is a bounded linear operator H € B[ X, Y] such that Hu,—
Yo and | H | =1,

Proof. By the Hahn-Banach theorem, there is a bounded linear functional
J € X' such that

F@o) = 2] and |F] =1.
We define the operator H: X -»Z =gpan {y,}

He=f (@) Yo.
"Thus | |
Hao =1 (20)y0= | o * o =y
The operator H is linear since 7 is linear. In fact,

H (ow+ By) =F (oaz+ By)yo — (af (@) + BF (g) )%
=ﬂ.?(‘”)@'u+ﬁf(ﬂ)ﬂu=ﬂHﬂ=+ﬁﬂ;f/-

Moreover, | -
| H| = sup | Ho| = sup |7 (@) |« Jyol = 7] =1

xi=1

and this completes the proof. |

Lemma 8. Let X, ¥ be Banach spaces and T, SEBLY, X]. Suppose e>0is a
given sufficiently small positive wumber. Then there ewists a bounded linear operator
HeEB[X, Y] such that | H| =1 and

ISEZ|=(|T|- ) (18] -),

where 0< g’< g,
Proof. For a sufficiently small positive number 8 >0, there are y,, 20€Y such

that [zo] = |ye] =1 and -
ISyol = 18] e,
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HT%II?*HTII —8
by the definition of the operalor norm. We can choose a positive number 0<g'<s
such that |

|Teol =171 -5,
Let
T
NHED

Then [ao]=1 and Tz= (|i | —8)a. For the @, and gy, there is an operator
HeB[X, Y| such that Has=y, and | H| =1 by Lemma 2. Moreover, we have

ISET| = |SHET 2| = (|7 —¢") | S Hao
=(|T] -+ ISyl =T} - &) (IS] -8
and this completes the proof.
Theorem 1. ILet T and FE be as in Lemma 1 and suppose (T 1l If
there exists a positive number w(T) dependent on T but independent of K such that
. E

gyt 7] HINT
n < (9)

T+ E)*—T* E
M_W)*u L<p iz, (10)

#(T)<p(T). (11)
Proof. We only need to prove the conclusion when (9) is satisfied. The
remaining part is similar.
By () and the Banach lemma, (I,+ ET*)™? emsﬁs Usmg the Neumann series
it follows that

then

(I,+ET*) =3 P,

where P= — ET*, Moreover, using (7), we have
(P+E)t =TT, + ET) = (I ,+T*E)1T*,

Conseguently,
(T+EY -T=((I,+T*E) 1T -T*)
= ((L+T*E)-1—I,)T*
[(T+E)*—T*| = |((T,+T*E) - I,)T*|
= iﬁ‘ﬂ”ﬂ |
=1
> |T+ET| - |T*P| B S | T,
namely

-

[T+ BT <] (T+B)* ~T* |+ | T+ B S T B (12)
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For a sufficiently small positive number s>>0, there exists a g, E Y such that

HT*yol = [T#] —8>0.
Hence T*y,# 0 and using the decompositiony (2), we obtain
Yo=y1+ys Yp1EHX(T), y2 €R(T)°=N"(T").
Thus
| T*yol| = [T*(ys+92) | = [T¥91| = |TF| —8>0.
We change the definition of H in Lemma 2 by
. | He =.? (2)y1
ng
B=eH/(|yi] + [ya])-
We have obviously |E[=e]gall/(ysl+]wal),
- - R(E)=A(H) =span {y} SR (T).
Thus the operator E in (18) satisfies the condition of Lemma 1,
From Lemma 3, it follows that
[T+ HT* | > (1T - &) (1T —8)

and then |H | =|yi]. Thus, let

and p
1T %]l + Iyl BT[> (174 = ) (T =)

namely S

7B I o o (71— 00T -)

H%!HU:UE\I + M+ IIT+-ET+H
< el TE=
Let n=(e+s")|T*]| —ss’. Then we have -

| s s 1A ET"‘J_

Thus

2(T)=|T]-
Using (12), it follows that

1 =127 1T [1TET)
17| QIIT*"II{ | Z] +°7}'

. ) VT HET =T+ [T**] B %"T"‘E"'i '
D <qpoy ( [z 1)
T E* =T 1T vt 7]
Tz T ET 1T T
wT) | k ) v o 1T,
thﬂcT>}§= ki |T EHT El ‘ '"'T+u 7

In the last expression, if s—0 and noting | F|—0, »—0, we have

" Vol. 5

(13)

(14)
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- e T~

#(T)<pu(T)
and this completes the proof.
Corollary 1. Let X and ¥ be Hilbert spaces and their dimensijon be finite.
Suppose the operator (matrix) T, ¥€B[X, Y] and rank(T+E)=rank(T). If
§E|+|T*| <1, then (T + B)* exists and

H(T) "E b | B g
T+ B T 17 (15)
| | 1—x(T) | B ° | S

Iz

where T'* is the Moore—Penrose inverse of T'.
Proof. We need only to examine condiftion (6) in Liemma 1 and to prove
X(EYCZ(T), If this is not true, then it mphes .@(T+E)Q.@(T) and thisg
contradicts the supposition (see [7]).
Corollary 2. Let X, Y be Hilbert spaces of finite dimension and T,

FEB[X, Y]. Suppose ra.nk(T+E)==ra.n]£(T) and |E[[T*|<«<1. If there exists a
positive number (7" mdependent of & such that

B
+ + % (T')
T+E)r—T T
- 7 " T T L)
» LT :

holds, then »(T)<u(T), where »(T)=|T|-|T*|. .'

