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Abstract

L. R. Flatcher®l] has pointed out that how to best exploit any ifreedom of choice in regard to
the eigenvalues of a closed-loop system is an unsolved problem for robust pole assignment in control
system design. This paper suggests a numerical method to solve this problem, Numerical results show

that the method is feasibls.

§ 1. Introduction

Throughout thigspaper we shall use the same notational convention as in [T].

The following robust assignment problem has been investigated (Ref. [1], [2],
81, [7D): ,

Problem RPA. Given a real #Xn matrix A a real full rank nXm matrix
B(m<mn) and a set ¥ of n complex numbers Ay, A, **, An, closed under complex
conjugation, find a real mXn matrix F and a non-singular nXsn matrix X
satisiying

(A+BFYX =X, 1.1y

where A =diag (A1, Aa, ***, An), such that the eigenvalues Ay, Ag, ++*, A 0f A+BF are
as insensitive to perturbations in the matrix A+4-BF as possible.

This paper investigates an unsolved problem proposed by L. R. Fletcher™.

L. R. Fletcher has pointed out that in practice the eigenvalue spectrum {Ai,
Aa, ***, An} “is usually required to be contained in some region of the complex'
plane rather than to be precigsely some given complex numbers. Numerical
experimentation indicates that some eigenvalue gpecira are much more sensitive
than others to perturbations in A, B and ¥ so that choosing 4 to minimize this
sensitivity is an important practical issue about which virtually nothing is
known.” ([1, p. 169]) Hence, the problem of how to best exploit any freedoni of
choice in regard to the eigenvalue spectrum is well worth investigating.

The unsolved problem may be formulated as follows:

Problem RPA 1. Given a real nxXn matrix A, a real full rank nXm matrix
B(m{n), p segments &y, L, -, L, lying in the real axis R and regions .‘:’31,
Dg, +++, Dy of the complex plane C. Where

={$Eﬁ hirigéghisﬂ},! 5=11 2y oy D, (1'2}

gj= {z=§+‘iﬂ?€ﬁ:: ﬁj,l%g%#f,ﬂg pﬁjigﬂ'ﬁng.{-ﬂ}r j=1? 2.!' “".I g (1"3)
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and p+2¢=n, find » numbers Ay, Ag, ***, As, 2 Donsingular nXn matrix X and a
real m X n matrix F satisfying the equation (1.1) and

}\-;E.g?;, j’i, 2, e, D, (1.4)

a'p+i c @h ;\"ﬂ+a+5_ -}:‘ﬂ-l-h j’ 11 2! ==y ) | (1 . 5)

such that the eigenvalues Ay, Ag, *++, Ay 0f A+BF are as insensitive to perturbations
in the matrix A+ BF as possible.

Clearly, Problemm RPA and Problem RPA1 are both inverse algebraic
eigenvalue problems. | | -

The aim of this paper is to suggest a numerical method for solving Problem
RPA1l. For simplicity we consider only the case where the pair (4, B) is
controllable ([1]) and p==. Moreover, for convenience we wriie

).;":\.; (tj) -——;\4,'1-[" (lj,g"l;,i) Bi]:lﬂ f;, 5" frj E R Vj. ' (1 » 6)

The idea and technique described in this paper may be used to solve Problems
RPA1 in the case of p<n. | -
The procedure of the numerical method for solving Problem RPA1 congisi of

two basie steps ([2], [7]):
Step A—X. Compute the decomposition

B pA |
B= (U, Ugﬂ>>(0), - x.7)

where (U, U{®) is a real orthogonal matrix and Z nonsingular;

Construct orthogonal bases comprised by the columns of matrices S;(;) and
8,(t,) for the space & (t) = A" (U " (A—M{#)I)) and its complement, P4y for
A () €7, J=1; 2, w&; W

Seleot veotors @;=8; ({) w; EF, (&), j=1, 2, ---, n such that X = (z1, %3, -, L)
is well-conditioned.

