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METHOD FOR SOLVING VARIATIONAL
INEQUALITIES®
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Abstract

This paper is concerned with the linear approximation method (i.e. the iterative method in which
a sequence of vectors is generated by solving certain linearized subproblems) for solving the variational
inequality. The global convergent iterative process is proposed by applying the continuation method,
and the related problems are discussed. A convergent result is obtained for the approximation iteration
(i.e. the iterativ® method in which a sequence of vectors is penerated by solving certain linearized

subproblems approximately) .

§ 1. Introduction

Given a subset O of B and a mapping f from € into R", the variational
insquality problem VI(O, f) is to find a vector =" € U such that
y—a*, f(&")>>0, VycO. (1)
An efficient numerical method for solving VI(O, f) is the following ilerative
gcheme, |

Algorithm 1. Given y*€0,
yk+1= (1_ ﬂk)yk+ﬂkwk+1: oy & (O.r 1] 3 ' (2)
"+ golves VI(O, ¥, (3)

(@) =F (@) + AW (=)

and A(¢*) is an n by n matrix, |
We regard Algorithm 1 as a linear approximation method. Included in the
family of linear approximation methods are the Newton method, the quasi-Newton

method, the SOR method, the linearized Jacobi method and the projection method,
eto. |

where

For o=1, Rockafellar hag established in {8] a convergence theory for
Algorithm 1 by the norm-ooniraction approaeh, the veotor-ocontraction approach
and the monotone approach. His main result by the norm-contraction approaoh is

the following theorem.
Theorem 1. .Assume that
1) OcC R" is a nonempty closed convex Subsed,
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2) f: O-»>R" and A: R"—>E"™" are conttnuous;
8) a* solwes preblem VI(C, f);
4) there eaists @ pesitive semi-definite metriz G such that A(3") —G s posiieve
semi—definite; . _ i £
B) -there exists a neighborhood N of o™ such tha w E
|G Lf (@) —f () ~ AW (e— 1 la<bla—yls Jfor all @€ K,
where b<1, Héé—-(G—I—GT) and | Sl

.| és defined as

X
lolg= (aTGx)2  for all =C R |
Then provided that the initial vector g is chosen in a suitable neighborhood of «%,

the sequence {y*} generated by Algorithm 1 with o=1 is well defined and converges 0
the solution «*. Moreover, there is an r € (0, 1) suoh that

|fti—a* g<r-|g¥—a"|g Sfor k=0 (4)

By using the regults of Theorem 1, egpecially (4), one can prove the following
corollary without any difficul¥y. “ g o

Gorollary 1. ‘Asmmﬂthat hypotheses 1, 2, 8, 4, 5 in Theorem 1 hold, and
: § e that . | g * w3 ¢ ST, :

6) 1z=w=>a>0, V. .

Then provided that the initial vector ¢ is chosen in a suitable neighborhood
of 2*, the sequence {y*} generated by Algorithm 1 is well defined and converges to
the solution «". Moreover, there is an 7€ (0, 1) such that

| oot la<rlyf—els for k=0.

This paper will deal with two problems about Algorithm 1.

1) Generally, Algorithm 1 is locally convergent. Is there some method to extend
it to & glﬂbal Gﬂnfei‘ge"nt" algo‘fifhm, or, allernatively, 1s there some prmeﬂﬁre to
obtain s sufliciently close starting point 7 |

9) When the caloulation of (3) i3 non-exact (i.e. %1 ig an *a}pijraiima;ﬁon 0
the colution, not the solution, of VI (3, ), does Algnriijhm 1 converge and on what
condition does it converge? F g - -

A question similar to problem 2) was proposed by Rockafellar™ to the Penalty-

Duality method, which is devised for solving variational inequalities, but he pointed
out that the answer had been not obtained. - ' g

.= ]

For the first-question, applying the continuation method™ to Algorithm 1, we
‘obtained a global eonvergent algorithm. The convergence ig proved and the related
‘problems are discnssed. By adding a very mild (but essemtial) condition, we obtain
a convergenb result for the second guestion. -
| In the following two seotions, we shall deal with the two problems respectively.

