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The main purpose of this paper is b0 use the regularization method to solve |
the following integral equation of the Abel type :

=2 FET dr- ey 1)

which is of great ifaportance in many applma.tlonsm.

Suppose that the funotion fr(s) having a continuous firgt derivabive and
ocompaoct support [0, 7] is a solubion of equation (1) with right-hand side go(p),
i.e.,

T
Ar,=2L f___rf(r)p_ dr = gr(p)

and is yet to be found.

There are two cases to be considered:

Case I. The position of the right end point of the compaet support [0, T] is
given exactly in advance.

Case I1. The position is8 known only approximately.

The problem of solving Abel’s integral equation

B 1
A"’L Gy )

has been studied in [2]. In Case I in exactly the same way one can eagily see that
the analogous problem of determining the solution f(r) of the Abel type integral
equation (1) in the space O[0, '] from the initial data g(p) in the space L.[0, T']
is not well-posed on the pair of spaces (O, Iy)([38] p. 16 and [2]) and that the
problem of construeting approximate solutions can be solved in aocordance with the
method described in [2].

In Cage I1 we are thus forced to adopt a somewhat different approach to solve
problem (1) for fr(s). In the following we shall treat this problem in detail.

N 2
In Case IT because of the ambiguity of the position of the right end point we

* Received April 24, 1985.



No. 4 APPLICATION OF THE REGULARIZATION METHOD TO THE... 323

L= P T, o 2 S P

prefer to study problem (1) on the pair of spaces (C, Lg), where
Lig= L [0; T] »
C=C[0, T1={f(): f(r) is continucus on [0, T'] and has compact
support [0, £], 0<E<T, T<T},

| fllg=max|f(r)].

The problem of determining the solution f(r) from thp initial data ¢g(p), like
the probleEn considered in [2], is not well-posed on (&, L,). For, in the first place,
the set AC does not coincide with L,. Secondly, the inverse operator A~! is nof

continuous,
Furthermore, it should be noted that the reciprocity formula for f(r) holds™:

-1 d (*_pg(p)
IO = 3 ), Tyem i
Below, following'®, we shall employ the regularization method for the Abel
type equation (1) to construet a regularizing operator that provides a stable method
for determining approximate solutions. For this purpose we consider the functional

| M*[f, g] defined on C4[0, T]:
M*[f, g = [ Af~glt,+a| () +£/(r)"Iar

= E [QJ: N/Zti(;;ﬂ dr—g(p) po—l-ﬂj: [F2() +f (r)?] d;-,

- C1=C4[0, T]={f(r): f(r) €0, f(r) hag a continuous derivative}.

Theorem 1. For every function g€ L, and every posilive paraemeter o, there
exists a unigque function f,€ Oy for which the functional M[f, g1 attains its greatest
lower bound, that is

ML fa, _9] =int M*[f, g].
Proof. 1) Thig is a variational problem with free boundaries;the left and right

end points of the unknown curve f,(r) are on lines =0 and p=0 res pectively.
Thus, we obtain after simple caleulation the first variation 3M¢ of the functional M.

e ([ rlaf, A o Japfpcorar

i

r=
b
. g

+ 2a Z Lf(r) =" (r)Ih(e)dr+2af () R(r)

and hence the function f,(s) should be determined by the Kuler integro-differential
equation

R R Y A 1O R T G
LLfY =4 | || e bt |ap—2[ 9@, ILS1=5"~f @)

A

and the boundary conditions o
F©@=0, f'©=0, FE&=0. 3)
2) Under given boundary conditions (8) the associated homogeneous equation

[t
L= |, g it o =
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cannot possess a nontrivial solution. For, were f(r) such a golution, then, multiplying
(4) by f(r), and integrating with respect o r, we should get the following equality

. mE Lf/(r)*+f ﬂ('?‘)]cia'=4r [ :ﬁﬁ%}i d»r]ﬂ dp.

0

This would contradict the hypothesis that « is positive,.

3) By means of Green’s function Q(r, &) for the differential operator L[ f]
ander conditions (8), finding the desired solution f(s) of equation (2) under (3) is
equivalent to solving the following integral equation | ‘

af(q*)=4JZG(a*, 0) [r C:r tf (s dap |ag

0 \,"‘_Z_‘-"“_,PE o) 23— D
_QﬁG(G‘, L) U: v, Cg_pg g(p) dp}dg. (5)

From 2) the associated homogeneous integral equation (5) has only a frivial
solution, and hence the inhomogeneous equation possesses a mniquely determined
solution f.{(7).

Thus, from 1), 2) and 38) the resuli of Theorem 1 follows.

From this thébrem it follows that an operaior R(yg, o) into €y is defined on the

got (g, a): |
fa=R(g, o),
where ¢ &€ Ly and a>>0.
Furthermore, for the regularization parameter, we select a(d) =2o%

Then, we can show that B(g, a(8)) is a regularizing operator for equation (1)
and hence that the function ;¥ 3

fay=R(gs, 2(3)),
oan boe taken as an approximate solution of equation (1).
Theorem 2. Let fr(r) denote a solution of equaiion (1) with right-hand side
g= gp, that is - .

