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§ 1

In the present paper, we shall consider an ill-posed problem, the solution of
Abel’s integral equation with nnbounded kernel

Az=E (;f;)u ds—u(@), (z, )E0, 11x[0,1], 0<a<l, u(0)=0, (1)
where u(z) is a know function in the space Ly[0, 1] and z(s) is the unknown
function in tke space U [0, 1]. This is an important problem encountered in
practice ([1]} and [2], Vol. I, 158—160).

I+ should be pointed out first of all that Abel’s integral operator 4 in equaiion

(1) possesses the properties:
1) The operator A is completely continuouns. This is true because

e[ 2 4] <t -] el

u(eo+8) —u(@) It= [ i o=, e ] 4

& qu?ir[wi # (m+h)1"“+2h1-ﬂ]ﬂdm_}oj ol
0 l—a
2) The operator A which maps O[0, 1] onto AC[0, 1] is one-to-one. This
follows from the reciprocity formula ([2], Vol. I, 159)
sinma 4 (* w(z)
2(8) = 7 -t_ﬂ;.[ﬂ (s—z)*™* g
Suppose that the element zx(s) €C41[0, 1] is a solution of equation (1) with
richt-hand member u(#) =ur(z) € 404[0, 1], i.e.,
| Azg=1ur,
and requires to be found. However, in computation we often know only the
approximate right—hand member u;(#) rather than the exact one up(2z), in such a
cage, we can speak only of finding an approximate solution z;(s) (i.e., one close fo
20(s)). Unfortunately the problem of determining the solution z(s) of equation (1)
in the space C'[0, 1] from the initial data u(w) in the space [0, 1] is not well-
posed on the pair of spaces (C, L,) in the sense of Hadamard ([3], p. 16). First, it is

and
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obvious that the approximate solution z;(s) cannot be defined as the exact solution
of the equation Az=u, with approximate right-hand member

U =1y,
that is, it cannot be determined by
ﬁ5=A_1'H@,
gince the approximate element u, may fail to belong to the set AC[0, 1]. Second,

even if such a solution z, does exist, it will not possess the property of stability,
since the inverse operator A~* ig not continuous. To see this, let us suppose that the

approximate right—hand member us(#) has the form

1—a
us (%) =ur(w)+8 3 sin -g-:
1-o
then B8 ° |20 () —ur (@) |2,<0 ?
l1-a @

sinwa o {° o S0 F
zs(8) = 2p(8) 4 = 'dﬁs,{u e da.

However, the difference between the solutions
" 4 1+2a 1426 x
in(s) — (@) [ o> s (378 ) 2 (578 ) | > IREL 57

can be made arbitrarily large for sufficienily small values of &. Thus, the
requirements for a well-posed problem are not satisfied. Consequently, the problem

(1) is ill-posed.

—(1=m)

§ 2

A method of solving ill-posed problems, widely used in computational work is
the regularization method. It consists in congiructing a regularizing operator. An
operator R(u, a) depending on a parameter « is called a regularizing operator for

the equation Az=wu in a neighborhood of u=wus if
1) there exists a positive number 8; such that the operator R(u, o) i8 defined

for every a>>0 and every u in L3[0, 1] for which
(2t — | £, << 0s.
2) there exists a function a=«(8) of & such that, for every >0, there exists a
number §(s)<d; such that the inclusion u, € Ly[0, 1] and the inequality

|2ts — tr || 2 <O (8)

imply |2:—20] <,
where 2.=R(uy, a(8)) ([8], p- b5).

It is obvions that every regularizing operator R(u,, «(3)) defines a stable
method of constructing approximate solutions. Thus, the problem of finding an
approximate solution reduces to | |

1) constructing the operator R(u, «), and

2) selecting the regularization parameter a—=a(3) from the discrepancy d.

The rogularizing operator for the Fredholm integral equation of the first kind
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with confinuous kernel
]
| j K (2, 8)2(s)ds=u(2) (2)

is examined in [4], [6] and [6]. In [4] the operator R{u, «) for equation (2) i3
constructed by minimizing the so—called smoothing functional

MLz, u] = ||Az—u||n.+uj [P(s)2(s)*+ K ()7 (s)*1ds,

and in [5] the parameter a is determined from the discrepancy & by the condition
[lAEﬁ—'ﬁau '—3=0

§3_

Below, following [3]1, [4], [6] and [6], we shall use the finite-difference
method for Abel’s equation to consiruct a regularizing operator that can easily be
realized on a computer. For this we replace equation (1) with its finite-difference
approximation

A*=uq
on a uniform grid ;X ! with step h:
wr={zy o;=2h, 1=0, 1, -, n},

w!={s;: 3;,=7h, =0, 1, -+, n}, h=h"=?a-’

where . _
0, - J=>t,

j'."“ (m—s)~%ds, j<i—1, 4, j=0, 1, «=, n,
PCWr={* =2, 21, *, %)},
wh € IP={u: P = (o, s, **-, Un)},

wh= [ur (@) 1P = (ur(@o), ur(®s), *--, ur(2,)), ur(wo) =0.