Step F. Find the mairix M =A+BF by solving MX =X A and compute F
explicitly from -

F=Z-10@" (M — 4). (1.8)

Obviously, to find a well-conditioned matrix X is the key of the above
mentioned procedure. In the next section we reduce the problem for finding &
well-conditioned matrix X fo an unconstrained optimization problem. In Section &
we deduce a formula of the gradient veotor for the objective funchion described in
Section 2, and in Section 4 we use the DFP algorithm to solve the unconstrained
optimization problem. Numerical resulis are given in Bection b.

§ 2. An Optimization Problem

Let :
X == (5171, Lgy, *°*y Ln), Y=X""= (yir Yz, **", ?}n), (2-1)
os= ||| oi} a1, =1, 2, +, m (2.2)
and
¢= (c1, Gz, ***y Cn)"s (2.3)

where
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@y= 2y (Wyy by) =8 @) w;, w,ER™, w;#0, 3;ER (2.4)
and '
8, E)T8; (@) =T, =1, 2, -+, 0. (2.5)
It is known™ that the quantity
| ve(D)=|Dec|s/| D]» (2.6)
is a reasonable meagure of the conditioning of the eigenproblem (1.1), where
| D=diag (dy, da, ==, &), &>0 Vj. 2.7

Hence, if we can determine wy, wa, -+, W, and #1, %, ) s guch that the measure

2,(D) takes its minimum, then the corresponding X is well-conditioned.
Let

we (wl, wi, <+, ws)¥, w;= (s, ***, W, 1) T €R™ Yy, 2.8)
p= (T, ta, ==, tn)%, LER V) (2.9)
and N =my+mg+---- +m, Moreover, let
X y== (@q, «*) By_1, Tizt, ***y %n), | (2.10)
oy (el e, 0], 0, oy 0T O @a
and -
By G, won, i, Bpim, e, Ba)y gy B =93, (2.12)

Using singular value decomposition we obtain

P
X:f= (Uh “f)( [; )V?} u;EF&“, 23=di&g(ﬂ'§,1, % ﬂ.hﬂ*i): | (2'13)

where (U, u;) and V, are orthogonal matrices, and
X=X, (0, 1), Ui=Us(wy, t), w=u (105, 11
3= (0, b, Vi=V;i(w, 1),

By 7] ({7, § 3]) we have

(D=3 S =t 4, 2.14
WS E[uf(wh ti) TS (8 wi]® ki '.( )

where

3

Y 23;=1. (2.15)
A%
Hence, the problem for finding a well-conditionsd matrix X may be reduced to the
following unconstrained optimization problem:
minimize f (w, %), (2.16)
_awhere f(w, ), w and ¢ are defined by (2.14), (2.8) and (2.9), respectively.

§ 3. Formula of the Gradient Vector
Let

o8 (2w H@D . F@OV gy ..
_I;;: (_3;01; 3 3;;, > Pwa,, )? i=1, 2, »», n (3.1)
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of (w, &) _ (3fCw, )  0f(w, &) ., 2o, 8
: 3‘5 | ( 3ﬁ1 2 &2 3y ) (3 . 2)
where f(w, £), w and { are defined by (2.14), (2.8) and (2.9) , respectively. Them
the gradient vector Vf(w, ) may be represented by

V£ (w, i) =((_fg;1t) ) (ng;; £) )T, i -(3_1"5;1;; t) )T.’ (3fg-;", -=fv))-'l')m.

(3.3)
In thig section we deduce a formula of the gradient vector Vf(w, 1).

3.1. Expressions of of g?f) ) , 1=1, 2,
:

By Theorem 3.1 of [7] we know that

af (w, t) =95 _wi Sy (4) Ty (s, 151) T 3
2 : [ s (o, 178, () / [otg (o, £3) T8 () w)]

afwgrwi P A A
i Y (oo, 9S40 Z Gy )8y (D ws/
%“J(wﬁ £5) %8 () w; " PR TSER e R

P [u.f (‘E’h EJ)TSJ(tJ)wﬁ:I 2: 3#11 2, ***y m, | (31'1)

where -
Yii(w, 8)=u, (‘th E:f) T8 (8 wys I -8, (&) Ty (’E’f: gﬁ) wi (3.1.2)
and |

Z (g, 1) =T, (ty, £5) 23 (a5, 1) =T (a3, 17)%, (3.1.8)
among which 8;(%), U;(wy, #;), u (w;, i) and 3,(w, #;) have been defined in the
above two sections.

of (1, )
Jt )

Now we consider &f(w, ) /0t defined by (3.2).

