ON THE MINIMUM PROPERTY OF THE PSEUDO **-CONDITION NUMBER FOR A LINEAR OPERATOR*

KUANG JIAO-XUN (匡蛟勋)

(Shanghai Teachers University, Shanghai, China)

Abstract

It is well known that the x-condition number of a linear operator is a measure of ill condition with respect to its generalized inverses and a relative error bound with respect to the generalized inverses of operator T with a small perturbation operator E, namely,

$$\frac{ \left\| \left(T + E \right) + - T + \right\|}{ \left\| T + \right\|} \leqslant \frac{ \varkappa \left(T \right) \frac{\left\| E \right\|}{\left\| T \right\|}}{ 1 - \varkappa \left(T \right) \frac{\left\| E \right\|}{\left\| T \right\|}},$$

where $\varkappa(T) = \|T\| \cdot \|T^+\|$. The problem is whether there exists a positive number $\mu(T)$ independent of E but dependent on T such that the above relative error bound holds and $\mu(T) < \varkappa(T)$.

In this paper, an answer is given to this problem. The main result is

Theorem. Let X, Y be two Banach spaces, T, $E \in B[X, Y]$ and $||E|| \cdot ||T^+|| < 1$. Suppose

$$\frac{\|\langle T+E\rangle^+ - T^+\|}{\|T^+\|} \leqslant \mu(T) \; \frac{\|E\|}{\|T\|}.$$

Then $\varkappa(T) \leqslant \mu(T)$, where $\mu(T)$ is a positive number independent of E but dependent on T and $(I_Y + ET^+)^{-1}(T + E)$ maps $\mathcal{N}(T)$ into $\mathcal{R}(T)$. This theorem shows that $\varkappa(T)$ is minimum in the above sence.

§ 1. Introduction

In [1], the author showed the minimum property of ω -condition number for a linear operator, and extended the results of [2]. The results of [1] are only related to the relative error bound of an inverse linear operator with a small perturbation operator, or the relative error bound of the a regular solution of linear equations with small perturbation.

In this paper, we will discuss the relative error bound of a generalized inverse of a linear operator from a Banach space to another Banach space and a generalized solution of liear equations whose operator has a small perturbation. In addition, we will show the minimum property of the pseudo \varkappa -condition number. The results are very extensive and the results of [1] and [2] are the obvious corollaries.

§ 2. Generalized Inverses of a Linear Operator in a Banach Space

In general, the letters X, Y denote the Banach space, B[X, Y] is the Banach space consisting of all bounded linear operators from X into Y, $\mathcal{D}(T)$ and $\mathcal{R}(T)$ denote the domain and range of T respectively, and $\mathcal{N}(T)$ denotes the null of T.

^{*} Received August 14, 1985.

We assume that the closed subspace $\mathcal{N}(T)$ of X has a topological complement $\mathcal{N}(T)^{\circ}$ and the closed subspace $\overline{\mathcal{R}(T)}$ of Y has a topological complement $\overline{\mathcal{R}(T)^{\circ}}$, namely

$$X = \mathcal{N}(T) \oplus \mathcal{N}(T)^{o}; \quad Y = \overline{\mathcal{R}(T)} \oplus \overline{\mathcal{R}(T)}^{o}.$$

In this case, $\mathcal{N}(T)$ and $\overline{\mathcal{R}(T)}$ are closed, however a closed subspace does not necessarily have a topological complement. A subspace $\mathcal{N}(T)$ $(\overline{\mathcal{R}(T)})$ has a topological complement if and only if there exists a projector P(Q) of X(Y) onto $\mathcal{N}(T)$ $(\overline{\mathcal{R}(T)})$, i.e., $PX = \mathcal{N}(T)$ $(QY = \overline{\mathcal{R}(T)})$, see [7]. Nashed pointed out that if the decompositions

$$X = \mathcal{N}(T) \oplus \mathcal{N}(T)^{o}; \ Y = \overline{\mathcal{R}(T)} \oplus \overline{\mathcal{R}(T)}^{o}$$

exist, then there exists uniquely the generalized inverse $T^+ \equiv T_{P,Q}^+$ ($T_{P,Q}^+$ implies that the operator T^+ depends on the projectors P and Q) such that