we shall measure 2* and »* with norms ||z} and [u*|1» defined by
||uh " A= ('He 'uh) IAy Ilzh"Wn=-(£h, Zh) W,

(u q;h:) e ’ﬁh %wi+.ui+1'ui+1 'l&h wheLh’

Ar= (@i,y) @, 3=+

2 4 »
n—1 2 5 n—1
(2", ¥ ws= FED 3 ;1%4'1 } E} hdzndy,, 2, yEW?,
AZ§= ZH-iu_zjr | .=01 11 R n+1.

h
We can construct the regularizing operator for eguation (1) by minimizing the
fanctional: |
Ma[2, ] = | A — [+ af 2] s
Theorem 1. For every u*(uo=0) of L* and every positive parameter «, there
exists a unique element z, € W* such that:
1) the greatest lower bound of the funciional M5, u*] is atiained with 2, that is
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[zn:: h] = inf M3} [M:]

W
9) the element 7 must then satisfy the Euler equation
a (2, P)mt (AP —ut, AP p=a(?, ")
1 (AN A2 — (AW, P =0, V€ W,
or {6 avyxm+ny (AW)"AM} 2= (4%) "W,
where Imiiyxmeny 18 aN @dantfr,tg operator (mtrw} and (A") 38 the Hdbsa‘t—adjmzt

operator of A™:
9D %D )(Aaf;z? AJ&:%))
b

M* AR ~1% AP
s Vgl prvre

£ Af.?.z%?’)

ARD ARD S

N 2 a0 :"w‘ 2%—.1.0_ | Gy, 0 \
' 2 g,1 = _2-'311——1;1 @y, 1

2a-(

A -
v iﬂn;‘i,n—ﬂ Oy n-3
| a;hll-l
N 2 a1,0 |
% ‘V/?ﬁ:a.n n 2 @3,1
N 21,0 N 2C-3n \/2%—1,.;-& - :
ﬂﬂ:u wlhi | A aﬂ-iﬂ-—ﬂ Gﬂiﬂ;—i
Y
©,1 0 ALO 1,1)
ALty = i, i i “(0: 0, "'0): -Aib:-l - (D).l
0/ o '
o (852 8P
(8idn, ™" = ( s gD 4
2 —2
h4 .
-2 4 —2
o St
(sk8s) = (&1) (8i5) = (owp) = .. ‘ fs
4 —2 1
ol EE
-2 142 }

="35i, 'I',} 0 1 s Ny,
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R
=i

2
i Ci_1,1 .
30,“": cﬂ,ﬂ;-si,i._'-‘,Jﬂ{,'i ( ) 3 iﬂl? 2l "y ﬂl
Si—1,1-1
0, 71<4,

c . .
8i,3= *—i’-i, J=@—{—1’

0, §>4, jRi+1, i=0, 1, -, n;

8) z! is @ continuous function of o,
4) 25 is not equal to zero provided v =#0.
Proof. BSince M5[2*, v*] is a nonnegative functional, there exists

Mla, B] = inf M2[, u*].

R Wh

Let {z}} denote a minimizing sequence for M%, that is, one such that

Mo, K1<Mi[2, v*]<Ma h]+-

ml

We now show that {z}} is a Cauchy sequence in the space W*. Since

T~ Pmip || | B e | e 2 & 2
a|mgete | = —a| EEE 4 2Rt Sl
af Zmt 20 1 a4 1 g,
4 =_'-Mh[ G +'"-, uh]‘l"?Mn[Zlﬁu uh]"t"'g‘Mh[z:Hp: uﬁ]
A+ s on 1% e 1
v mt i || o L4~ ] 42— 5
it follows from the convexity property of [ A**-—u*|7» that
A 2 !
zm_z:!-l- Ex | _;I'_ .:.".. _:.!'._ -.!'_.
alZm=Tnse | < Mo, k] +o| Mla, Kl+= )+ Mo, 1]+ ]
==}--)0,' as m— oo,
m

Consequenfly, by virtue of the completeﬁe-ﬂs of the space W?* the sequence {z.}
converges in it. Let ns define |

2t =lim 2.

= 0O

The uniqueness of the element 2! follows from the fact that M%[z*, «*] is a non-
negative quadratic functional, and it cannot attain its least value at two distinect

elements.
By wvariational principle it is easily seen that 2z, must satisfy the Euler

equation. The inequality
jal+ (AM)"AM =0
follows from the fact that the eigenvalnes of s x A%:Y cannot be negative.
Regarding the element z; as a function of @, one can easily see that the

Az
do

function also satisfies the equation

{al + (AP 4%y D _
da e

which differs from Xuler’s equation only in the right-hand member. Thus, the
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h
existence of the derivative 42 implies the continnity of .

To see the assertion 4, lii us suppose that
7 =0. .
Then (—ut, A"*)p=0, vt Wk,
This means that
ut=0.