LA §2 Clobal Gonvergent lt&fati;:lﬁ o

Lot a homotopy H{(+, +): Ox [0, 1_]C.R":><Ri—+3". 'We want to solve problem
VI(C¢, H(w, 1)), and the solution: of 'VI(O, - H(z, 0)) is given. Assume 2 ($)
conbinuously depends on &. YL ;
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Let N be a natural number and Mg, *++, My_3 be integers. We partition the

interval [0, 1] by | ] |
' O=to <ty <oes <hy_y <tw=1, (5)

Algorithm 2. Let 2% =g (0). Given gt 1M fgke atC=gi-Lma, Compute ah™
by (»), é=1, 2, -.., N. |
N O~y ) mi,k_}_ahkyﬁ,kﬂ,
y***1 golves VI(O, H (),
H%*(z) = H (x"%, §;) + A (a"F, ) (z— ")

A (2%, 1) i an n by n» matrix,

(ﬁ) | +

where my may be taken as a sufficiently large natural namber if necessary.

Theorem 2. Suppose that '

1) OCR" is a nonempty closed conven subset;

- 2) H(., .): Ox[0, 1]>R"and A: R*X [0, 1]—>R" X R" agre continuous:

3) () solves VI(Q, H(-, 8)) (0<t<1), and (t) continuously depends on ;

4) G: [0, 1] R'->R"x R* is continuous, and @ (3) @ @ positive definite matriz
with A(w(t), ) —G (1) being postitve semi—definite for any 1€ [0, 1]);

5) there are tyo positive numisrs b and & with b<<1 such that for sach iC [0, 1]
we hﬁ"ﬂﬁ - s _ . Bl . -

1@ H @, - H(y, ) - Ay, ) o— ) owm<blo- ylae;
2, y€8(@(1), 8) N;

6) 0<a<ay 1. - e e |
Then there ewists a partition (5) of [0, 1] and integers mg, mu, +»1, my_y Such that the
entire sequence {z**} generated by Algorithm 2 is well defined and that

L lim 2¥*=2(1).

Ke—p oo ‘ ; . L
Proof. Tor any € [0, 1], it follows from corollary 1 that there exisls a
neighborhood §(w(2), 8;) of () such that for each point 2M°C S (x(¢), 8,) N, the
Sequence {2"“} generated by tho following iteration '
afrFr = (1—ax,5) :B"""'-i-m,:oy""‘:“, ﬁt.}ae [, 1],
(w0) {9 solves VIO, H**(2)),
H**(5) = H (a8%, £) £ A (a8, 1) (m—air?)
converges to «(¢). - o _
Denote inf {8, ¢€'[0,7 1]} by 5. From condition 5) and the procedure of 8,'s
generation, which was deseribed in the proof of Theorem 1 in [3], we know §>0.
Now, let a partition (5) be ohosen such that | ;B

max |z(,3) ~2(t) | <5<3.

Qi N—1

Bocause z(0) =2*° and :
|#(0) —2(ty) [ <5 <3<8,
{#"*} converges t0 »(#;), which is generated by (a«) with ¢={; (i.e. Algorithm 2).

o there is a sufficiently large number my such that
jo™—a(t) [<8-3.
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As a result, we obfain the second initial veotor 2% =glv™—which satisfies
|42 — @ (2a) | = [ @™ — 2 (t1) +2(81) —x(ty) | <O — 3+ 0=0<d;,.

Consequently, {#>*} converges to z(%a), =+
We continue the proocess until #¥+° is obtained. Proceeding in the same way one

can show
gV b—sx{l), k—>+co.