. §4. | The Regq_lar Inverses

In this section, we consider the case that € B[ X] and T exists. Suppose the
small perturbation operator B € B[X] and |7 | &|| <1. We need only to examine
condition (6) in Lemma 1. Notice that

(I+ET) YT+ B)=(I+ET-*)*(I+ET-)T=T,
so 7 maps A (T) into {0} CE(T), i.e.,
(I+ET-)"1(T+E) maps A (T) into Z(T).
Thus we have

Corollary 8. Let X and Y be Banach spaces and T, E€B[X]. Suppose
{E|]T ] <1 and there exists a positive number w(7’) independent of & such thab
B
E(T—!_E)_l_ r—1] w () T

- <
M i b

or

T+ B) T ||
7] <w 7

Then x(T)<u(T), where »(T) = |T]+|T2].

§ 5. The Generalized Solution of Operator Equations

In this section, we consider the relative error bound of generalized solutions of
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the operator equations _
To=>b, | (17)
where T€B(X, Y] and 3€Y. If bEZ(T), then (17) has no regular solution. We
consider the generalized equation of (17)

Ts =P gemsb. Sl I | (18)

If &"=T"5, then o" satisfies (18) and it is said to be the peneralized solution of
(17). We suppose E€ B[X, Y] is a small perturbation operator and (T'+ E)* exigh.
In addition, suppose | of Theorem 1 we have |

(T+EY*'b—T*b=((I,+T*E)1-I,)T*b.
If wo take #"=T*p and &*= (T + E)*D, then 3

o' -2l<| 3 (-1 B ~ 1| o'}

or
oy vEpe LT E]_
Meri<@ e
() 17
s Ql—-x(T) ”__”_ (192)

|7
where x (1) = [T [T*].
Theorem 2. Assume X and ¥ are Banach spaces and T, E€B[X,Y]. Lot T
and K be as in Theorem 1. Lot 2=T*b and z= (T + E)*b and suppose that there exists

a posivive number (1) independent of K such that

e 1BL
-H—Wﬂ— (T)JITE (19)
—v(T)]qT
or
lo—2] ., oy 1 EL
R~ D o
Then v(T)=>1.

Proof. To simplify the proof, we consider the case Where (20) holds. As
before, we have
(T+E)+b-T+b=((I,+T+E)-1-— 21715

oT
| e N P, — A _ S DR
@ EPW s (P=-T*E) fEPm
—Pm——P’gP“‘w.
"Thus we have
o _ 2 N ¥
1 -] >[Po} - | P|* 3 [PPo]

oI
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1T Be] <[o—o] + |

(B SITE el (21)

Suppose s>0 is a given positive number. Then there exists a point bEY, |5 =1,
such thab . ;
| | T+ < [T*0||+8=]T*"Pab| +a.
Assume that @ is a generalized solution of (18). We have Te= Pamb. Hence
17| <|T*Tx| +e.

Weo can choose E =T since it satisfies the requirement of Lemma 1. In fact, JV' (B
= A (T) and Z(T)=R(E). Substituting them into the above inequality we
obtain

HTW‘Q “T:Eﬂ’“ L a ||T|:g"|m" toa
T
T 3 K
’“H (17* Ba] + ITII)'

Using (21) and noticing [o| = |T*8|<|T*]+|b]=(T"], we have

T%ﬂL lla—el+17* 1121 3] Pa*nmuﬂlh}

<v(D) el + T 1T+ 11 Zl gnllP

<y(D)|T*|+ T T* PIE] 3 1P]*+e.
Thus

o

K(T)<p (TYa(T) + [ TIIT* | BY 3} 1P+ ]7].

Letting e—>0 ([ E]|—0), we obtain

(T <v(THx(T)
tha.t is, »(T")>1, and this completes the proof.
Corollary 4. Let X, Y be finite dimensional Hilbert spaces and T,
EcB[X,Y]. Assume T" and (T +E)+ denote the Moore—Penrose inverses of T' and
T+ E respectively. Let z=T"b and z=(T+E)"d be the leagt square solution of

the equation To=b and (T+ E)z—b respectively. In addition, suppose rank (T7) m=
rank(T+ E). Then

Corollary 8. Let X and ¥ be finite dimensional Hilbert spaces and T,
EcB[X, Y]. Let T* and (T + EN* be the Moore—Penrose inverses of T and T'+ &
respectively and a=1"%b, z=(T+E)*b (€Y ). In addition, suppose rank(7) =
rank (T + E) and there exists a positive number »(T') independent of E such that

1E1
H‘E" ”m V(T) U
2| Q1—,;(2') Bl - e

{7
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Then »{T) >1. |

Theorem 1 shows that the condition number x(7) in the relative error bound
(8) is optimum in a certain sence. But Theorem 2 shows that if the relative error
bound (22) holds, then »(7")>1, and this means that the magnifying multiple of the
relative error of the generalized solution is necessarily greater than or equal to 1.
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