$$\begin{cases}
\mathscr{D}(T^{+}) = \mathscr{R}(T) \oplus \overline{\mathscr{R}(T)}^{\circ}; \ \mathscr{N}(T^{+}) = \overline{\mathscr{R}(T)}^{\circ}, \\
\mathscr{R}(T^{+}) = \mathscr{N}(T)^{\circ}; \ TT^{+}T = T; \ T^{+}TT^{+} = T^{+} \text{ on } \mathscr{D}(T^{+}), \\
T^{+}T = I - P; \ TT^{+} = Q|_{\mathscr{D}(T^{+})},
\end{cases} \tag{1}$$

where $Q|_{\mathscr{D}(T^+)}$ is the restriction of Q on $\mathscr{D}(T^+)$. T^+ is bounded if and only if $\mathscr{R}(T)$ is closed in Y. In this paper, we consider the case that $\mathscr{R}(T)$ is closed; then we have obviously

$$\begin{cases} X = \mathcal{N}(T) \oplus \mathcal{N}(T)^{\circ}; \ Y = \mathcal{R}(T) \oplus \mathcal{R}(T)^{\circ}, \\ \mathcal{D}(T^{+}) = Y; \ \mathcal{N}(T^{+}) = \mathcal{R}(T)^{\circ}, \\ \mathcal{R}(T^{+}) = \mathcal{N}(T)^{\circ}, \end{cases} \tag{2}$$

$$\begin{cases}
TT^{+}T = T; \ T^{+}TT^{+} = T^{+}, \\
T^{+}T = P_{\mathcal{N}(T)^{\sigma}}; \ TT^{+} = P_{\mathcal{R}(T)}.
\end{cases}$$
(3)

From (3) we can obtain easily

$$\begin{cases}
T^{+}P_{\mathscr{R}(T)} = T^{+}; \ P_{\mathscr{N}(T)} \circ T^{+} = T^{+}, \\
TP_{\mathscr{N}(T)} \circ = T; \ P_{\mathscr{R}(T)}T = T.
\end{cases} (4)$$

In the following section, we consider the case that the perturbation S = T + E of T has a generalized inverse and estimate the error bound between S^+ and T^+ . We suppose that $y_0 \in Y$, $y_0 = y_1 + y_2$ and $||y_0|| = 1$ imply $||y_1|| \le 1$.

§ 3. The Minimum Property of the Pseudo *-Condition Number

Lemma 1. Let $T \in B[X, Y]$ and suppose $X = \mathcal{N}(T) \oplus \mathcal{N}(T)^c$ and $Y = \mathcal{R}(T) \oplus \mathcal{R}(T)^c$. Let $T^+_{\mathcal{N}(T)^c, \mathcal{R}(T)^c}$ be the generalized inverses of T with respect to these decompositions. Let $E \in B[X, Y]$ and S = T + E. Suppose

$$||ET^+|| < 1 \tag{5}$$

and

$$(I_y+ET^+)^{-1}S$$
 maps $\mathcal{N}(T)$ into $\mathcal{R}(T)$. (6)

Then

$$X = \mathcal{N}(S) \oplus \mathcal{R}(T^+); \quad Y = \mathcal{R}(S) \oplus \mathcal{N}(T^+)$$

and

$$S^+ = S^+_{\mathcal{R}(T^+), \mathcal{N}(T^+)}$$

exists. Moreover,

$$S^{+} = T^{+}(I_{y} + ET^{+})^{-1} = (I_{x} + T^{+}E)^{-1}T^{+}. \tag{7}$$

If in addition $||E|| \cdot ||T^+|| < 1$, then

$$\frac{\|(T+E)^{+}-T^{+}\|}{\|T^{+}\|} \leq \frac{\alpha(T)\frac{\|E\|}{\|T\|}}{1-\alpha(T)\frac{\|E\|}{\|T\|}},$$
(8)

where

$$\varkappa(T)\!\equiv\!\|T\|\!\cdot\!\|T^+\|$$

is the pseudo condition number of T.

