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Abstract

§ 1. Introduction

This paper presents an interior point method for solving a linear program-
ming problem (LP)_ and proves the convergence of the algorithm under certain
assumpiions. The algorithm wag previously mentioned in [7], in which the
convergence was proven under the assumptions that the primal and-dual problems
are both nondegenerate, and that the problem is bounded. In fact, the algorithm
performs well in more general cases, but under an additional assumption that the
LP problem satisfies the condition F, which will be defined in Section 2. The
condition F implies that if the feasible region of the LP problem is bounded, then
the primal problem isg nondegenerate and that if the feasible région is unbounded,
then the primal problem ig nondegenerate, and there are gt least m+1 nonzerg
components in the vector of any ray direction. -

In this paper we show, under the assumption that the LP problem satisfies the
above condition F, that the algorithm converges to an Optimal solution for s
bounded primal problem, even if the dual problem ig degenerate, and $0 an extreme
point if the dual problem ig nondegenerate, We algo pProve that in the case of the
unboundedness of the LP problem the algorithm converges to a ray direction, along
which the minimum value is unbounded.

§ 2. Algorithm

This section describes the interior point method for solving the LP problem by
use of afline transformations,
We consider the following standard form of the linear programming problem:
minimize z=¢%z, (2.1)
subject to Ax=5, (2.2)
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x=>0, (2.3)

where A is an m X = real matrix with rank m, and m<n. b and ¢ are real vectorsin
R™ and Rr, respectively, and  is a real variable in R".

Let 8= [z: Az=>, z>0] dencte the feasible region of the LP problem, then
the LP problem is feasible if § is nonempty.

Deflnition 2.1. The LP problem satisfies the condition F if 8 ¢s nonempiy, and
for any ¢ €8, the matric AD*AT és of full renk, where D is a diagonal mairis
contaiming components of «.

From the definition, it is easy o see that if the feasible region § is bounded,
then the condition F is equivalent to nondegeneracy of the primal, and if § is
unbounded, then for any ray direction » of §, the matrix AD;A" is of full rank,
where D, is a diagonal malrix confaining components of ».

Suppose that the LP problem satisfies the condition F, and ihat r is a sirictly
interior feagible point, Then an affine transformation and its inverse can be defined
as follows:

o' =Dz, (2.4)
x= Dz, (2.5)

With the above iransformation the original LP problem is transformed into the
following lihear programming problem in #'-space:

minimize z=¢'Da’, (2.6)
subject to ADz'=b, (2.7)
x' =0, (2.8)

where D is a diagonal matrix containing components of =.

Obviounsly, from the definition of D the point # in z-space is mapped into the
point 6= (1, 1, ««- , 1) in «’-gpace. Hence, in order to get the maximum rate of
decrease of the objective function, a large step away from the point ¢ t0 a new
point in a’-space is taken along the negative of the projective gradient direction.
The new point is transformed back into the z-space, and an iterative point is
obtained.

Given a strictly interior point «©®, the algorithm described above, which
creaies a sequence of points £, &, .-, ig defined more formally as follows.

Algorithm A. |

k: =0. Given 29, a gtrictly interior feasible poinf.

(1) Define
D= diag (29, o, +++, a), 2.9)
A,= AD,, (2.10)
(2) Compute the vector ¢ and ite norm [el”|. by
og? = [I — 4y (A Ai;) " Ax] Do (2.11)
and
[e5P 2=+~ (c5”)7(c5”) . ' (2.12)

(3) Normalize ¢J?,
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(e 5> 2.13
aren -, B8

go 1o the next step
(4) Determine the largest step Wh.lch ma.g be taken and goenerate a new pomt

Mmi. - (2.14)
% g i
where |
¢ = max [ pf IE‘;‘]
and let

2*HD m g ® — a0 D (R , (2.15)

where a € (0, 1).

k: k+1, and go to step (1).
It i8 clear that the bulk of the computational effort in ea.ch 11391-31.1011 is from

step (2), which ensures the feagibility of the new point.

§ 3. Stopping Rule in the Case of Unboundedness

This section digeusses the behavior of the vector p™® defined by (2.18) under
the assumption that the sequence #'* generated by Algorithm A is unbounded.

As is well known, the dual problem plays a very important role in the solu-
tion of the LP problem. If the minimum wvalue of the LP problem is nunbounded,
then its dual problem is infeasible. This is also frue in Algorithm A. That is, if
the sequence 2 generated by Algorithm A is unbounded, then the dual problem is
infeagible. To show this, we define a vector y, which is an approximation to the
dual vector with respect to an interior point z

y=(AD?*A") T4 D%. (3.1)
It follows from the agsumptions that (AD?AT)~! exists for all feasible points

2, and from this it can be shown that if is confinuous in «, and so is y. The majoi'

results of this section are as follows.
Theorem 8.1. Suppose that the LP problem satisfies the condition F. Then the
sequence o' generated by Algorithm A is unbounded ¢f and only if

lim p®<0, (3.2)

where P is defined by (2.18),

Theorem 3.2. Suppose that the LP problem satisfies the condwt@m F Assumas
that the sequence «™ generated by Algorithm A és unbounded, and there are 1
unbounded components tn @™, Then for each unbounded component @f®,

lim P = = (3.8)
holds.

