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Abstract

A general approach of deferred correction procedure based on linear multistep formulas is
proposed. Several deferred correction procedures based on backward differentiation formulas (Gear’s
method), which allow us to develop Z-stable algorithms of order up to 4 and L («) -stable algorithms
of oxder up to 7, are derived. Preliminary numerical results indicate that this approach is indeed

efficient.

1. Introduction

The originad idea of deferred correction was first proposed by Fox'™ to improve
the accuracy of the basic solution. Significant improvements and extensions have
been made gince then. The concept of deferred correction mow has a much wider
meaning than the original idea of Fox. The various techniquegs of deferred correction
have been widely used to obfain solutions of ordinary differential equations with
improved orders of accuracy (see [6]—([8], [1]). The main reason why the
technique of deferred correction arouses so much interest is that it often has more
compuiational advantages than that of Richardson extrapolation. Pariicularly, in
dealing with stiff systems, a deferred correciion procedure or a local extrapolation
one based on an underlying method that is usually of a low order and a high
stability shomld preserve the good stability properties of this method. In this
connection it is well known that local extrapolation is not praiseworthy.

In this paper we consider the problem of deriving an efficient deferred
correction procedure based on linear multistep formmnlas. The key to the settlement
of the question lies in choosing an appropriate correction term such that when the
procedure is applied to the usual scalar test equation ¢ =Ay, with a constant
step gize A, the correction term is a rational funection of Ak, not a polynomial
in M ag i3 usually the case. The procedures proposed in this paper can not only
raise the order of accuracy of the basgic solution but also improve the stability
properties of the underlying formulas.

In Section 2 we explain our general approach and give some examples for
simple deferred correction. In Section 8 we derive geveral deferred correction
procedures based on BDF, which allow us o develop IL-stable algorithms of order
np to 4 and L(a)-stable algorithms of order up to 7. Finally in Section 4 we
present preliminary numerical results which will indicate that these algorithms
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are indeed efficient.

2. The General Approach

In this section we shall be concerned with the numerical solution of the initial
value problem

y =5 9),  yo) =1, (2.1
obtained by using linear multistep formula
LM (h D, yﬂ+k) 2 EyYnts — hE ﬁ!.fn+!=0 (2 '2)
with a;=1 and the local truncation error (LTE)
| T = Oy Py D(£ Y + O (B4, . (2 .8)

The basic idea of deferred correction is to compute another improved numerical
solutmn Y.+ by adding in a correction term computed from the :ﬂumerma,l solution

?Jn+:.: ﬂf
LM (h.! P f#n+1-.) =0.

For this purpose we choose a formula

A R e o . i
LOG, ¢, go) = Ztloss—h 2 Bufuss=0,  4>P, B=1, (2.4)

with an order higher than that of LM (h, p, Ynsr) =0 such that LO can be split
into two parts, namely

Lo(k; g, 'yﬂ-!-i?) =LM(h: y 2 yn+i'.:) +Le (k: P, yﬂ+k>.
Obviously the L'TE aggociated with

Le (h: P yﬂHﬁ) =0 | (2*5)
is (—T). Therefore Le may serve as the deferred correction term which is to be
found and the solution g,.x of LM (h, D, Yasx) =0 can be improved 10 ¢..x Dy means
of the correction formula

LM (h, p, Yasn) = —Le (r’a D, Tns). (2.6)
As we shall gee in the following such a choice of correction term (2.5) is often

unsatisfactory for solving stiff systems since this form of deferred correction
procedure usually destroys the good stability properties of the nnderlying formula.
However, this choice of (2.5) (called simple correction ferm) unifies the
deferred correction procedure and the popular predicior corrector inito one
procedure and makes it eagy to derive some implicit multistep formulas.
As an alternative, in dealing with ehiff syﬂ’uems we consider a rational deferred
correction procedure (see [1])

LM (R, p, Yosn) =0, (2.7a)
LM (h, p, Yns) = ~Py(hT) (I—hBT) ™Le(h, D, Yars), (2.7b)
af

where J  is an approximation to the Jacobian maftrix —=— 2y Py is a pﬂlynom:ial of

. degree I and I, m are integers.
As we shall see in Section 8, if the following conditions
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(i) m>1220, Yrow (2.8a)
(ii) P(g) I-Bu)"=1+0(9) (2.8b)
are satisfled, then the deferred correciion procedure obtained with (2.7) not only

raises the order of accuracy of solution z,; but also improves the' stability
properties of the underlying formula (2.7a). '

Assume that the solution valnes ., Yne1, ***, Unsx-s are available. The deferred
correction procedure used in practice is to carry out the following steps:

(1) Compute 3,.; from the underlying formula LM(2, p, Ynix) =0 Or some
other appropriate one.

