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Abstract

The distance between two neighbouring maltivariate Bézier nets @=f and G*1f is proved to be
O(m™?) in this paper. As a consequencs, the sequence of Bézier nets is uniformly eonvergent with the
optimal approximation order O{m™1). Furthermors, the structures of Bézier nets ars explored by
investigating how the piscewise linear surface Gof tends to the Bézier surface of C™.

§ 1. Introduction

It is well known that the Bézier surfaces have been established ag a mathematical
basis of many OAD systems. “Bernstein—-Bézier approximations have recently become
very popular and no fewer than 1/4 of the titles at this symposium contain Bézier’s
name™*". The Bézier nets associated with Bézier surface are a very useful tool in
exploring the Bézier surface. Many properties of Bézier nets have been explored,
such as the limit of Bézier nets, the variation diminishing properties, the convexity
preservation. The approximation order of Bézier nets in the univariate case has been
shown in [5] to be O(1/m). [b] also shows the relationship between the convergence
of Bézier nets and the approximation of Bernstein-Bézier polynomials.

In this paper we are concerned with the Bézier nets and Bézier surface on a
triangle in R" for the bivariate and multivariate cases. Starting from the point of
view that the Bézier netfs are obtained by successive piecewise linear interpolation,
we prove that the distance between the neighbouring Bézier nets G»f and Gm*1 f is
O(1/m?). As an immediate consequence, the sequence of Bézier nets is nniformly
convergent with the approximation order O(1/m). In searching for the representa-
tion of the limit of Bézier nets, we show how the piecewise liner surface G~ f tends
to the Bézier surface of O, Therefore the structures of Bézier nets are explored
more clearly.

Now, we infroduce some notations used in this paper.

The domain of the Bézier surface is a triangle T with three vertices T, = (z,, AP
g=1, 2 8.

Every point P in T is identified with its barycentric coordinates, i.e.,

Pe= (2, y) =ul+ 0T+ wT,,
u==0, v==0, w=0,

u+v+w=1,
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Lot f be a function defined on T, and f (-?—- L ﬁ) be denoted by fiss for o1

n' n’ n
J+k=mn.
E,(k=1, 2, 8) are ghift operators, defined by
Bifons=Sistivks
Esfuiw=Soict15
Eﬂf i.h:ra"f brdrk+1s

and B_,= (By)", k=1;2, 8. _
Denoto by 47t (1<k, 8, r, #<<8) the partial difference operator of order 2, i.e.,

| . o= (X, —E) (B y—H_,).
G is a degree Taiging operator of order m, defined by

G fusnm g GH-a+iH s+ B 5) fus

for ¢+ j+k=n+1 and
Gﬁi T Gi+m—1G$_1-

Denote by G7f the m~th Bézier net for P==-( ﬁ_ﬁﬁ 5 n—%n_m_’ n-ﬁm )ET:

#

) fo (P) =G?f 6 Jrlie
B,(f) is a Bernstein polynomial of degree m, i.e.,
Bﬂ(f) s 2 .fide?.f.k (M, v, w)

i) +k=n

where {B?, 4™ @!“}': 7l ﬂ‘w’w"} are Bernstein polynomial basis functions.

Throughout this paper we use the maximum norm, 1.0.,

£ =nax]f(F)].

§ 2. Main Results

In this section we will present our results on the structure of Bézier neis over
o triangle. In order to get an estimate of the distance between G f and G7*f, we

first prove the following identity concerning G7' and 4.,

r r 1 .
Lemmal, Gidii—45iGi= e (E_+E_,) 45,

’ _
1 v ligim=—1 __ AnIIm r,{fym—1
Gn+m—1dk.§ :n _Ak.:Gn 7 + m (E -H+E —I) d?ﬂ.ﬂ n. »®
Proof. It is easy to verify by the definition.
Lemma 2. For 1<k, s, r, i<3, 6221, tp=>1,

n{n-—1) -
m) (m+m—1) "j"']j;%?;{‘ I‘ﬂi’ﬂraffuf..j.l-

| Ai:EG‘Ef PR i., < (n.