In order to prove these theorems several lemmas are introduced.

Lemma 3.3. Suppose that the LP problem satisfies the condition F. Then the
sequence y'© is bounded, where y™® is defined by (8.1) with respect to ™.

Proof. If the sequence z™ generated by Algorithm A is bounded, then the
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conclugion is trivial. Otherwise, from the assump“hmn that ’ahe LP pmblem satisfies
the condition F, it follows that for all %, the matrix AD;AT is of full rank, where

D, is a diagonal matrix with regpect to 2%,

Let
. M=/ @ (69
- 2
e B (3.5)
1 L G
BII= Mﬁ Dy. (3.6)

Thus, for all k, the matrix

1 . AT 1 HIT_ R AT
5+ (ADLAT) A i D,) 4"=AD}4

is of full rank.
By definitions (8.1) and (8.6), it is clear thak
y® = (ADEAT)Y 1 AD}0= (AD}AT)*AD}e. (3.7)
Let S . ‘
. Ey=D, AT (AD?AT) L AD,.
Since the matrix E, is symmetric and idempotent, it is a projeciion matrix. Hence,
for all k | |
| D, ATy® | o= | Dy AT (AD;AT) 2 AD70] s
= | BxDio|s<| Dief <ol
which implies that the sequence y™® is bounded.
This completes the proof of the lemma.
Lemma 8.4. Suppose that the LP problem satisfies the condition F If the

sequoence o™ generated by Algorithm A is unbounded, and there is a subset N,.,CN such
that for all k, each component & (4 € N1) is bounded, then

lim =0, €Ny (3.8)

where p® ig defined by (2.18).
Proof. It follows from the assumptions that there exists a large M>0, such
that for all &

MM, $EN, (3-9)

holds. Suppose that M, 2%, and D, are defined by (3.4), (3.5) and (3.6),
respectively. Thus

&) e M2 (3.10)

and -
lim My = +eo. _ (3.11)

kpona

By (38.5) and (3.7), we have
6 =Dy [o— AT (ADAT) "LAD}c] = Dylo— ATy™] = Dyr”"-’ (3.12)
and #* 50 for all k since the Bequence z% tends o mﬁmty.
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It follows from Lemma 3.8 that ¥* ig bounded. So, there is some large M such
that for all k

e la<M. R (3.13)
From (3.6), it is clear that
D= M, D, (3.14)
By substituting (8.14) into (3.12), we obtain
05" = M, D™, (3.15)
By definition (2.18), it follows that |
PP = ﬂ ii]:::]fn ) | (3.18)

Then, from (3.16), (3.18) and (3.11), it is straightforward to show that for a
given sufficiently small ¢>0, there is an intsger ko, such that for all k>,

(& =7 ) <& '

This implies that

which proves the Jenfma,
Lemma 8.5. With the same assumptvons as in Theorem 8.2, there ewists a
subsequence &™, suoh that for each unbounded component wf?, |

lim pf =2, (3.17)

holds. | |
Proof. The proof follows from the assumption that for all k, matrix AD; AT
is of full rank, where D, is defined by (2.9). |

Suppose that M,, z® and D, are defined by (8.4), (8.B) and (3.6),
respectively, It is clear that z® is & bounded sequence, so that fthere are a.
subsequence £%? and an x such that

lim %) =g, (3.18)

[ s
Since y is a continuouns function of @, 1t i siraightforward to show that there
are also & vector y and a subsequence g*» corresponding to % such that

lim y®*) =4 (2.19)

Kp—soe

which implies that there are also a vector = 70 and a subgequence 7% with respect
t0 ¥ guch that

Lim @ =g (8.20)
By definition (2,18),
: -~ Dr
I g% e e — T 3.21
?ﬂl—im P P H _D‘rnﬂ ( )

where D is a diagonal matrix with respect to z.
It follows from (8.18) and (8 .21) that there exists a vector v such that
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T

. D, P* —DP
lvm]_‘l_m — LJ —— —
b || Dy Py | DPa
along which the subsequence 2™ tends fo infinity. Therefore, there are a
sufficiently small >0 and an integer %;.>0 such that for all &> #;
A RPN )

“ g% — a;{E:} " .

