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Abstract

In this paper, a class of non-linear methods proposed in [1] is discussed. A pew derivation of
the methods is given. The analysis based on the new derivation shows that this class of methods 18 not
suitable for stiff problems. The numerical tests gupport our argument,

§ 1. Introduction

In [1], Qin Zeng-fu put forward a class of non-linear methods for numerical
integration of ordinary differential equations. The derivation of the formulas is
based on the Frenet frame and the regular representation of curves. - |

Lot the initial value problem be in the form

{ dﬁ; ==f¢(m, 1, **°) ym): - | (1_1)

By introducing

fﬂ ':'yﬂs Y1, ="y ym) =1
and writing |

V= (go, 1, =5 Ym) "

F = (fﬂ,l f‘.‘.l..! s fﬂi)r:
the initial value problem (1.1) can be rewritten in the form

dY
— =F (),
{ de (¥ (1.2)
Y (@) =Y.

The solution of (1.2) is a curve in the space R™*, With the aid of the Frenet frame

and the regular representation of the solution curve a class of non-linear formulas
can be constructed. The derivation is rather complicated, for detail see .[1]. Two of

the non—-linear formulas are as follows:

- hil T o
(D j Kn-i-i—yr}'—f(z—n F"+T:' -Fn):

where

* Received October 16, 1983.
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zﬂ— “Fh"'ﬂ:
: z:= uF:Hﬁp
and .
= h T P | i B e
(II) Yn+1 Yn+_3: F"+_€-( -l_,,- Un E -Fn) 2(';?:'2— Un EF Fﬂ))l
where |
by ”Fﬂﬂﬂ:
h 71
F; F(Y“—I—'EEFH‘I' 8 (—ZEU‘-_FFH))’
_OF(¥,)
U oYy e,
Q'n"—_-FE'Um
Z::.=- “F;r[ﬂ:
A L2 (1 g
| Uﬂ-"—'U( Yn+ 23,, Fn+'—" _ZTUH_”'E Fﬂ))!
. gr=TT . F,

It should be pointed out that ‘the 4 in the formulas is a step-size in aro length
along the solution ecurve rather than a common Step—gize in the independent
variable. It has been shown that formula (I) ig a two-stage method of order 2 and
formula (II) s two-stage method of order 4. Formula (IT) is recommended by Qin

Zeng-fu for solving stiff ordinary differential equations. In addition the gtep-size
criterion derived from (1) or (II) (for the standard test equation y=2Ay) is

23

h<:¢(lﬂ+1) 3 m=-ReA., (13)
4(17—1)
kperm ;ag(zﬂ_l_ij' | (14)

where % ig the curvatare,

wider class of non-linear formulas oan be eagily congtructed. However it can be seen
from the new derivation that the non-linear formulag of [1] are essentially the
results obtained by applying certain “explicit linear methods” to the ordinary
differential equations which have been transformed with an independent variable
trangformation. One can expect that such kind of methods will have the same
restriction on step-size ag g general explioit method. The analysis in § 8 verifieg
this expectation and the numerical tegts in § 4 ig identical with the analysis.

§2. A New Derivation of the F ormulas

Consider the initial value problem

ay
{ da F(_‘Y)’ (2.1)
Y(ﬂ’u) =Y.
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Introducing an independent transformation
v=2(s),
where s is a parameter of are length along the solution curve, we have
Y (2) =Y (2(8)) =Y (8),

dY (s) _dY (x(s)) dw _ 1
- tﬂ: o dibmﬂ * Ts ZF(Y(S)): (2-2)
where _ ”
l=(§Fi(Y(s))"*) - | F s (2.8)

Therefore the initial value problem becomes

ay
{~ —=J(T), 8.4
Y(SO) = YDJ
where
7 =% F (Y (3)). (2.5)

T$ is worthwhilp to note that formally (2.4) i identical with a general inifial
value problem. By applying varicus ypes of ‘““‘linear methods” to (2.4) we can get
various non-linear formulas with respect to the original problem (2.1). The
following are some examples.