8 L
AfT:QﬁN/q.ﬂ_,Pﬂ dr=gr(p)-

Then, for any positive numbes €, there emisis a number 5(s) such that the inclusion
g€ Ly and the imequality

\Iga—gfﬂg,ﬁﬁﬁa(s)
Ufﬁ_fi'"ﬁ{:'sj

fa=R(gs, a(3)).
Proof. Since the funectional M%[ f, g] aitaing its minimum when f=fa, we have

M= funyy BI<M*®[ fr, gs].

gmply

where

Therefore,

| 4far= gl 0 () | [Fn () +Fa (r) 1

<idfe—golt+a(® [ L@ +fa()1dr<a,
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d=1+[ Lf3 () + 75 () %dr.
Consequently, =

{1 20@) + o) dr<d

and

| Afacy— 98] <~/ b |
Thus, the funciions fr and f,s, belong to the compact subset M of the space C[0, T1:

M= _{f(rr) : J: @) +f (r)2] dq~<d}

ge(p) =Afr € AM, gun(p)=Afan €AM.
Because of the continuity of the inverse operafor A= on AM, for every s>0 there

exigts a number 5 (&) sueh thai for | gus— gr| . <n(e)

| fay — frle <e.

snd hence

Fuarthermore, since

| gacsr— Izl 0| Gaey— G5 [ 2+ [ 96— gr| <3 A+~ d ),
we may chooge

= Hig)= 11(53?'

Oonsequenﬂy, for 6<<3(s), we have
| oy — grl 2. <n(e),

| foy— Frlo<<s.
This completes the proof of the theorem,

and hence

'

In this section we shall use the finite—difference method for the numerical
solution of equation (1) to provide a computational algorithm that can easily be
realized on a computer. For this purpose we consider the functional

L, P1= (2 3 s fi—gn] +a AL T v STar

J=1
where f*= (fo, f1, ***, faw1) and g*= (go, g1, ***, gns1) are difference functions defined
on uniform grids w? and o} respectively:

T
n—+1’

wh={rs: 7y=jh, j=0, <, n-+1}, wh={p: pi=dh, §=0, -, n+1}, h=

and
0, jfi@,

3 ﬂ‘hf_'{ Liami s %0 J‘r.-r " ,r r—r_y i ~

o Foty dr-{-J g Bt A== ‘rn-—r‘l dr i )
Jr. : 'I'E — 0§ : P j |
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Theorem 3. For every diflerence function g* and every positive paramsler o,
there exists a unique function fh for which the functional M3[ f* g*] attains its greatest

lower bound.:
o, g1 =inf ME[Sf*, ¢°1.
Proof. The proof is analogous to that of Theorem 1.
1) The function f% should be determined by the Euler equation

L) =4 S Fowsf: |2 o =12 m ®)
i =Lt g,

and the boundary condifions |

f1=fﬂ: fﬂ+1=fn- (7)
2) Under conditions (7) the homogeneous equation (6) possesses only a trivial

solution, and hence the inhomogeneous equation (6) has one and only one solution.

This completes the proof of the theorem.
Theorem 4. Let fr(r) denote a solution of equation (1) with right-hond side

gr(p): ..
Afr=2E -—ﬁ%g dr =gz (P).

Then for every positive number & there ewist 8(g) and h(s) such that for d3<3(8),
h<<h(s) the imequality '

E‘ hlgs— HT.i] << 32:

i=1
implies the inequalily
|fﬂ(ﬁ}if—fTrf I {SJ

gri T gr (ps), . fr-i=fr(ﬂ'f)

and fio) 48 the minimizer of Ffunctional MF®Pf*, gi].
Proof. Sinoe fi, is the minimizer of M§$?’, we have

M tfic:a:u gs] <M;®[f%, 93]

where

QT

;:1 h[g ?_‘:‘_. ﬂi.ffu(a)-f“gafi]ﬂ +a(d) ; h[ f"’m"f*lk_&m:lﬂ +a(3) g:hmﬂicf

‘Qg h[Q g m.jfr,;-—ga,;]g +a(d) gh[ dea—l}:fT.J ]:lt +a(3)g s

n [ n P e r—a
=§ hiﬁ ng.J'LJ _—m—m(l — 5)&0‘
+2 gfr.furm A 'rq;;'f d'l'-—ga..-i}a |

r; 'T‘ﬂ "-Pf

+a® | HE@dr+E E0, D)

" n F i1 : n Fie1 - | | " : ' : S | 18
— -——-E———' : £ 5 o T fTrf-Fl :! T f o [Iﬂ""" --' }

T r._'r.r"f —;




No. 4  APPLICATION OF THE REGULARIZATION METHOD TO THE... 327

+a(®) | L) +Fr () Nar-+£

23 e e - god] 660, h0)
+“(3)J: [fr(r) +fp(r)* ] dr+£€
EZ hlgr.a— 9.1t (S)ET [F2(r) +f5(r)dr+£&; +&

<6%+8° [ Lf3(r) +Fp () 1dr+82=5%  (h<io(s)),

a=2-+ Lf3(r) +12(r) e,

Therefore

- Joawyse1— oy T2 | &y o
Eh[ }b ] _I_‘:':Elhfafﬁ}r!‘gdj

nt n oy
;k[z E @iy 4 fﬂfﬂd_gﬁ.i] < 6%,
Thus, the functjons
fr(r) = fr,- fTrf-plk_‘fT.f.(ﬂ'— ), o (1) g fn(a}r!—!f-ih_fu{d)-! (r—r,),

".E [‘Tj, 'TJ-I-l]: .?201 1: T 1
belong to the compact subset M, of the space C:

Mym {5 0): [ L7 () + ()l dr<aal,

and hence |
Af3(r) EAMy,  Afh(r) € AM,.
It follows from the continuity of 4= on A M, that for ¢>>0, there exists y(8) such
that for |Afr— A2 ], <n(s)
7)) — oo <8

or
| Fov s~ fares| <e.

Since
| Af2— Afkas |3, <8%(2d+8),
a8 in Theorem 2 we may ohoose

n(8)
be (B) == ,-—-—Eé_lq—g.

Consequently, for 8<3(8) we have
| Afz— Afiay] <n(s),

and hence ;

| frs— farns| <s.
Thus, Theorem 4 is proven.
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