(2) Compute the correction term
- e=—DP(RJ)(I—hB]) nLg (B, D, Unsr).

Note that (I —-A8,7) has already been computed and LU decﬂmposed So this only
requires multiple back substitutions.

(3) Compute ¢,.x from the correction equation
LMk, p, Yasrn) =8,

Let’s consider now the L'TE associated with such a prﬂcedure ((1)—(3)).
First of all we have
»

'.y (ﬁn+k) = §n+k == Op+ 1hﬁ+1‘ym+1} (.tﬂ) . O (hp+2)

from (1) and
FGasnr Y(Fuan)) —f Casns Ynik) = g_{’ (¥ (Frn) — @ni-k) AR =O(hp+1):

where () is the exact solution of (2.1).
Further we have

g=— (1+0R)) {— Ops 1 yEI> + O (A#+)
+ (By— B b Lf Gnsrr Y nin)) —F Cnirs Yner) 1}
— O, BP0 30 (h)

from (2) and condition (2.8b). It follows that the correction formula (2 .7b) has
an order af least (p+1).
Some examples of the simple deferred correciion pmcedu:re are given as follows:
Exzample 1. Consider the Adams—Bashforth formula in the form of backward

difference operator .
Fo—

LM (h: k: 'yn+1) = el — Ua™ h 2 T:vjfn=0

with the L'TE
P ,},khk+1y{k+1} O (B9 |

We choose the correction term

Le(h, k, Yns1)=—"uh*V s, |
Obviously the LTE assocla.ted with Le(h, %, ¢tps1) =018 (—T',), then the deferred
correction procedure

LMk, *, §n+1) =0: ' -(2‘93')
LM (h: k: yn-f-h) = — Le (h.: k: §n+1) (2 _Qb) |
has an order ab least (k+1). In fact (2.9) is the predicior corrector procedure of
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Adams-Bashforth—-Moulton formula. This means that

Yns1i— —h 2 ’}'jvjf # h'}’kka ar1=0

is Adams-Moulton fnrmula The latter can be easily proved.
Ezample 2. Consider the Nystrém formula in the form of backward difference
operator

x—1
LMk, D, Yus1) =Yns1—Yn—h Eﬂ ki»Vifa=0,
If we choose |
Le (h: ‘7‘7: ynqd) o 8 J.%lvh‘E"-"I'T'—'.flvl+1

as our correction term, then the Milne—Simpson formula can be written as
k—1

Yns1—Yn-1—h 2 by Vifa = hls V¥ a0 =0,

Example 8. Consider the simple deferred correction procedure based on BDF
in the form of multistep formula.
For the underlying formula

LM (.h: k: ynH:) = Unsex GR?‘“ hBIﬁfn+k ={) (2 : 10)
with the LTE.
Ty, = (}p%l) REHIED 1 O (RF+2) | (2.11)

%—1
where GRy— — F &yYnss, WO choose
=0

Le (h: k: 'yn-l-k) = (kﬁ 1) Akfl | (2-12)

ag our correction term, where 4 is the forward difference operator, then the simple
deferred correction procedure

LM(h: k: .’jﬂ-ﬂﬁ) =01 (2 133’)
LM (}b: k: yﬂHﬁ) = —Le (h: k: .?;nﬂ:) (2 *13b)
is of order (k-+1). |
We now examine the stability of this procedure.

To this end we apply the procedure to the scalar fest equation g’ =Ay, Re A<0.
Applying (2.13a) to the test equation, we obtain

Ynix= (1 _)61:?10 _1GRE: g=}"h. | (j)
Using (i) 1o compute the correction term Ls(h, %, yasx) Weo have
: X
Le(h, B, tuia) = 285 (1— Bu) ™ @Bs + B~ D) 'OLins}. (i)

ana.lly,. applying (2. 18b) {0 the same scalar test equation and using (ii) we obfain

a | Bﬁ G i
(l*Bkg) fyﬂ-+1ﬁ ' (}0“}"1‘) (1 ﬁ Q)Z( 1)10 yn+k—5 ' [(.k ql) (1 Bﬂ)]GRIﬁ_On

This may in turn be rewritten in ihe form

k
jgu;]o’ (Q) yﬂ-ln" s 01
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The characteristic equation associated with this 4™ order difference equation is

X
20}(?’)?‘3=0, (2.14:) : | |
B | =2 || Im(4)
where 0;(¢) is a polynomial of degree

2.