Remark. Suppose (5) holds. Then (6) also holds if either $\mathcal{N}(S) \supseteq \mathcal{N}(T)$ (equivalently $\mathcal{N}(E) \supseteq \mathcal{N}(T)$) or $\mathcal{R}(S) \subseteq \mathcal{R}(T)$ (equivalently $\mathcal{R}(E) \subseteq \mathcal{R}(T)$). In fact, if $\mathcal{N}(S) \supseteq \mathcal{N}(T)$, then $(I_y + ET^+)^{-1}S$ maps $\mathcal{N}(T)$ into $\{0\} \subseteq \mathcal{R}(T)$. Similarly, if $\mathcal{R}(E) \subseteq \mathcal{R}(T)$, then on $\mathcal{N}(T)$, $(I_y + ET^+)^{-1}S = (I_y + ET^+)^{-1}E = E(I_x + T^+E)^{-1}$ and its range is contained in $\mathcal{R}(E)$, and hence in $\mathcal{R}(T)$.

Lemma 1 can be found in [7].

Lemma 2. Let X, Y be Banach spaces and $x_0 \in X$, $y_0 \in Y$, $||x_0|| = ||y_0|| = 1$ be any two points. Then there is a bounded linear operator $H \in B[X, Y]$ such that $Hx_0 = y_0$ and ||H|| = 1.

Proof. By the Hahn-Banach theorem, there is a bounded linear functional $f \in X'$ such that

$$\tilde{f}(x_0) = ||x_0|| \text{ and } ||\tilde{f}|| = 1.$$

We define the operator $H: X \rightarrow Z = \text{span } \{y_0\}$

$$Hx=\widetilde{f}(x)y_0.$$

Thus

$$Hx_0 = f(x_0)y_0 = ||x_0|| \cdot y_0 = y_0.$$

The operator H is linear since \tilde{f} is linear. In fact,

$$H(\alpha x + \beta y) = \tilde{f}(\alpha x + \beta y)y_0 = (\alpha \tilde{f}(x) + \beta \tilde{f}(y))y_0$$
$$= \alpha \tilde{f}(x)y_0 + \beta \tilde{f}(y)y_0 = \alpha Hx + \beta Hy.$$

Moreover,

$$||H|| = \sup_{|x|=1} ||Hx|| = \sup_{|x|=1} |\tilde{f}(x)| \cdot ||y_0|| = ||\tilde{f}|| = 1$$

and this completes the proof.

Lemma 3. Let X, Y be Banach spaces and $\tilde{T}, \tilde{S} \in B[Y, X]$. Suppose $\epsilon > 0$ is a given sufficiently small positive number. Then there exists a bounded linear operator $H \in B[X, Y]$ such that ||H|| = 1 and

$$\|\widetilde{S}H\widetilde{T}\| \geqslant (\|\widetilde{T}\| - \varepsilon')(\|\widetilde{S}\| - \varepsilon),$$

where $0 < \varepsilon' \le \varepsilon$.

Proof. For a sufficiently small positive number s>0, there are $y_0, z_0 \in Y$ such that $||x_0|| = ||y_0|| = 1$ and

$$\|\tilde{S}y_0\| \geqslant \|\tilde{S}\| - \varepsilon$$

$$\|\widetilde{T}z_0\| \geqslant \|\widetilde{T}\| - s$$

by the definition of the operator norm. We can choose a positive number $0 < s' \le s$ such that

$$\|\widetilde{T}z_0\| = \|\widetilde{T}\| - s'.$$

Let

$$x_0 = \frac{\widetilde{T}z_0}{\|\widetilde{T}\| - s'}.$$

Then $||x_0|| - 1$ and $\tilde{T}z_0 = (||\tilde{T}|| - s')x_0$. For the x_0 and y_0 , there is an operator $H \in B[X, Y]$ such that $Hx_0 = y_0$ and ||H|| = 1 by Lemma 2. Moreover, we have

$$\begin{split} \|\tilde{S}H\tilde{T}\| > &\|\tilde{S}H\tilde{T}z_{0}\| = (\|\tilde{T}\| - \varepsilon')\|\tilde{S}Hx_{0}\| \\ = &(\|\tilde{T}\| - \varepsilon') \cdot \|\tilde{S}y_{0}\| > (\|\tilde{T}\| - \varepsilon')(\|\tilde{S}\| - \varepsilon) \end{split}$$

and this completes the proof.