3.2.1. First observe that the matrices 8,(t,) and S;(¢,) deseribed in Step A—X

may be obtained by singular value decomposition of (AT —A; () DUP([2]):
. I (¢
(AT—A () DU = (85 (), 8;Ep)) ( j{g 2 ) T ()%, (3.2.1)

where (8;(,), 8;()) and T;(%) are orthogonal matrices, 8;(f;) €R**™, and I,(;)
E R*—mAX(=ma) ig a diagonal matrix with positive diagonal elements (Note: Sinoce the

pair (A, B) is controllable, the mairix (AT —A;(#;).1)UY is necessarily of full-rank
(seo [2, p. 1134]).
Let

3.2. IExpression of

Hi(ty) = (AT M@ DHUPUP" (A—-MG) I). (3.2.2)
From (8.2.1) we have
I'y(3,)? 0) (éf (ﬁj)r)
0 8;@)T /)

The following theorem shows that if for an arbitrarily fixed point {JER we ha?e a
decomposition

H, () = (8;(8), S, @,))(
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2 o\ /8"
H, () = (85, s:)( ‘ )( Si, )

WhEII‘E (é}', 87) €R™® ig an orthogonal matrix with §; €R™™, and I'; ERE-mIx(=m
'is a diagonal matrix with positive elements, then there exist some nelghbourhood

.S’Et;}c:ﬁ of i3, (@, (&), 8;3)) eR>* with §;(;) cR"™*™, and a full-rank mafrix
Iy (t) CRe-maxis=m)  guoch that S,(&), 8;() and I';(3;) are real malrix—valued

analytio funotions of H,E# E;J satisfying

B (), BT (S5 G, 85E)) =1, V4 E By, (3.2.8)
B/, 8, = (85, 8D, Iy =T (3.2.4)
and | | .
Ir;(¢p* 0O ST | )
H;(t;) = (Sf(ff) S!(f':.'))( 0 O) (S,(t;)f)r ‘#;E@t} : (3.2.5)
Moreover, according ‘bD the following theorem we can obfain an expression of
dS; (%)
dﬁj t =t

 Theorem 8.1. Lot H(2) ER™" be @ real matris—valued analytic function of the
real variable T in some neighbourhood B(0) of the origin, H ()% = H (z) and -

. . rank (H () =n—m, Vv EZ(0).
Suppose that ih&re 38 an ﬂrtkoganal matriz @ CR" " such that

Hy
Q=(Q1, @2, H(U)=Q( . U)QT, | (3.2.6)

where |
Q. ER™™,  H, CRO-™xt=m - rank (Hy) =n—m. 3.2.7)

Then
1) there ewist some nebghbourhood B, =B (0) of the origin, Q(z) = (Q1(z), Qa(7))
CR™* with Qu(7) ER™™ and ¢ full-rank matris H (v) ERW=mX=m)  oych that

Q. (), Qu(7) and H;(%) are real matriz—valued analytic functions of v & Ho satisfying

dv

Q(z)TQ(z) =I™, V& Xy, (3.2.8)
Q) =Q, H.(0)=H, (3.2.9)
and oM | |
a@-a@(7y7 o )ewn weds G210
2) we have the folla*wmg empr&ssfwn of ( Q;iw) ) —o
() ema (G e eaw

Proof. 1) Let

Bomemoo-(§0 B10) e @iy

Y1 is obvious that
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Hi(0)=H,, Hzu(0)=0, Eﬂg(o;)-o. | (3.2.13)
'We introduce a matrix—valued function
{g(r ) =Hay @+ Hu ()Y - YHH(—:) ~YHu(v)Y,
= (ny) ER"-W*m L Z(0).