1. Runge-Kutta type formulas

(1) Euler’s formula

G, T [ Y,,+{*. 7.,

where I,= | F,[la. This is formula (8) of [1].
(2) The second order formulag

( i ) Yn+1= Fn_]'%(Kl”{‘Eﬂ)l

Li=| K.l foréi=1,2.
This is the two-stage method (10) of [1} or (I) in § 1.
( li) Yn+1= Yﬂ +th,

K1=F"=%F(Y"),
i

K7

2z1 Fll »

KH-F( Y,,+fzi K, “zlﬂ'F( ;

h=|K;|a, ¢=1, 2.
(3) The third order formulas

(i) Y s ¥ a2 (K1t Ky),
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E,=F.) ==—31IF(Y;.),

K,=F( Y,,+-§-Ki)=-31;F( I’..+—3% F)

Ky=F( Yot 2 hKo)= L #( Vot 2 0K),
8
z;“ ".R.i”g_, ‘3"’1, 2, 3.

(it) | Y=Yyt (K1 4K, + K,

E1=?(Yﬂ)=-%-F(Y“),

EE,:?( Y,,,-}-%Ei =%-F( F',.—i——g;Ki),
L.

Fum PO A 30K L PPy hE 4205,

3
= | K.s, =1, 2,8,
(4) The _fﬂurth order formulag

Y p1= Yn"l'% (Ki+2K,+2K;+K,),

Ki=F ) =L F(¥,),

K= F( Yot Ki)= - 0( Vot L k),
Ky F( ¥ttt Kﬂ)-:—EEF( Yo+ &),

K= F (¥, +hE,) =_31_ F(Y.+hEK),
4

3.3= ”Rt“ﬂ; *3'-'=1, 2; 3, 4.
It is elear that we can construct other fourth order or higher order Runge-Kutta

type formulas, and implicit Runge-Kutta formulas ag well.
2. The Runge-Kutta type formulas with second derivatives

Set |
QY () =F (Y (s)).
Then we have the following formulag:
(1) FVia=Vorblosd pe ey ek p 1 ( 1 . m
+1 2 G Yﬂ_l—zi -Fn_i_zh zf Un —-i——Fn;
where
b= F(Y,) ]
_OF(¥,) .
LU e L
and
qHEF?T- Un;

which ig the second order formula (9) with the second derivatives..



358 - TOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 4

h2 =
(2) Yn+1=” Yn "I'th'Jf’?(an""Gn) #
where .
@.=G(Y.+hEF,).
Since
G.= GV +hF) =G (T ) 38?; AT 0
we gel
. B oo B oG, ;
Yn-l—i Yn"l_th"{" ) Gn'l' 6 aY F"+O(h )

| -=I’,.+hF“+£;— ?‘,.+-—hﬁi F.+0Y.

Clearly, the third order formula (2) is formula (11) of {1].
(8) The two-stage fourth order formula.

let
@,,=G(Y..—I—ahﬁ‘,.—l— bhEFH) |

—a(T) + 28T (7, 1 bheF) += LG (@i, +5h2F)*+O),

» OY 2 oY?
where @ and b are undetermined parameters. Then we consider a linear cembination

of G, and G., chﬂ+cg§ﬂ. We have

61, + oG = (01 Ca) G +-aosh 38?; F,

| 3@,. 1 &y 32@}1 . 52 -
+h (bﬂg—a—r' .?in"l"'-ﬁ-ﬂ Ca 37 2 F,;)"I'O(k )-
Tn order to obtain a fourth order formula, the following equations ghould be sati

r 1
ﬂ1+ﬂﬂ=-—',

ghied

which have a solution:

| 2 3 8 » | 3 y Wi 6 %
Now we have a two-stage formula

Yn+1=Yﬂ+th+%(Gn+§ﬂ)l |

where

G,=6( ¥.+3 wF.+g w1

This is a fourth order formula. It ig formula (15) of [1] or (II) in § 1.
T+ can be seen from the derivation above that all the formulas given are only
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the results obtained by applying some explicit linear methods to the system of
ordinary differential equations for which an independent transformation has been
performed. Using are length as aparametfer, we can set up in an explicit way the
relation between (2.4) and (2.1). In the next section we will show that this kind of
methods has the same restriction on step-size as a general explicit method.