Thus, Theorem 1 is proven.
Mhis theorem shows. that we can assign to every element wr € IL* an element

2i(g) e W3[0, 1]1:

b |
20 (8) = 2,5+ ﬁ_;uh e (8—sy), 8C [8y, 84441, =0, 12+, n—1,

The procedure described for obtaining the function 2 (s) can be regarded as the
result of applying o the element «* an operator R depending on the parameter a:

22 (8) =R(u*, a).
Now, we shall find the regularization. parameter « as a function «(§) for which the
operator R(u}, «(3)) is a regularizing operator, where
' bk s<<8,  us0=0.
The regularization parameter @ can be determined from the discrepancy & ([3],
p. 108), that is, from |

- :
t(@)=pr(@) — (3+=2— lzklwm ) =0,

where O pula) = [ A2 — w2
Theorem 2. Under the condition
‘ |2ty || 34> 8%

there exists an «(s) such that

1(a(8) =pr(a(®)) — (3+ 2 [ lm) —0.

Proof. 1) By theorem 1, the function 4y () i8 & continuous function of o;
2) The function 4x(a) is a strictly inereasing function. Suppose that ay<<oa. By
Theorem 1, we got

Mz, uf] = n(0a) + o] 28, | 7 > @ (@2) + [ 25, [
>on(on) +oy |2 |Ba=Mu{zh, w], -
M2k, ul] =@a(ag) +on] 2| Fr<on(an) +aa) 22, | Fone
Furthermore, using these inequalities, that is, ' T
o (ag) o |25, | %a > @a (a1) +oy) ﬁ;;ﬂ o
and o (o) +aa| 2, [ < @n (1) +oa | 2 [ Fs, -
we obtain __ B L
|25, 15> 122, ] b

and v palas) —ewlen) e [||22, 5 — 25,131 >0,
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from which the strict monotonicity of 4y (a) follows;
8) E{Eﬂn(ﬂ)ﬂﬂuﬁ"ii—aﬂ-
Since the functional M¢[#*, u}] attains its minimum when 2*=2}, we have

a2 < M52, w] <alO]dn+ | A0 —ud| b= ud |3

Hence lHm| 2} [ wa=0.

Thig, in turn, implies that
lim gy (a) =1im | 422 — | 3a= s

@—oo

and that Hm 45 (&) = |u}|| 72— % >0;
4) lim 4; () << —8%<0,
= {}

Using the inequality |
O< () <M3[2", Wd] <MI[2*, 1}] =l v*] s,
where o* satisfies A™"*=u}(u} o=0) (if AM*=u} is written out, it is easy to see that
such an element +* exists), and the inequality
A A(0) <pa(0) — 3%,

we immediatély get the assertion.

From 1), 2), 8) and 4) it is obvious that the equafion

dy(a) =0

hag a nnique solution «(8). This completes the proof of Theorem 2.

Now, we need to show that the operator R(u;, «(8)) i9 a regularizing operator.
Theorem 3. Let {8,} and {u}"} denote sequences of positive numbers and elements

of L™, respectively, such that
On—>0 as n—>co,
fesdn — ulr | aw O, Ua?,0=0,
and [2232 ] 5oe > D50
Then
Lim {237, (8) —2r(8) [ 6=0,

where 220 (8) = B (w2, a(3a))-
Proof. 1) Since the element z27, , minimizes the functional M52 [2*, u3r], we
have
M350 [2hm., wpr] =a(8a) ||2ht0 ) Fomt | AP 2000 — usn | Ere

: ; hﬂ : ﬂ'
(8 | 2220, [ Boa-t (B 522 k20, )

; 3
;ﬂl) 2

or It lwm— loelod{ L%t [a(80) + g 2oy | et bwenct 211} <0,

<a(3) |23, + (B0 + 2 |20

Consequently,
125280 [ wen << [ 22 [ 015
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Thus, the set {z%7 ,(s)} of elements of W3[0, 1], for which
n-—1 2 r—1 ("&i+1 - |
252, (8D [ %3 = j;ﬂ j (262, (s) 17 ds+ ; j [_dzﬁmﬂ} <3)] ds<< [|25%,0 | #ron

|
3y ={) J & dﬂ

is a compact subset of the apace C [0, 1]. |
Thus, {zi%,(s)} hag a subsequence {z,3,,(s)} that converges (with respect to
the metric of C'[0, 1]) to some element z(s) €C{0, 1]:

z(s) =lim 237 | (8);
fy— 00

2) We now show that
z(s) =2r(s).
Since

| Az~ Azp| <[ Az — A2z () ||z + | 4253, 5 () —ur] s

using the continunity of operator A and taking the limit as m—>»co, we get
_ | Az — Azr|r,=0,
or Az = Azy.
The uniqueness of the solution of equation (1) implieg that
‘ 2r(s) =z (s) =Lim 2z (9);

I

3) This will be the cage for every convergent subsequence of the gequence
{2t 5(s)}. It follows that, for every sequence {3,; of positive numbers 3, bthal
converges to zero, the corresponding sequence {zi%.,(s)} converges to the element:
zr(s). This completes the proof of the theorem.
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