Q.E.D.
The general convergence of Algorithm 2 ig proved, but there ig & problem: How

to guarantee the continulty of the solution #(¢) of VI(O, H (=, t))? The following two
theorems will treat this problem for Newton homotopy and convex combined homotopy

regpeotively.
Theorem 3. Assume thai

1) O R" is a nonempiy closed conves subsei;
2) f: U—>R" is continuous and strongly menotone, i.0. there exists a positive number

s such that
{f (@) —Ffy), z—yw=r|z—y|? 2, y€0;

3) let o°€ U and define
H(w, §)=f()+ (-1 f (=%, t€l0,1]. (6)
Then there i3 & unique ccntinuous curve (%) (0<<t<1) im O such that for each i€ [V, 1]

e have |
{o—z(t), H(z(), $)>>=0, Vzcl.

Proof. For each $€ [0, 1], it i3 easy to check that H (z, $) is strongly monotone
about z. By a olassical result of Stampacchia™’ problem V1 (0, H(x, t)) has a unique
solution #(#) (0<i<1). In what follows, we will prove that #(¢) continuously

depends on £.
For any ¢ and « in [0, 1], we have
(w{a) —2(8), H(z(t), £) >0, (7
{o(t) —o(a), H(z(a), a)>>0. (8)
Sinee

H(o(t), - H(2(@), @) =f@(®) ~f @(@) + (E-a)f (@)

(7) + (8) givea
(o (a) —a(E), flz(@)) —f(@(a)) + (t—a)f(2)>=0.

Hence
(o () ~—a(t), (E—a)f(@)d=<{a(a)—a(@), f(@(e) —f(z(£))?
>r|e(a) —x() |
Therefare |
-2 Ja—t.

Jo(a) —=(8) | <[f(2°)

. As a regult, #(¢) is Lipsohitz continuous in . Q.E.D.
Theorem 4. .Assums that |
1) OCR" is a nonempiy closed convew subset:
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2) f: O—>R" is continuous and monoione,
8) o* solves VI(O, f) and there exists an v>>0 such that

le—a, f@)—f(a")p=r|o—2"|?, Vocl;
4) Let 2°C U and define
H{w, t)=tf(@)+ (1—-1) (e—a°). . (O)

Then there 4s 6 unique continuous curve «(t) (0<i<l1) in O such that, for each

i€ [0, 1], we have
o—a(t), H (2(3), £)>=0, Vecl.

Proof. First, we prove VI(O, H (w, £)) has a unique solution for each ¢ € [0, 1].
When =1, condition 3, quarantees that VI(O, H(x, 1)) has a unique solution
(1) =a". When t€ [0, 1], we have

(e—y, H(z, {)—H(y, 1)} =<a~y, t(f(@)—f(y)+or{t)(z—y)>
- =r)-|e—yl® Ve, y€0,
where ¢ (1) = (1—¢). By a result of [1] problem VI(C, H(z, ¢)) has a unique solu-
tion #(2). In the sequel, we shall prove the continuity of #(#) (0<<{<<1). For ¢, aC
[0, 1], we have |
’ a(@) —a (), H@(®), )>>0, (10)
| o (t) ~x(a), H(x(a), a))=>0. (11).
Then (10)+ (11) yields
(e (o) —a(t), G—a)f(e@)) +a(f(@())—f(@(a)) |
+ (r (&) —r (@) & (&) +r(a) (2 () —2(@)) + (r (@) —1(2) ) 2°> >0,

Henece
le(a) —a(t), G—a)f(@(@))+(r () —r(@))a (@) + (r{a) =r())e%
=<z(a) ~2(t), a(f(@(a)) —f(@®))) +ra) (@(a) ~x(8))>
=lar+r(a)] ol —a@)|?,
where
= { r, t=1,
0, <1,
Therefore

{{t—al[f@@)|+[r@)~r® [ (a@®[+]a*D}+|o(0) ~2 @]
= [or+r{a)] - |z(e) —=(8) |
Noticing r{(a) —r(¢) =t —a, we obtain
(a7 +7 (@)« |o(a) —a (@) [ <{|f@®) |+ |=@) |+ |2} [t —a]. (12)
Fixing ¢ € [0, 1], we le} « tend 0 ¢ in (12) and obtain
(a‘f—l-r(t))-@”m(a) —z(t) | =0.
Sinece
2 T, =1,
. W+T(t>={1—t, t<1

- we have
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lim o (a) - (#) | =0.