Theorem 1. Let T and E be as in Lemma 1 and suppose $||E|| \cdot ||T^+|| < 1$. If there exists a positive number $\mu(T)$ dependent on T but independent of E such that

$$\frac{\|(T+E)^{+}-T^{+}\|}{\|T^{+}\|} \leq \frac{\mu(T)\frac{\|E\|}{\|T\|}}{1-\mu(T)\frac{\|E\|}{\|T\|}}$$
(9)

or

$$\frac{\|(T+E)^{+}-T^{+}\|}{\|T^{+}\|} \leqslant \mu(T)\frac{\|E\|}{\|T\|},\tag{10}$$

then

$$\varkappa(T) \leqslant \mu(T). \tag{11}$$

Proof. We only need to prove the conclusion when (9) is satisfied. The remaining part is similar.

By (5) and the Banach lemma, $(I_y + ET^+)^{-1}$ exists. Using the Neumann series it follows that

$$(I_y + ET^+)^{-1} = \sum_{i=0}^{\infty} P^i$$
,

where $P = -ET^+$. Moreover, using (7), we have

$$(T+E)^{+} = T^{+}(I_{v} + ET^{+})^{-1} = (I_{o} + T^{+}E)^{-1}T^{+}$$

Consequently,

$$(T+E)^{+}-T^{+} = ((I_{x}+T^{+}E)^{-1}T^{+}-T^{+})$$

$$= ((I_{x}+T^{+}E)^{-1}-I_{x})T^{+},$$

$$\|(T+E)^{+}-T^{+}\| = \|((I_{x}+T^{+}E)^{-1}-I_{x})T^{+}\|$$

$$\equiv \|\sum_{i=1}^{\infty} \widetilde{P}^{i}T^{+}\|$$

$$\geqslant \|T^{+}ET^{+}\| - \|T^{+}\|^{3}\|E\|^{2}\sum_{i=0}^{\infty} \|T^{+}E\|^{i},$$

namely

$$||T^{+}ET^{+}|| \leq ||(T+E)^{+} - T^{+}|| + ||T^{+}||^{8}||E||^{2} \cdot \sum_{i=0}^{\infty} ||T^{+}E||^{i}. \tag{12}$$

For a sufficiently small positive number s>0, there exists a $y_0 \in Y$ such that

$$||T^+y_0|| > ||T^+|| - s > 0.$$

Hence $T^+y_0 \neq 0$ and using the decompositions (2), we obtain

$$y_0 = y_1 + y_2$$
; $y_1 \in \mathcal{R}(T)$, $y_2 \in \mathcal{R}(T)^o = \mathcal{N}(T^+)$.

Thus

$$||T^+y_0|| = ||T^+(y_1+y_2)|| = ||T^+y_1|| \ge ||T^+|| - s > 0.$$

We change the definition of H in Lemma 2 by

$$Hx = f(x)y_1$$

and then $||H|| = ||y_1||$. Thus, letting

$$E = \varepsilon H / (\|y_1\| + \|y_2\|). \tag{13}$$

We have obviously $||E|| = \varepsilon ||y_1|| / (||y_1|| + ||y_2||)$,

$$\mathcal{R}(E) = \mathcal{R}(H) = \text{span } \{y_1\} \subseteq \mathcal{R}(T).$$

Thus the operator E in (13) satisfies the condition of Lemma 1. From Lemma 3, it follows that

$$||T^{+}HT^{+}|| \ge (||T^{+}|| - \varepsilon')(||T^{+}|| - \varepsilon)$$

and

$$\|T^+s/(\|y_1\|+\|y_2\|)\cdot HT^+\| \geqslant \frac{s}{\|y_1\|+\|y_2\|}(\|T^+\|-s')(\|T^+\|-s)$$

namely

$$\|T^+ET^+\| \geqslant \frac{s}{\|y_1\| + \|y_2\|} (\|T^+\| - s') (\|T^+\| - s)$$

OL

$$\begin{split} \|T^+\|^2 - (\varepsilon + \varepsilon') \|T^+\| + (\varepsilon + \varepsilon') \leqslant & \frac{\|y_1\| + \|y_2\|}{\varepsilon} \|T^+ E T^+\| \\ \leqslant & \frac{\|y_1\| + \|y_2\|}{\varepsilon \|y_1\|} \|T^+ E T^+\| = \frac{\|T^+ E T^+\|}{\|E\|}. \end{split}$$

Let $\eta = (s+s') ||T^+|| - ss'$. Then we have

$$||T^{+}||^{2} \leq \frac{||T^{+}ET^{+}||}{||E||} + \eta.$$
 (14)