Proof. Without loss of generality, we let =Fke=1, r=8=2. By Lemmma 1, wo
golt
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BACT wisia| = | {1 = 1) Bt (63— 1) Bost 6B} G367 F st

nw—+m—2 2 1 Ym—tp .
max 433G 28
i 11+!;+:Hn+m—1l 026" sl
3] l;‘l
< n(n—1)

max |47} .
(n+m) (m+m—1) jiﬂ'?’;i‘l :.zfs.,f.,;.l
2

Remark, Lemma 2 shows that the partial divided difference of order 2 of the
m~th Bézier net can be controlled by that of the initial Bézier net G2 £, i.e.,

max d?:: :G:If hri% is Q max Aﬁ::&; Jus §s
Gtisthzatn |  (ntm) fr+dstia=n 7
$p=l, dy1 Ix=l,fal
Now we can get the estimate of |G7f -G+ 7],
Theorem 1,
Gm+1 7 (L ('“' i 1)
F-@ f||-€3 (+m—+1) (n+m—1) A,
where

M:m max max IA.H# 'l:hirll‘ll'

1<k<asxd 41443+ mn
lr<facd i;:-i $g>1

Proof. Tt is easy”to know that the partition lines of the m—th Bézior net and
thie (m—+1)~th Bézier net divide 7" into a partition of polygons. Since a linear function
on a polygon gains its maximum at some vertices, it is sufficient to estimate |G f =

Gi*1f] at the crossing points of the partition lines of m~th and (m~+1) —th Bézior
neots.
4d-1,541 t-1,4,k+1 From Fig. 1 we know that

,_? A4 %+k+1
n+m-+1 at-m+1

$+1,4,5k=1 fo J413~1

Fig. 1 n-+m

L j k
¥ w..—l-m Lt n—+m trk n-+m Fs.

Therefore it follows that
@rf(B) = —L— @2 fuasanr 2L gug,

ﬂ|m|l lﬂl

674} (B) =L raf(Py +—E_@rif(py)

n-t+m
(ﬂ;-i-m)%(:fl—m'l‘l) 1@+ 1) I+ GEE s+kELE G700
k
t T Dy Ee Bt Bt (b+ D) I}

and
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m-+1 — L qu— _ik 3,1 = g'k H.l} o ;
Gll+ f(B) G:‘f(B) { (ﬂ"l"m) ('ﬁ‘a-l"'m"'l-l) 42,3_1_ ("ﬂl""‘m) (ﬂ } m : 1) A]:.E Gﬂfhf!ﬁ'
Similarly, we may getb
m __ {Ym g 'f-'j a1 g ‘i’k . 3.1. m f
Gn +1f(.D) an{.D) {m(ﬂ—l"‘]'??.-) (‘H}"‘l‘m_l"]—) AI,E | ('ﬁ""l_m) (n P l) ‘dl,ﬂ}anhfril
: m m % Q’j : .2 4 ‘ 3k | . A28
G’n+1f(o) Gﬂf(g) { ('ﬂt"i‘m) (ﬂ"l“m—l‘ 1) A%'.?; . (ﬁ_}_m) (ﬁ"l‘ﬂb"l"l) -ﬁ-E.E |
}C‘fr 1,3 m
- (n+m) (m+m-+1) ‘da'l}gﬂf"“"”'
By Lemma 2 we get
s oy o g n(n—1)
lGn+1f(B) Gﬂf(-B) |¢€ 3 (n—l—m—l) (n—l—m+1) M:

m+1 ym 1 n{n—1)
lGn f(o)—Gﬂf(O) |lg 3 (n_’_m_l) ('I’I--i—‘m-*{"l) M,

and

m+1 _{m 1 '?I*ﬂi—l)
@xf(D)-@rf D <F GrmeD (rmsD 2

Noticing that G+ f ig the piecewise interpolation to G f and the barycentrio
coodinate is gymmetric, we have
| 1 n{n & 1)
myg __ ml - .
g2/ -6 Fl< 3 (nt+m=—1)(nt+m+1) al
Remark. From the definition of Bézier nets, we know that the m—th Bézier
net G f ig obtained by the linear interpolation o G7™ £, If the Bézier net Gy 7
‘were of 0?(T'), we could immediately conclude that :
|Gz f—Grfj=0Q/mY. .
But G717 in fact is of O°(T) not of O*(T). Therefore the above estimate is not
obvious. A proper selection of knots plays a very important role hero. .
From the result of Theorem 1 we may now derive the following conclusion.