Consequently, z(¢) is confinuous on [0, 1]. Q.E.D.

Combining Theorem 2 with Theorem 3 (or Theorem 4), we can obtain the
tollowing theorem,

Theorem &, Assume thal

1) O és @ ncnempty clesed convew subset;

2} f: U4 R is continuously differentiable a:-nd sﬁrﬂngly mﬁmtom, where C1C R" i3
an cpen convexr subset conlaining U; -7

3). Let a®* €U and let H(x, 1) be deﬁned by (6) or (9).

. Then 1) there is @ umgue cmt@nuws curve m(t) (0<i<<l) ¢mn O guch that for

each t & [0, 1], we have

e—a(t), H=z(@), )>>0 Vacl;

2) of we take A(m {)=8,H (=, t) én Algorithm 2, there ewists @ partition (5) of
[0, 1] and integers my, M, -, My_1 Such that the enlire sequence {m‘ 1 gmwm#aﬂ by
'Algnmthm 2 with 1?::::‘ ;M-n:}ﬂ s well defined and that |

Hm o¥*=z(1).

» fo— o0

Proof. 'Thé first conelusion follows from Theorem 8 or Theorem 4. To prove
the second conelusion, it is sufficient to check that all the conditions of Theorem 2
hold. i
Because f is continuously differentiable and strongly monotone on Oy by a result
of [2], there exists 8>0 such that -

y"Vf @y=Pyy, Ye€O, yER"
Taking 8=min{f, 1}, we have
| %/Tﬁf—H(iv: t“y},ﬁy y, Ye€O, yER
Choosing G (¢) = BI one may check that A(x(f), t)— Gi‘(t) H (m(i}, ) —BI 1ig
positive semi-definite.

For the continuity of (), Do={2(?): Uﬁztél}ca is a compa.ﬁt subset. There
exigts a convex compact subget D such that

S(D,, 1) N0 DO.
Because 0, (m, t) is ﬂnntmuous on I} X [O 1] : fnr 0<e -fL'B there exmts 0 <8 <1 such
|z — :UHQS z, y€D=>l|3 H (e, t) 8. H (y,. t) II'QB, z‘-E[O 1]

Therefore |
| H (2, 8) = H (y, t) —8.H(y, t) (m y) . =,
< sup |2 H(y+cr(m—y), t) —8.H (o, t)ﬁ Hm 7| R
QE-HH}’—-QI"',' VyEDr'mES(?J: B)DD'
Hence | S

|@ () [ H (@, t) — H (¥, t) —2.H (2,-8) (@— 1)1 |50
%33 "{I} ?f“am: er yES(ﬂ?(ﬁ): 8/2) f'E [O 1]'
For the choice of &, we have g8 *<1. As a result, all the conditions of Theorem-2



No. 4 ON GLOBAL CONVERGENCE AND APPROXIMATE ITERATION,., 295

—

hold, and the proof is completed. Q.

o

.

§ 3. Approximate Iteration

Algam#km 3. leen fu"ECf
M= (11— a:k)w + gt ﬂﬂmE(‘U 1],

vl ig an approximation fo the solution, of VIO, ®), where f "(m) =f (fv“) -+-

A (¥") (@—+*) and A(+*) is an n by n matrix.
When «*** golves VI(O, J¥), 1t i3 nothing but Algorithm 1. Denote A (") by A,

and l(A;, AD) by 4,. As assumed in Corollary 1, we suppose _f:’lk is pr:usnlve definite,

Oﬂnsequently, VI(O, f*) has a unique solution z**. Let

5% — ’I gkt __ i:-!-lu
| .