The conditions for the roots of this
polynomial are that all of them must
be less than 1 in modulus according
to Schur’s theorem (see [3], p. 82)
and these conditions may easily be

tested using an EHtirely' numerical Fig. 1 Regions of absolute stability of the

. .y simple deferred correction procedures based
app?uach. - Figae 1. Rhede Stablllty on BDF's for #=1—©6. In each cass the region
regions are drawn. As can be seen, of stability is to the left of the dividing line
this procedure desiroys the good from origin to end and is symmetric about
gtability properties of BDF, hence the:zeal pxis,

it is unsatisfactory for solving stiff systems.

3. ,Case Studies on Deferred Correction Procedure

L

~ The purpose of this section is o derive six deferred correction procedures based
on BDF. AIll these procedures have L-gtable algorithms of order up to 4 and L(a)-
stable algorithms of order up to 7 and the same stability regions for each value of
k. Just like Gear’s method, each of our algorithms associated with these procedures
requires that the coefficient matrix (I —83hJ) and LU decomposition be evaluated
at most once per unit step.

Procedure 1. The BDF serves as the underlying formula

LM (h: k: yn-i-k) =Ytk G[Rk_h.skfn+k=0 (3 -13')
with the bagic correction term

LE (h: k: yﬂ-!—k)

and the correction formula |
LMh, k, Ynsx)=—T—hBuJ)Le(h, &, Yasn). (3.1c)
Then the deferred correction procedure (the algorithm)
LM (h: k, 51&4—1&) =0, f
LM h, b, Ynsx) =— (I ~hpuS ) Le(h, &, Yusx)

(3.1)

has order (£1+1).

The cost of carrying out this algorithm isg determmed by the following stepas:

1. compute g,,; using Gear’s method,

2. make a back substitution and

3. compute y,,; using the correction formnla (3.1¢).

Practical experience has shown that, since g, offen serves as a very good
initial approximation 10 ¢,,, this quasi-Newton scheme usually converges rapidly.
Therefore this algorithm requires roughly double number of iteration of Gear’s
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method if a back substitution is thought o be an iteration.
Procedure 2. 'The underlying formula of pr{}cedure 1 is mﬂy used to derive

the correction formula. However, we compute y,; using the explicit multistep
formula (see [2])

LM (h k 'yn.;.y) = UYUn+k — G.R;s B8y [fﬂ+1’ﬁ ﬁkfﬂ] 0 (3 ; 2&}
We can also take
1

Le(h, b, 9aw) =57y el Fn (3.2b)
as the basic correction term; the correction formula will be
LMk, b, i) =— (I —hBuI)?Le(h, ¥, Ynsu) (3.2¢)
and the algorithm
ELM(h, £, Ynsx) =0,

| LM B, g — (I—hBTY L (b, b, Furs) @3

has order (k3-1).

The cost of carrying out this algorithm is equwa,lent to that of Gear’s method
with two additional back substitutions.

Procedure.8. © We take linearly implicit multistep formula™®

L-Ii(h }‘7 ‘ynq-iﬁ) =yn+k_G-Rk_hBE[fn+E + ‘@i Akyn _Amfn] ={ (8 '33)

oY
with the LTE

k
(k1)

as the underlying formula. The basic correction te:rm will then be

Les(h, &, 9ai) =B By~ s #6a) (3.3b)

4 I IRy @D _ g A _i g, +O (h*+2)

(k+1)
and the correction formula is |
LIk, &, Yugn) =— T —hBx/) “Les(h, k, Ynsn). (3.3¢)
Then the algorithm - |
LIi(h, k, guer) =0,
LIi(h, k, Ypsr)=— (I =18/ Y 1Les(h, kb, Ynsz)
has order (k+1).

The cost of carrying ont this algorithm only comprises three back substitations.
Procedure 4. We take the linearly implicit one-leg formulat™

LI'.'J (h: k: ‘ynHr-) = yn+lﬁ_G-RIﬁ'_hﬁk[f(tn+h yn+k*dkyn) +% 4 n] =0 (343')
with the LTE |

(3.8)

Ty=Tout 5 B 25 ("0

as the underlying formula and

LS (hl k: yﬁ+iﬁ) = (k_::-_l) hﬁ?ﬁdkfﬂ | | (3 4b)
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as the basic correction term. The correction formula is
Lilg (h: k: yn-!-k) ey (I #—-BJEM) ~*Ls (h: k: §n+lﬁ) . (3 4G)
Then the algorithm
LI(h, k, Ynsr) =0,
2( » Y +?ﬁ) (3 .4)

LIE (h: k: yn-l-k) e R (I—BM -1LS (h:.l . k: §H+?ﬁ)

has order (k+1). The cost of carrying out it is abont the same a8 in procedure 3.
Procedure 5. Same as procedure 1 except that we wuse (3.3a), rather than

(8.1a), to compute Yasx.