QOlearly, the function G(Y : 'r.') = (g4 (¥, v)) is analytic for Y ¢Re-mxm and
v €% (0), and it satisfies

gﬂ(ﬂr 0) ={), =1, 2, ¢+, n—m, 5#11 2y why

(3.2.14)

and

(det—@igﬂ’ oty Timy T21, 5 Gamy 'y Gnmi1s **") gﬂ_m,m))
3(??11} ...? ﬂiﬂl? 7}51! --‘} 7?2#:-: T ﬂH—M;ij ”-j nn—m,m) Y=0, =0

where 0 denotes the Kronecker product (see [5, p. 8—9]). Hence by the implicit
function theorem ({6 § 1]) the eguation

- | @Y, =0 | (3.2.15)
has a unique real analytm solution Y =Y (¢) in some neighbourhood #,CZ(0) of
the origin, and ¥ (0) =0.
 Combining (3.2.12), (8.2.14) and (3.2.15) we can verify that the real
matrixévaluecj analytio function Y (v) satisfics

(Ki(*r)* 0 )( I —Y(f))ﬂ(ﬂ( I Y(T))(Ki('r} 0 )

0 Ko /\Y({?7 I —-Y T I 0 K.(7)

Hi(v) 0

=( 0 H;(7)
among which

—det (I™® Hy) %0,

) VrEH,, | (3.2.16)

B =I+Y @Y @D, K@ =T+Y @ T @) 7F,  (8.2.17)
H:L(’F)=K:L(T)Ei(f)ﬁi(f)s HH(T)=KR(T)§H(’F)KE(7): (3.2.18)
Hi@)=Hyu()~Y @) Ha(r) —Hu @)Y @)T+Y (v) Has (2)Y (7)7
(3.2.19)
and ' ' |
Hy(@) = Hau(@ +Hu(@)Y () +¥ @) Hy ()" +Y (0) THu ()Y (3).
- - a | (3.2.20)

Obviously, the real matrix—valued functions H,(z) and H, (*rj are analytic in .

Since H.1(0) =Hy, rank(H,) =n—m and rank(H (¥)) =n—m Vz&€#(0), from

(8.2.17)—(8.2.20) it follows that there exists some neighbourhood £y %, of the

origin such that | | |

rank (Hy (7)) =n—m, Ha(x)=0, VvEZo.

Therefore if we'set -~ = = i |
Qiiz) =€ ( !

x@, a@=a( |

YI( )T) ) Ky (7), Q(‘F) = (Q1(7), Qﬂ('ff)):
-' (3.2.21)

then Q('r) is a matnx—-valued analytio function of v €%, and Q(z), Hi(z) and
H (v) satisfy the relations (3.2.8)—(3.2.10).
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2) From (3.2.16) we see that

H()Qu(7) =0, VzEB,, (3.2.22)

in which the matrix Q,(z) is defined by (8.2.21). Utilizing the real analyticity of
Y (z) in %, from (3.2.22) we got

(Y55) . @O +EQ (D)
Combining with (3.2.6), (3.2.9) and

aY (z)
dda(z) ) _ reo =0, (X (=)
( dr =0 _Q (( dTO ) _u)-—Qi d-’F_ )'r'-—-'ﬂl » (3.2.23)
we obtain
dY (v)
dH () Hy O it
( dTT L QE"‘Q ( 0 0)(( d’ro )7#0)—0‘,
and thusg
(.dl; 1@ e HI_IQI(dIi f) )ﬁ_u 0., - Sasn
Bubstituting (3.2.24)/into (8.2.28) we deduce (3.2.11). i

By Theorem 8.1 the real matrix-valued analytic function &, (¢, defined by
(3.2.8)—(8.2.5) has derivative | _

dS;(t,) = Qe Ger (dH; (%) *
( dﬁj )f_,-—-t} SJFJ ! ( dtj )‘F‘J-—J;S’- (3 ] 2 -25}
But from (1.6) and (3.2.2),
(FF5E), | == (e 2y, )sin 265 [UPT " (4 - 131)
§ i,=#
+ (AT D TPTET, (3.2.26)
where
Ay =RAj 1+ (M,a—2Ay1)sin? ], (3.2.27)
Henoce, substituting (3.2.26) and (3.2.27) into (3.2.25) we obtain
(BHED), = a2y, Dsin 258,178 [UOTE* (4~
| 4=Fy
+ (AT A D UPTP] 85,
(3.2.28)
3.2.2. Let
A, (iy, 1) = X (0, 1) X, &y, )7, (3.2.29)

where 4; is defined by (2.11), #; and X,(45,, ;) are defined by (2.12), (2.10) and
(2.14), "= (1, &3, -+, iD7T is an arbitrarily fixed point of R". From (2.10)—(2.12)
and (2.4) we have

k=1
k=4

A4y, ) = 3 Stunwl ST, (3.2.80)

where Sy, 8, .-+, S are defined by (3.2.1), i.e., by
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among which (S‘}', y) and T} are orthogonal matrices, S;€R™™, and J[7
ERw-mIx-m) jg o diagonal matrix with positive elements.