Theorem 6. Agsume that
1) OCR" is a nonempty ﬂlﬂsed convex subset;
2) f U— R" is continnous;:
3) «" solves problem VI(O, s
4) in Algorlthm 3, for each k suppose
a) miyTy <y Ly<Miyy, yE R,
where My=mp=m>0;,
by |4 f (fv*) ~f ('v") — Ay (" —w")]ﬂu@uﬁlm — IIx,

where =0 and

ol = @A) E, Vec R

0) 1>0>a>0, dye 2 LA

™y,
b) &%= [ubtt—g*+1] 50 as b—>+oo0,
Then

M

v, as k> + oo,

The following lemma is uaeful for the proof of this theorem.
Lemma. ZFor each fived k, there exist 8¥>0, 4=1, 2, such that

{p—ubtL FE(yk+1yS o gk, | 2 — 31 | +ek=0, VYeco (13)
and |
| 31-1—82——:-0 as 3"-—}0 }a i3 @ ﬁmsd. numbeo‘ | (14)
Proof. ForanymEO S =N e
<ﬂ? u#-i*l fk (,ui'ﬂ +1) > . : e -
o {m—-m""’l fk (mk-I‘l) > + <mi||=+1 k+1; fk (uk-[-fl) > e (m ___uk-l-:l: fk-' (mk-i-i) fk (uk‘l-l) >
Booause «¢*** solves VI(Q, f *), we have
<5E = MJH-I fi‘# (uk-l‘:l) > = <mi'ﬂ+1 Tti+2l.J ffﬁ (,ui'l'r'i-'l) > 4~ <m g o ,uk"l"lJI f]ﬁ (mk-!-i) ___fiﬁ (uk-Fi) >
= = [ @) [« fort — o — g

s
If we take M uE % _ | |
A= L@ LD, s [P o -
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L=k

(13) is obtained. Owing fo the continuity of ¥, (14) is irue.
Proof of Theorem 6. For &" solving VI(Q, f), we have

(i —at, f(2%)>0. - (15)
Taking @#=z" in (18), we obtain |
"~ b, 2>+ efl| o — bt | + ek =0, | (16)

(15) + (16) gives .
U =o', f(a°) —f () — Au(a” — %) + i (2" — ") D8]+ | 2" — | + 8320,

Therefore

lagtd — g* [ o ]Z,;‘[f(m*) — f(0%) — Ap(2* —0*)] |5+ el 2" — ¥ || + &f
> F — gt AL (B — ).
Noticing condition 4) and

2TAz=2"4,2, VzER"

we obtain
j ot — 2" [y o Ay | o* — &® [+ 8 [ 2" — | - ek = |t -2t 3.
Hengce
’ 1
|ub i o® i< M f o —a® [ 0 — 2" [ B+ 6F « | Ar 7 [o* — w ] [ -8
i
< [ v — 2+ 8] A 2[5 « [@" — 22|+ 85
Lo
— :}.k[]w“—m*llr-l—s’{llﬂﬁ’ﬂ]-Hm‘—u"”";+s’£.
Thus

1 1
Juf 2t — a* | < [0 — @® [+ e i T + (e8) 2.
Noticing the definition of

o | 1
6 | < e o |oF =t (el | 422+ ) )

Ty
i
o (&%) ‘*’)-

., We have

< A o*—2* +-—1—( ke
m

™m
Let ; 1
= el+ 1 (),
Then
|0 —at [ < (T—a) [v*— 2" +an| " — 2" | <[1 — e+ aud] « [ F ~ 2" ] +on8°
<[1-atha]« |v* =o' |+ e Arfv —a'] + 34 o
[
<r” “ p*3 —*m'ﬂ -l—r&"‘i—[—g"g...gq-kﬂu '!JG—-m'ﬂ _{_zqd_ gkt
=u
Noticing
0<r<1
and

"0 as k—>-+co
applying the Toeplitz lemma, we obtain
Iw"“-}m*_. k— --oo,

Q.E.D.
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