Thus

$$\varkappa(T) = \|T\| \cdot \|T^+\| = \frac{\|T^+\|^2 \|T\|}{\|T^+\|} \leqslant \frac{\|T\|}{\|T^+\|} \Big\{ \frac{\|T^+ E T^+\|}{\|E\|} + \eta \Big\}.$$

Using (12), it follows that

$$\begin{split} \varkappa(T) \leqslant & \frac{\|T\|}{\|T^+\|} \left(\frac{\|(T+E)^+ - T^+\| + \|T^+\|^8 \|E\|^2 \cdot \sum\limits_{i=0}^\infty \|T^+E\|^i}{\|E\|} + \eta \right) \\ & = \frac{\|(T+E)^+ - T^+\|}{\|T^+\|} \frac{\|T\|}{\|E\|} + \|E\| \cdot \|T\| \cdot \|T^+\|^2 \cdot \sum\limits_{i=0}^\infty \|T^+E\|^i + \frac{\|T\|}{\|T^+\|} \cdot \eta \\ & \leqslant \frac{\mu(T)}{1 - \mu(T) \frac{\|E\|}{\|T\|}} + \|E\| \cdot \|T\| \cdot \|T^+\|^2 \cdot \sum\limits_{i=0}^\infty \|T^+E\|^i + \frac{\|T\|}{\|T^+\|} \cdot \eta \cdot \eta \cdot \eta \end{split}$$

In the last expression, if $s\rightarrow 0$ and noting $||E||\rightarrow 0$, $\eta\rightarrow 0$, we have

$$\kappa(T) \leqslant \mu(T)$$

and this completes the proof.

Corollary 1. Let X and Y be Hilbert spaces and their dimension be finite. Suppose the operator (matrix) T, $E \in B[X, Y]$ and $\operatorname{rank}(T+E) = \operatorname{rank}(T)$. If $\|E\| \cdot \|T^+\| < 1$, then $(T+E)^+$ exists and

$$\frac{\|(T+E)^{+}-T^{+}\|}{\|T^{+}\|} \leq \frac{\kappa(T)\frac{\|E\|}{\|T\|}}{1-\kappa(T)\frac{\|E\|}{\|T\|}},$$
(15)

where T^+ is the Moore-Penrose inverse of T.

Proof. We need only to examine condition (6) in Lemma 1 and to prove $\mathcal{R}(E) \subseteq \mathcal{R}(T)$. If this is not true, then it implies $\mathcal{R}(T+E) \supseteq \mathcal{R}(T)$ and this contradicts the supposition (see [7]).

Corollary 2. Let X, Y be Hilbert spaces of finite dimension and T, $E \in B[X, Y]$. Suppose $\operatorname{rank}(T+E) = \operatorname{rank}(T)$ and $||E|| ||T^+|| < 1$. If there exists a positive number $\mu(T)$ independent of E such that

$$\frac{\|(T+E)^{+}-T^{+}\|}{\|T^{+}\|} \leq \frac{\kappa(T)\frac{\|E\|}{\|T\|}}{1-\kappa(T)\frac{\|E\|}{\|T\|}}$$
(16)

holds, then $\varkappa(T) \leqslant \mu(T)$, where $\varkappa(T) = ||T|| \cdot ||T^{\pm}||$.

§ 4. The Regular Inverses

In this section, we consider the case that $T \in B[X]$ and T^{-1} exists. Suppose the small perturbation operator $E \in B[X]$ and $||T^{-1}|| ||E|| < 1$. We need only to examine condition (6) in Lemma 1. Notice that

$$(I+ET^{-1})^{-1}(T+E)=(I+ET^{-1})^{-1}(I+ET^{-1})T=T,$$

so T maps $\mathcal{N}(T)$ into $\{0\} \subseteq \mathcal{R}(T)$, i.e.,

$$(I+ET^{-1})^{-1}(T+E)$$
 maps $\mathcal{N}(T)$ into $\mathcal{R}(T)$.

Thus we have

Corollary 3. Let X and Y be Banach spaces and T, $E \in B[X]$. Suppose $\|E\|\|T^{-1}\|<1$ and there exists a positive number $\mu(T)$ independent of E such that

$$\frac{ \left\| (T+E)^{-1} - T^{-1} \right\|}{ \left\| T^{-1} \right\|} \leq \frac{ \mu \left(T \right) \left\| \frac{E}{\|T\|} \right\|}{ 1 - \mu \left(T \right) \left\| \frac{E}{\|T\|} \right\|}$$

or

$$\frac{\|(T+E)^{-1}-T^{-1}\|}{\|T^{-1}\|}\leqslant \mu\left(T\right)\frac{\|E\|}{\|T\|}.$$

Then $\varkappa(T) \leqslant \mu(T)$, where $\varkappa(T) = ||T|| \cdot ||T^{-1}||$.

§ 5. The Generalized Solution of Operator Equations

In this section, we consider the relative error bound of generalized solutions of

the operator equations

$$Tx = b, (17)$$

where $T \in B[X, Y]$ and $b \in Y$. If $b \in \mathcal{R}(T)$, then (17) has no regular solution. We consider the generalized equation of (17)

$$Tx = P_{\mathcal{B}(T)}b. \tag{18}$$

If $x^* = T^+b$, then x^* satisfies (18) and it is said to be the generalized solution of (17). We suppose $E \in B[X, Y]$ is a small perturbation operator and $(T + E)^+$ exist. In addition, suppose $|E| \cdot |T^+| < 1$. From the proof of Theorem 1 we have

$$(T+E)^+b-T^+b=((I_a+T^+E)^{-1}-I_a)T^+b.$$

If we take $x^* = T^+b$ and $\hat{x}^* = (T+E)^+b$, then

$$\|x^{\bullet} - \hat{x}^{\bullet}\| \leqslant \left\|\sum_{k=0}^{\infty} \left(-T^{+}E\right)^{k} - I_{\bullet}\right\| \cdot \|x^{\bullet}\|$$

Or

$$\frac{\|x^* - \hat{x}^*\|}{\|x^*\|} \leq \sum_{k=1}^{\infty} \|T^+ E\|^k \leq \frac{\|T^+ E\|}{1 - \|T^+ E\|}$$

$$\leq \frac{\kappa (T) \frac{\|E\|}{\|T\|}}{1 - \kappa (T) \frac{\|E\|}{\|T\|}}, \qquad (19a)$$

where $\varkappa(T) = ||T|| ||T^+||$.

Theorem 2. Assume X and Y are Banach spaces and T, $E \in B[X, Y]$. Let T and E be as in Theorem 1. Let $x = T^+b$ and $\hat{x} = (T + E)^+b$ and suppose that there exists a positive number $\nu(T)$ independent of E such that

$$\frac{\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leq \frac{\nu \left(T\right) \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{T}\|}}{1 - \nu \left(T\right) \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{T}\|}} \tag{19}$$

or

$$\frac{\|x-\hat{x}\|}{\|x\|} \leqslant \nu \left(T\right) \frac{\|E\|}{\|T\|}. \tag{20}$$

Then $\nu(T) \geqslant 1$.

Proof. To simplify the proof, we consider the case where (20) holds. As before, we have

$$(T+E)^+b-T^+b=((I_x+T^+E)^{-1}-I_x)T^+b$$

or

$$\hat{x}-x=\sum_{k=0}^{\infty}P^kx-x$$
 $(P=-T^+E)=\sum_{k=1}^{\infty}P^kx$ $-Px-P^2\sum_{k=0}^{\infty}P^kx$.

Thus we have

$$\|\hat{x} - x\| \ge \|Px\| - \|P\|^2 \sum_{k=0}^{\infty} \|P\|^k \|x\|$$

$$||T^{+}Ex|| \leq ||\hat{x} - x|| + ||T^{+}||^{2} \cdot ||E||^{2} \sum_{k=0}^{\infty} ||T^{+}E||^{k} \cdot ||x||. \tag{21}$$

Suppose s>0 is a given positive number. Then there exists a point $b\in Y$, ||b||=1, such that

 $||T^+|| \le ||T^+b|| + s = ||T^+P_{\mathscr{R}(T)}b|| + s.$

Assume that x is a generalized solution of (18). We have $Tx = P_{x(T)}b$. Hence $||T^+|| \le ||T^+Tx|| + \varepsilon$.

We can choose $E = \varepsilon T$ since it satisfies the requirement of Lemma 1. In fact, $\mathcal{N}(E) = \mathcal{N}(T)$ and $\mathcal{R}(T) = \mathcal{R}(E)$. Substituting them into the above inequality we obtain

$$\|T^{+}\| < \frac{\|T^{+}Ex\|}{s} + s = \frac{\|T^{+}Ex\|}{\|E\|} + s$$

$$= \frac{\|T\|}{\|E\|} \left(\|T^{+}Ex\| + s \frac{\|E\|}{\|T\|} \right).$$

Using (21) and noticing $||x|| = ||T^+b|| \le ||T^+|| \cdot ||b|| = ||T^+||$, we have

$$\begin{split} \|T^+\| &< \frac{\|T\|}{\|E\|} \left\{ \|\hat{x} - x\| + \|T^+\|^2 \|E\|^2 \sum_{k=0}^{\infty} \|P\|^k \|x\| + 8 \frac{\|E\|}{\|T\|} \right\} \\ &< \nu(T) \|x\| + \|T\| \|T^+\|^2 \|E\| \sum_{k=0}^{\infty} \|P\|^k \|x\| + 8 \\ &< \nu(T) \|T^+\| + \|T\| \|T^+\|^3 \|E\| \sum_{k=0}^{\infty} \|P\|^k + 8. \end{split}$$

Thus

$$\varkappa(T) \leqslant \nu(T)\varkappa(T) + \|T\|^2 \|T^+\|^3 \|E\| \sum_{k=0}^\infty \|P\|^k + \varepsilon \|T\|.$$

Letting $e \rightarrow 0$ ($||E|| \rightarrow 0$), we obtain

$$\varkappa(T) \leqslant \nu(T)\varkappa(T)$$

that is, $\nu(T) \geqslant 1$, and this completes the proof.

Corollary 4. Let X, Y be finite dimensional Hilbert spaces and T, $E \in B[X, Y]$. Assume T^+ and $(T+E)^+$ denote the Moore-Penrose inverses of T and T+E respectively. Let $x=T^+b$ and $\hat{x}=(T+E)^+b$ be the least square solution of the equation Tx=b and (T+E)x=b respectively. In addition, suppose rank (T)= rank (T+E). Then

$$\frac{\|\hat{x}-x\|}{\|x\|} \leqslant \frac{\varkappa\left(T\right)\frac{\|E\|}{\|T\|}}{1-\varkappa\left(T\right)\frac{\|E\|}{\|T\|}}.$$

Corollary 5. Let X and Y be finite dimensional Hilbert spaces and T, $E \in B[X, Y]$. Let T^+ and $(T+E)^+$ be the Moore-Penrose inverses of T and T+E respectively and $x=T^+b$, $\hat{x}=(T+E)^+b$ $(b\in Y)$. In addition, suppose rank(T)= rank(T+E) and there exists a positive number v(T) independent of E such that

$$\frac{\|\hat{x}-x\|}{\|x\|} \leqslant \frac{\nu\left(T\right)\frac{\|E\|}{T}}{1-\nu\left(T\right)\frac{\|E\|}{\|T\|}}.$$
(22)

Then $\nu(T) \geqslant 1$.

Theorem 1 shows that the condition number $\varkappa(T)$ in the relative error bound (8) is optimum in a certain sence. But Theorem 2 shows that if the relative error bound (22) holds, then $\nu(T) \ge 1$, and this means that the magnifying multiple of the relative error of the generalized solution is necessarily greater than or equal to 1.

References

- [1] Kuang Jiao-xun, On the minimum property of w-condition number of linear operator, to appear.
- [2] Yan Chen-min, On the optimal property of the matrix condition number in the error estimation (to appear on the Journal of East China Normal University.
- [3] Kuang Jiao-xun, On some approximative methods of the operator generalized inverses in Banach spaces, Journal of Shanghai Teachers College, No. 2, 1984.
- [4] Kuang Jiao-xun, On the ω-condition number of linear operator, Numerical Mathematics, a Journal of Chinese Universities, No. 1, 1980.
- [5] Du Hong-ke, The note on the ω-condition number of linear operator, Numerical Mathematics, a Journal of Chinese Universities, No. 1, 1982.
- [6] Du Hong-ke, On the inversive order law of linear operator generalized inverses and the EP operators, Journal of Shanxi Teachers University, No. 1, 1984, 11—20.

[7] M. Z. Nashed (ed.), Generalized Inverses and Applications, 1976.

[8] K. E. Atkinson, An introduction to Numerical Analysis, John Wiley, New York, 1978.

• FEEE TO

•

[9] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley, New York, 1978.