Utilizing (2.18) and the same argument used in the proof of Theorem 3.1 (or
§ 2 of [6]) there exists some neighbourhood _‘%"?,,;_,; of (w¥, )T in the product

vector space R¥~™ x R"1, guch that

41G, ) = O, B, s, B Y o
where u;(wy, #;) is a veobor—valued analytic function of (w?, T C _ﬁfﬁ’_* 4, and
3, (wy, 1;) ER™DX-1) ig djaponal matrix. Assume that the matrix X y(eny, ;) is of
full column rank. Then the matrix E..; (-w,, t,) is necessarily non-singular, and
u; (w;, ;) is a unit eigenvector of A, (w;, ;) corresponding to the simple eigenvalue
2er0. Thus, by Theorem 2.4 of [6] we get a expression of the partial derwa,tlva of
w; (e0y, 1;) with respect to £, at # ="
(«’:m, (;Uti’ E) s 'fUJ(wf: *?) 2 (‘E'h ED ~*U, (*!E’:*; E}')T 3Af(§;f’ t’))m' Y; ('E’.f: 5; ’

' L 5. (3.2.83)
Observe that by Theorem 3.1 one can define real matrix-valued analytic functions
Sx () for k=1, 2, .-+, j—1, §+1, ---, n. Therefore, for any point w€RY and any
point ¢ in some neighbourhood #,.CR" of ¢*, we have

Zy(wy, 2)* 0 ) (UJGI’!: EJ)T) (3.2.32)
0 »

As (20, 15) = kg Sk () wewi Sp () ™, (3.2.34)
| 2y
and thus
oA, (w,, £) dS; (3;) T | o dS;(t)\
( )-r' ( dt; /=11 iy By + 5, wﬂﬂl( di; )t,=ff’ (#:2.80)
where the derivative (d’%}@‘) )t s is given by (3.2.28). Subshtuhng (3 2.85) and
i

(8.2.28) into (8.2.83)we obiain the expression of ( oy (w;, #’))

I‘r.=rl

3.2.3. Now we give the expressions of oF (;;‘” t) for I—-l 2,
i

First of all, we define §;(%) and v, (s;, ;) for j=1, 2, «+, n contained in (2.14)
as follows: for arbitrarily fixed points w"€R" and #=(§3, ¢, -, H#)TER", by
Theorem 3.1 we define 8;(¢;) for §=1, 2, «--, n, which are real matrix—value analytic

functions in some neighbourhood #., + R of #§; at the same time, according io
subsection 3.2.2 we define u,(w;, ;) for j=1, 2, ---, n, which are real vector-valued
analylic functions in some neighhourhood 93;_;} of (w7, t*"’)*"" ERY-™ xR for

j=1, 2, ---, n. respectively.
From (2.14) we got

oL E;{tfi i )t=t' - [_é% (Z [y (a0, ?:;Uf qurztf) w;l® )]tﬂl
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) Sﬂﬂg Wy (M)r S*w,
E [ﬁj (‘ﬂ.’j ¥ tj ) TS 4§ w;:l 3 351 £ acf®

- 2820w, -  { S () -
[ut(%';, ;)TS;w;]s 11:;(10;, ) ( dt ):qu;, . ( y _'36)

among which ( i (gﬁ’f ty) ): _and ("’ :(B) )#;=ff are given by (3.2.33)——-(3-.2.35)

and (3.2.88), respectively. -
Combining Subsections 3.1—8.2 we obtain a formula of the gradient vector

Vf(w, ), in which the expressions ﬁf 3f éﬁi D 3-f éz’ t) are gwen by (3.1.1)

—(3.1.9), and?f(;;’; .-~ 3f("”’ . av8 GTveR b}r (3.2.36), (3.2.88)— (3.2.35)

and (3.2.28),

8.8. Application

In the next section we shall use the DFP algorithm to solve the problem
(2.16). Let ('™, t®)T be the k-th iterative point of the DFP iterative process.