Corollary 1. The sequence of Bézier nets G f is uniformly convergent on
triangle T, : |

Denote U,(P)=1lim G f(P), PET. By Corollary 1, U,(P) is continuous on T'.

In the rest of this section we would like to show that U.(P) in offect is the
Bernstein-Bézier polynomial B,(f). | -

By the definition we eagily get the following identity.

Temma 8, Forl<r<s<8 and é+jt+b=nt+m—1, following identity holds

; .(ﬂ"f‘ 'm') (Er_'Ea) Gfoh:hIa= r—i (Er“El)fhf-?ﬁ' : To. .
Put O, 5, 5=N (En"‘ Ej_)f;,_;,y, ‘fr—]—j-}' k=wn~—1. The aggoci- |
ated Bézier net G™ ,¢ is uniformly convergent on I’ by
Lemma 8 and Oorollary 1.
We denots -

Vo (P)=Um Gr.g(P), PeT. . 7

15—

We will prove that V,(P) is the directional derivative of | Fig. 2
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__—"—'__"-“_'“—_‘“-—“—'——-—*-———————r—-——————___._.__
U.(P) in the direction »; (up to a constant factor).

Lemma 4. For any (z, ¥) = (u, v, w) €T and (o, Yo) = (u+v, 0, w) € T, U.(P)
and V.(LP) are related by

.[ ::-J Vila, _ Yda= (&2~ 1) (U, (‘”; o) "Un(%, ?}u));

where the integration is carried out on the straight line connecting (x, ) and (X, Yo »
Proof. For (@, y) = (u, v, w) €T, we can find

(e, i ka ep

n+m’ nd+m’ nt+m

such that
Pl —>(u, v, w), a8 m—>co,
Therefore
= __'E-"m +j1ﬂ __km _ | ; -
Py ( g 0, n+m) »>(u+92, 0, w), as m~>o0.
After primary calculation we get

o™ A | £ W 1 ~ "
J ry Gmlg —" HI;T 1 (xl_ mi) {T‘Z— (G"f im—1s ft a1 Gn..f imim#..)

’ ..__%__ (G’Tfim_,_’__i,i,n“+G::nfiq.+.fmrﬂrkm) }J

Since G7_,g converges to V,(P) uniformly on T and G7'f converges to U.(P)
uniformly on T', letting m go to infinity we get | | |
(e, ¥) S R
|7 V@, 9)da= (Ba—2) (U (o, 9) ~Ua(ao, 1)),

(&a:ga)
As 8 result of Lemma 4, we got the following conclusion.
Theorem 2, For r>>0, §>0, r+8<n, denote

n!
(R—r—3)!

g gin= (E1—Eg)" (Ba—Ey)*fis,n, o+ j-k=mn—r—s,

Then - )
. m A U (u, v, 1—u—0a _
lim G2, §- L0allyn dmum)

Now we can prove the Farin Theorem- and estimate the convergence rate of
Bézier nets.

Theorem 8. Béier net Grf converges to B.(f) uniformly on T with the

Trate

| e 1l aln—1)
1B~ fl<g oot M

where M is the same as that defined én Theorem 1, Furthermore, the approwimation
order O(1/m) is optimal, * | |

Proof. By Theorem 2 we know that U,(P) =lm G" f is a polynomial of degree
. becanse linear functions are invariants of the Bézier net and

T (u, v, 1—u—2) = B, (u, v, 1—%—w)
our ot . /A o’ o Ty

for r#s%n, g=1,6 2 3.
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Hence the two polynomials U,(P) and B,(f)} are identical. It implies that & £
converges to B,(f) uniformly on 7. Therefore _

|B.(f) —Grfl< 3 |G5+1F - GLF).