Procedure 6. Same as procedure 1 except that we use (8.4a), rather than

(3.1a) to compute Ynix

The cost of carrying out each algﬂrithni of procedures 5 and 6 is equivalent to
that of Gear’s method with one or two additional back substitutions.

Of course, we can give still more procedures with similar properties as indicated
above; they are omitted here due to lack of place.

We now examine the stability of these procedures. Just like Example 3 in
Section 2 we apply these procedures to the test equation y =Ay; finally we obtain
similarly the 4" order difference equation for each of these procedures

30, @e=0, 3D

where C,(¢) (j <k—1) and Cy(g) are
polynomials of degree 2 and 3 respec-
tively. This shows that these algorithms
are stable at infinity.

The characteristic equation asso-
ciated with (3.7) is

IE ey
E}O;(Q)’ﬁ=0.

The regions of absolute stability of our
algorithms are found for each value of £
using Schur’s theorem just like Example
8 in Section 2. These stability regions
are drawn in Figure 2 and two parame-
ters for assessing the stability properties

(3.8)

lIm(‘l)
k=6 4-s5

Id: ‘ksé

13 k=3

f k=2

'
1 ’ 4 ] RE-E‘-I)
-1 1 2 3 4 b

Fig. 2 Regions of absclute stability of the
deferrod correction algorithms based on BDF's
for k=1-—6. In each case the region of sta-
bility is to the laft of the dividing line and 18
symmetric about the real axis.

are given in Table 1. As can be seen, these algorithms have betier stability

properties than Gear’s method.

Tahle 1
e
BDHs Deferred correction

. oxder Dva ' A ‘order s Cinix

3 3 0.1 , g0° 4 L-stable

4 4 0.7 78° 5 0.04 | 88°

5 5 9.4 51° 6 0.27 81°

6 6 8.1 18° T 0.79 67°
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4. Numerical Results

In this section we present some preliminary numerical results which can be
used to make a comparison between deferred correction procedure and BDF. The
aim of this investigation is to demonsirate numerically the superior performance of
our deferred correction procedure for each given fixed steplength over that of BDF
with the same steplength, for a small selection of test problems. Of course we can not
yet claim that these numerical results demonstrate the superiority of our algorithm
over Gear’s method, but they at least tell us that the deferred correction procedure
based on BDF is worth further investigation and examinaition.

All numerical experiments have been run on the FELIX-512 machine in
FORTRAN double precision. The formulas which we considered are respectively
(i) BDF(k=38),
(ii) Procedure 4 (5=38)(Ps(k=8)),
(iii) Procedure 6 (A=38) (Pe(k=3)).
Thesge formulas were implemented with the fixed steplength A=0.1.
The two tost Problems ([g]1 Es and Dj;) are respectively

(Py): o vi=14s, #1(0)=2,
Y =5(1—yDya—91, (0)=0, ¢=1,
The exact solution 7, (1) =1.869409210, 4¢,(1)=—0.148239937.
(Pa): oy =0.01-- [14 (g3 +1000) (g4 +1)]+ (0.01+y:1 +¢a), #1(0)=0,
Y2=0.01— (1+¢3) (0.01+y1+9a), #%a(0)=0, £=100,
The exact solution g4 (100) = —0.99164207, y2(100) =0.98333636.
In Tables 2 and 8 we give the maximal relative errors at #; of the numerical

solution of (P;) and (P;) respectively using the formulag (i), (ii) and (iii). L
denotes the number of the iterafion per step.

Table 2 Maximal relative errors of (P;)

L . BDF (kw3) P;(k=38) Pa(k=3)

Vs 4,23x10~4

3 I 4.23%10-4 5.90+10-8 2.80410-5

4 4.23%10-% 2.30%10-8

Table 8 Maximal relative errors of (P3)

L BDF (k=3) Py(k=38) P (k=3)
7.5+10-3 7.7#10-6 1.1=10~6

4 2.1210-¢ 6.8410-7

3 9 .6«10-6 i 1.0+10-5

As can be seen from the two tables, our numerical results are consistent with
the conclusions obtained in the previous section. This indicates that a properly
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implemented version of our algorithm can be useful for numerical integration of
stiff systoms and at least the deferred correction procedure which we have derived
can improve Gear’s method such ithat the resuliant code can deal with a wider

range of stiff systems than Gear’s method does.
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