§ 3. The Step-Size Criterion
The step-size oriterion (1.4) has been derived for the standard test equation

| T O Bya, &>>0, B real number, | (3.1)

Note that (3.1) is derived from the scalar test equation ¢'=Ay, A=—a+i8. First we
eoint out that the criterion is applicable t0 a system of linear equations ¥Y'=AY
which can ]39 reduced to a diagonal systema under unitary transformationy. Thas
meansg that there exists a unitary matrix U such that

Z'=AZ
where A =U14U = diag(h), Z = U™1Y. Sinos tha 2-norm is invariant under
unitary tranﬂfﬂrmatmn we have

=[AZ|y= U AT Y [,= U 14Y Ja=[AY [3=L1. (3.2)
Therefore it can be shown that the following communications hold:
Vol ¥ « it Sl
transfo rmatiuul l transformation

ay 1 | gz 1

ds 1 4r ds 1 Az

linear method l llinea,r method
[

Yi —_—> Z:l _

Thus we now can analyze the step-gize criterion for a diagonal system

b2 Az, A=ding(h). 3.3)
For formula (I} in § 1 the step-size & must satisfy the relation
A
h< TCENE) | (3.4)

- where
c:=-n:;a.x[Re M),

-(Z 1nz9) ™
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In the transient phase the solution components are relatively large. Without loss of
generality, let Z,=0(1) and l=max|)|. For a stiff problem oa==max| A| so that
from (3.4) the restriction on step-size h is roughly as follows:

h< 2. (3.5)

This means that in the transient phase we can take a rather big step-size. However,
when the values of Z; are almost negligible in the stationary phase, I—1 and the
right—-handside of (8.4) tends to 1/a. In thig case the restriction on gtep—size 1s
approximately |

oh <1 (3.6)
or

max | A | h<<1,
which ig the same as the restriotion on step-size 0 a general explicit methos.
At first glance it i3 strange that the step-size A can take a big value in jransient
phase while it must be very small in stationary phase. It will become clear if we
return to the original independent variable . Notice that we have

drz 1
| &1 e
It can be approximat@ly expressed as
| de 1 =
=T O 43 =1 A, (8.7)

Now, it can be seen that although 4ds can be quite big from the viewpoint that aro
length 4z is only 4s/1, it is still very small. It turns out from (8.5) that dx<2/1.
Therefore, from the viewpoint of the independent variable 2 the step-size is always
subjected to the restriction which has been imposed on general explicit methods
during the whole computation. In our opinion, this class of methods ig not suitable
for solving stiff ordinary differential equations.

§ 4. Numerical Tests

The computations have been carried out for the following two examples, using
the method (1I).
Ezamylz 1. The diagonal system of equations

{ 1= — Y, #1(0) =1,
ya=—Ms, %2(0)=L1.
Example 2. The non-linear eguations

{ y1=0.01— (0.01+g1+ya) (1+ (y2+1000) (g1 +1)), 91 (0) =0,
ye=0.01— (0.01+y1+ys) (A+y5), y2(0) =0.

In the eomputations the step-size 4s is determined from the step-—size criterion
(1.4). At each step, we also compute the solution using the classical fourth order

Runge-Kutta method with 4w produced by (II), in order to eompare the two

splutions. From the results of .computations we obtain the following observaiions:
(1) In both examples

As=1 An
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always holds.

(2) The step—size ds determined by (1.4) is not so big as expected in (3.6). In
transient phase 4s is often 100 small. For example 1, when we take A=100 the value
of 48 ig between 0.026 and 0.029 for 0<e<1, and the value of Ax slowly inoreases
from 0.000285 to 0.02 as I decreases from 100 o 1. When A=1000 it is even more
typical. In this case, ds is between 0.00283 and 0.0026 and 4dx between 0.00000283
and 0.000004. We did not complste the computation, because it took too many steps.
It is worthwhile to note that the value of As i3 something like the restrietion for the
Runge-Kutta method.

For Example 2, 4s is also smaller than the step-size which is necessary in
transient phase. At #=0.005, ds=A42=0.00007324, which is much smaller than the
step-size for the Runge-Kutta method as shown in [1].

(3) When 4s determined by (1.4) is big, the acouracy of results is poor. In
example 2 when 0.02 < 4s<0.05 the accuraocy is about 1072, When 4s5>0.05 we gel
wrong results. [1] has suggested using

}l'*wnrking =min (huux: hp&m) 2

but the selection of fimex TOIr aing a problem,

»
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