3
Assame that

(AT——?&’I) UE = (8§, 15'"‘))( jiw) T, =1, 2, -, n 3.3.1)
and

S® -
X, (wm tjk}) = (TP, uf) ( )V}k}z uP ER", §=1,2 .+, n (38.8.2)

are singular value decomposition (see (3.2.1) and (2.18)), where
AP =24,14 (Ag,a—Ay, 1) sin? §0) (3.3.8)

and .
X (f, i) = (SPwP, +-, P50, 8PPy, -, SPu®).  (3.3.4)
Then by Subsections 3.1—3.2 we have

Vi %, t(k))n((_f(w, t)) ( af (w, t)) _f(-w, ) .. o, f))r_ ,

G g Oty
tmth
(3.3.5)
where
( df (w, ¢ w®T m}gck)f ck) .
(E0)_ o (=TI /s
=t .
SR RECD ? r
t2 u“':)’Sm} ’m s*f' S 2P/ (S Puf)
"
| 1=1,2 (3.8.6)
with
Y5 =uf8Pw® T + Sy ' (3.3.7)
and ‘

j’ﬁ:‘ - 516}2,'(-'#} -2 {FEJ"' | . (3 . 8)
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()

n BTy ® 7 Bar Cape 1) \T o
2; ?éf% {;::i : J(zi: 1) )wwm Sﬁ“"w}"’ / (ujk)z'ggmw}m)n

P =g (%

28w ™ . { dS;(¢ * ety
u{kfégk}q;}k} u:-':k} éfr(; I) )fi=f§"' Wfk) / (’u}k} Siik}wlfik})’: I"’l; 2; “re, B

(3.3.9)
du (w;, ;) o [ A8 (H) (R) 5y (BT QI (BT
( at; )t:u::} Z” [( dﬁ; )t1=ﬂt1 W SI
7 dS (t) X
CRY pope (KDY UKD EA\Yi (k) ;
SPupur (o) u (3.3.10)
and
(BBh)) = (= ua)sin 260 - 8P T80 (OPT A
t; J =t # :
I+AT U BT E — )& 89, (3.3.11)

»

§ 4. An Algorithm

The Davidon-Fletcher—Powell method ([4, p. 194]) is now applied to solving

the optimization problem (2.16): |
- Imitialization Step Let 8>>0 be the termination scalar. Choose an initial

vector w@® = (w7, ..., WPNHTERY with w;® cR™ V94, 9= (42, -, t’)'€R", and an
{N+n) X (N+n) pomhve definite matrix Hy (e.g., Ho=I%*),

Main Step.

(1) Let %:==0.

(2) Compute g,=Vf (w™®, i), p,=— Hygs.

ary a0/ |
(3) Determine ( Lot 1) ) = ( 4 ) + Axpx by means of an approximate minimization

Fw® Az, 39 +20;) = ~min f (w® +Aps, tP+App),
where |

p;ﬁ P ¥ n
.pk=( ”): _’E}EEHN: PFGEH- :

Pr

%
(4) Bebt Juw® =¥+ — o™ gnd Af0 =¥ g Tf |(Awm )
e Arg® A8 1 4
( At )

>g, go to Btep (B).
(6) Compute gy.1=Vf (¥, t“‘*”), P+l gk=hk;

2o FFD )
<& then ( )

t(k-!-l}

is an approximate optimal solution; if
2

dw'™
- ( ol )( A, 41097 p—
| Hypq= Hy+- : ol

(4™ A8 Nh,  hIHpyha
and ¥
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Prsr= — Hy 110435
replace k by %41, and go to Step (3).

Remark 4. 1 If for some % and j the matrix X;(w{®, ) or the matrix
(A" —AP1)U+" hag very small singular value, then we must choose another initial
vector (w'%, 9")T anew.

Remark 4.2. At Step (2) we » compute the gradient vector by the formulas
(8.3.1)—(3.8.11).