(8.22)

T | < 8.
Then

k) ) | '
ligh . B =% =, 3.23

By (8.18), it is also easy to show that

_ — D, PG - |
lim =D, =, (3.24)
bisee || Dy PP 4 x

Tt follows from (8.22), (8.23) and (3.24) that

g = DF 5
- [-DP|a
Hence, if #,#0, then
» §h=h ”Eﬁﬁﬂ: P12, e, !
which implies that
| o "
= lim p{* = ——.
P kg0 B '\/ l

This completes the proof of the lemma,

Now we prove Theorems 3.1 and 3.2.
The proof of Theorem 3.2 ig straightforward. From the conclusion of Lemma

8.5 it follows that there exists a subsequence #*? such that

2 ;
Hence, for a given sufficiently small §>>0, there is an integer k; such that for all
ki JTG-;

| <s, #=1,2, 0, b (3.25)
and
[P | <s, GE€EN,  (8.26)

where N -1 ig described in Lemma 3.4.
Now for each a®*V defined by (2.15), by Algorithm A it is easy to show that

for all k> k;
gt D = (1 — o, p*y 2, $=1, 2, -+, 1, (3.27)
which implies that there is a sufficiently small &;>0, such that for all ]
|70 — g ®] <L ey,

whore 2%+ and % are defined by (3.5). Since y is a continuous funciion of z,
there exists a sufficiently small 2,>>0, such that for all &>k

[ %D — p®2 | g < g4, (3.28)
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It follows from (3.27), (3.28), (8.12) and definition (2.18) that there is a
sufficiently small 83>>0, such that for all %,> %

HP@:'H) __P(E:) H 9< 8.

Hence, it 1s straightforward to show that

[ s 1 .
{h}_ [ — [ I [ —-] [ N N

which proves the theorem.

The proof of Theorem 3.1 is as followa:

The necessary condition ig a straightforward result of Theorem 3.2 and
Lemma 3.4, R

It is also easy to show that the sufficient condition is true. By the assumptions
that 8>>0 is a sufficiently small constant, that ® is a unit vector, and that

<8

there are I negative components in 2" and the absolute value of every negative
component is greater than g. Thus, it follows from formula (2.15) and Lemma
3.4 that the sequence #™ ig unbounded as % tends to infinity.

This completes the proof of the theorem.

The following corollary is a direct result of Theorem 3. 2. .

Corollary 3.6. With the same assumptions as in Theorem 3.1, the sequence
¢ generated by Algorithm A is unbounded if and only if

E ” GEE} H a—>00,

where [¢J?]s is defined by (2 .-12) .

§ 4. Convergence l

Weo will show that under the assumption that the IP problem satisfies the
condition F, the algorithm converges 10 an optimal solution if the minimum value
of the L.P problem is bounded, or gonerates a ray direction if the optimal value of
the objective function is nnbounded.

Theorem 4.1. Suppose that the LP problem satis fies the condition F. If the
mamymum value of the LP problem ¢s bounded, then ihe sequence ™ generated by
Algorithm A comverges to an optimal solutson.

Theorem 4.2. Swuppose that the LP problem satis fies the condition F, If the
manemum value of the LP problem is unbounded, then there ewists a vector p<0, such
that the sequence p™ defined by (3.10) converges o p.

Now we introducs several lemmas. |

Lemma 4.8. Suppose that the LP problem satisfies the condition F. Then the
~ sequence ©' generated by Algorithm A és bounded of and only of

Lim [efP],=0, (4.1)

f=cm

where [e{?| s és defined by (2.12). .
' Proof. In order to prove necessity, let

20w T @), - (4.2)
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Then, by the formula (2.15), . | o
AL JUNPL. VLU LS S ) B “Mﬂ ﬂﬂ” Hﬂ (4.3)
and hence 2™ corresponding to #® is a monotonically dﬁci'easlng sequence with a

lower bound. It follows from (4.8) and the bﬂundedneﬂa of the sequence 2™ that
there exists a 2 such that

lim 2% =7, 4.4)

K= xd

From (4.8), it is easy to gee that
' p—1 -

It follows from (4.4) and (4.5) that
Iim Hc§k}"ﬂ=0.

Koo !
It shonld be clear that sufficiency is also satisfied. Otherwise, by Corollary 3.6,
if the sequence &' is unbounded, then |

lim |o3”|g=c0

k—soo
and this contr%dicts the agsumption that
: ];clln uﬂ'gﬂ)”g“(}.
Hence the lemma is proven.,
Lemma 4.4. With the same assumpiions as in Lemma 4.8, §f the minimum
value of the LI problem is bounded, then the sequence o® generated by Algorithm A is

bounded.
Proof. If the feagible region of the LP problem is bounded, then the coneclu-

gion of the lemma ig trivial.
Assume that the feasible region of the LP problem is unbounded, and let