T=m

Apply Theorem 1 to |G5*f—G5f| and we get the estimate

1B.(H) - Grfl<g 2=l u.

Consequently, Bézier nets G*f converge to B.(f) with approximation order
O(1/m). We will prove that the order O(1/m) is optimal because the approximation
order of a Bézier net cannot be higher than that of a Bernsiein-Bézier polynomial

B.(f).
Denote by N7, .(u, v, w) the piecewise linear functionm with knots (

R )ET and

nt+m’ nt+m

nt+m*

mf h(‘A'l"rl f) =aﬁl"'3f1l'aﬁ.ll

T 8
for A,,,,; (n—l-m’ o n+m)ET Then,

#

. GL".?“ Grfis VT (u, v, w).

i+j+k=n+m

We doenote P, X = - hz X (A )N x(u, v, w) for XEOT). Lot X =u?
+i+k=n+m -

then

| X — @7 Fll=0(1/m),

lx(fh,m) Gz f(-A-i Jm) I s ||Ggf—-P3+..I[]
. K@~ X+ )X —PuuX H-a(l/m)

I+j +l=*-n+2

’I‘herefore it follows thai

IBnn(f) Xﬂ - (X (A, 50) -—G‘af(&.;.a))Bf;z.aH
<, maXx |X(Ahhb) Grf (A | =o(1/m).

: $ti+E=24+m
But it is well known that
| 1
m—+2°
This coniradiction shows that the appoximation order O(1/m) of the Bézier net
is optimal.

| Bsyn(X) — X| =1

§ 3. Results of the Multivariate case
For convenience, we introduce some notatwna T o
The domain of the Bézier surface is & proper gimplex 77, in R™1 for m=>3, 1.e.,

{E%Afiur?{) and Eur=-1}

% -Vozn_:l Tﬂ.}oi

and
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For any point P& T, we identify it with its barycentric coordinate I = (uy, -,

i) _
For ¢ Z7, 6= (%4, ***, m), Weo simply denote

e.(r=1, 2, .-, m) ig the r—th row veéctor of the unit metrix,
E, (r=1, 2, «--, m) is the r—th shift operator defined by
| | Effi =f¢+ar: |
and B_,=(E,)"! for r=1, 2, <« m, .
Denote
o= (e — By) (B_y— E_;)

. The Bézier nets are denoted by G27 for p=1, '.'2, s+ and the multivariate
Bernstein-Bézier polynomial is denoted by B,(f), i.e.,

B(f; D)= 3 2L U,

Frymar 'fr!_

‘Then we can generalize the resulis of the bivariate case in section 2 to the multiva-

Tiate case. »
Theorem 4, °

B VAT ALY, (m—=1)nn-1)
|G f Gnﬂlﬂgﬂm(n—l-pﬁ-l) (nt+p—1) i,

where

»

M,= max max |4pif;
I<k~sam it =mn
1ar<txsm {g=1 4,21

Theorem §. The Bézier nets approvimate the associated Bézier surface with the
Taleé _

IB.() ~Gifl<g ot 2ol gy,

-ewhere M% as defined im Theorem 4. And the approzimation order O(1/p) is optimal.
Corollary 2. For f€ O*(T), the Bernstein-Bézier polynomials B,(f) appro-
ximate f with the rate |

1B.() ~Fl<g 2L abl,+0(1/n%),

where M, is the same as that defined in Theorem 4.

The proofs of above theorems are similar to those of bivariate cage. For fhe
p-th B-neb G f, the domain 7', is devided into a partition of subsimplices by many
simplices of dimension m —2. Since a linear function defined on a gimplex gaints its
maximum and minimum at some vertices, analogue to the proof of Theorem 1, it is
sufficient to estimate |GLFf —@2*7| at all crossing points of all partition simplices of
Gif and G2*1f. In addition, all lemmas presented in this paper have their genera-
lization for multivariate case, Therefore we can prove Theorem 4, Theorem b5 and
“Theorem 6 in the similar way. The details of the proof are omitted for brief.
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