Remark 4.8. At Step (3) the line search techmques based on curve fitting
procedures, such as cubic fit and quadratic fit ([4, p. 142]), are feasible in practice.

§ 5. Numerical Results

Test Example. n=3, m=2 (seo [3], [7]).

0 1 0 1 0
A=lo o0 1) B={o0o 1], (6.1)
6 —11 6 1 |
[As1, Ag,0]=[—0.8, —0.1], T[As1, A2,a]=[—0.5, —0.1], (5.2)
LA Mg,y Mg, a]l =[—12, —8].
It is easy to veniy that the matrix B has a decomposition (1.7) with
[~V2 _NE / _ﬂ\
2 6 3 JE ﬂ
Uaﬂ)ﬂr 0 ﬂ A Uiﬂ}=i '\/? ! 7= . 3
3 3 " “/__E
|z o e ) 2
2 6 3

We have calculated this example on a L—-840 Computer in single precision with
the numerical method described in this paper.

We choose s =15"* ag the termination scalar and 8,=58,=8;=1/8 (the fac’oors 01,

d; and §; are defined by (2.15)). With the initial parameters {® __I’ £ = 3 —,
VT

1 and the initial vectors w{® = (1, 0)%, wi® = (0, 1)¥ and w® =l--—%ﬁ(l,, 1T, after five
iterations (see Main Step described in § 4) we obtain a convergent solution
$=0.72508, ’=1.28049, ¥ =-0.02338

o[ 1-01644 ) o [ —0-18802 . 1977678
=\ _o.08712 /’ 1.09705 7 T\ —0.52682 /"

The corre-sponding approximate solution {Ay, Ay, As; X F} of Problem RPA1 is
=2 () = —0.21204, A—Ag(#P) = —0.18083, As=Ag(i”) = —11.9978,
- /0.90648 —0.52298 —1.71900
X = (2, wg, @) =| 0.50088 0.1290683  0.68122 ;,
0.16595 0.90483 0.28453 ,’

and
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K 1.82800 —3.9b5266 1.21351)

-4,02103  T.HTTT0  —4.48007

with [oy]a=1.04859, |[=.[s=1.05808, |zgfja=1. 86320 and |F|[,=10.8431. The
condition numbers of the cigenvalues Ay, As, Ag are

¢;=1.81167, ¢,=1.83810, ¢s~1.64968,

respectively, and for ¢= (¢j, €, ¢5)T we have [c]s—2.49645.
It is worthwhile to point out that for the matrices 4 and B given by (5.1),

if A= —0.2, Aa=—0.2 and A= —10 are assigned ag the mgenvalues of A+ BF, then
using Method (I) described in [7] with 8;=8;=0;=1/3, e=10"% and w{® = (1, 0)7%,

i’ = (0, L)%, w®= \/1_ (1, 1)7%, -af‘ber five iterations we obtain an approximate

golution {X; ¥} of Problem RPA:
0.98979 —0.54062 —1.06046
X = (@, @9, 75) =| 0.49838  0.18735  0.83460 |,
0.12104  0.92488  0.20796
2.61121 —6.56878  2.39685
=(—-3.52182 6.90222 —-4.{}3693)

with |2;]3=1.07068, [2s]s=1.08, |s]s=1.18127 and | #|,=11.4455. The condition
numbers of the eigenvalues Ay, Ag, Az are

cy=1.89486, ¢q==1.89449, ¢,=1.78934,

respectively, and for ¢= (¢4, ¢3, ¢3)F We have |c¢f2=2.66308.

Remark b.1. For the matrices .A., B and the S‘Egmﬁﬂtﬂ [;'Lj_,j_, ?Lj_,g], [}05,1, ?Lg,g],
[As,1, As,s] given by (b.1) and (5.2), with several different sets of initial vectors
wi” w®, w® and initial parameters #», #”, #, we have obtained different
approximate solutions {As, Ay, As; X; F} of Prnblem RPA1 by using the numerical
method suggested in this paper, but the corresponding vectors c¢=(ci, ¢s ¢a)¥
defined by (2.1)—(2.8) have about the same norm |¢[;=2.5.

B
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