V=1[v: Av=0, v==0]. | (4.6)
Then, V is nonempty, and for any v €V, v+%0, |
¢Tv=0 | 4.7y

holds ginece the minimum value of the LP problem is bounded.
Now suppose that the conclusion of the lemma is not true. Then the sequence
e® generated by Algorithm A is unbounded. It follows from Theorem 3.2 and

Lemma 3.4 that there is & vector p such that

lim p® = p, (4.8)
Let
- Dy
. p® = — ;‘% =
Then

and for all %
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p ¢’ Dy | 257 | s
7206 — ey
o 5 T <" e
The formula can be written in the form
To® = — e Dy (k) (4.10)

where D, ig defined by (3.6). Thus, the sequence z* is bounded. So thers are a
subsequence z% and a vector z such that

lim %9 =z, (4.11)

k;—»oa .
It follows from (4.9) and (4.11) that there are a vector » and a subsequence
4%’ guch that .

Iim E{h}ﬂa
Kj=eoe
and
v=—Dp=>0,
o= —c" Dp<<0

which contradiets (4.7). So the conelusion of the lemma ig true.
This completes the proof of the lemma.

Now we staje the proof of Theorems 4.1 and 4.2,
The proof of Theorem 4.1 follows from the assumptions and results of Lemma

4.4, namely that the sequence #® generated by Algorithm A is bounded. Hence,
there are a feasible solution z and a subsequence ¥ guch that

Iim g% =g (4.12)

Koo
“which implies that there are a vector r and a subsequence +*? with respect to z™
such that

lim r®=r, ~ (4.18)
Thus, by Lemma 4.8 and (3.14),
Lim [ei”[2=0 (4.14)
and
E{‘?ﬂ:i"'—'" D. (4 » 15)
Let
J=[¢: 7;=0, 4EN]. (4.16)
MThen there exists an integer ke such that for all &, >k
(e5) >0, ¢EJ. (4.17)

Otherwise, given a sufficiently small >0, there is an integer ¥>>0 such that for
all k;:}i_ﬁ | |
|o® — | <8 (4.18)

and

(c&),<0, 4EJ. (4.19)
‘Hence, for all k;>F
P <0, ¢€J. o (4.20)
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It follows from (2.15) and (4.27) that for all k>k
o=@ >0, §€J

which implies that the subseript ¢ is not in J. This contradicts (4.23), so thatb
(4.24) holds.

By (4.22) and (4.24), it follows that if >0, then ry=0; or that if z;=0, then
7¢>>0. Thus, = is an optimal golution.

From (2.18) and since ¢{® is & continuous function of «, £ is the only
sccumulation point of the sequence ™. This completes the proof of the theorem.

Corollary 4.5. With the same assumptions as in Theorem 4.1, if the dusl
problem is nondegenerate, then the sequence z® generated by Algorithm A
converges to a unique optimal solution.

The proof of Theorem 4.2 follows from the assumption that the dual cf the LP
problem is infeasible since the minimum valae of the LP problem is unbounded.

Now we assert that the sequence ™ generated by Algorithm A is unbounded.
If this is not true, then #* is a bounded sequence

Himag® =g

K=o

which implies that the dual problem of the LP problem is feasible. This contradicts
the fact that The dual problem is infeasible, Hence, the asgertion is true. It follows
from Theorems 3.1 and 3.2 that there is a vector p<<0 such that the sequence p®
converges to p. This completes the proof of the theorem.

Acknowledgement., The author expresses his appreciation 10 Professor 1.
Adler at the University of California, Berkeley for many helpful discussions, and J.
Doucet for helpful editorial comments.

References

[1] Q. B. Daniaig, Linear,Programming & Extensions, PUP, Princeton, NJ, 1963.

raj P. E.Gill, W. Murray, Numerical Methods for Constrained Optimization, Acadsmic Press, Ine. {New
York-Liondon), 1974.

[8] N.Karmarkar, A New Polynomial-Time Algorithm for Lineap Programming, Uombinatorica, Dec.
1984.

[4] P. Lancaster, M. Tismenetsky, The Theory of Matrices with Applications, Academic Press, Inc.
Orlaxdn, Florida, 1985. |

[5] M.J.Todd, B. P. Burrell, An Extension of Karmarkar’s Algorithm for Linear Programming Using
Dual Variables, Tech. Report No 648, School of Operations Research & Industrial Engineering, College
of Bngineering, Cornell University, Ithach, NY 14850.

(6] J. A. Tomlin, An Experimental Approach %o Karmarkar’s Projective Method for Linear
Programming, manuseript, Ketron Inc. (Mountain View, CA 94040), 1985.

[7] R. J. Vanderbei, M. 8. Meketon, B. L. Freedman, A Modificaiton of Karmarkar’s Dineax

- Programming Algorithm, AT&T Bell Laboratories, Holmdel, New Jerssy 07733.

o



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg

