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NUMERICAL SOLUTION OF NON-STEADY STATE
POROUS FLOW FREE BOUNDARY PROBLEMS'
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The main resulis are as follows:

(Peking University, Beijing, China) A

A_bstraet

The aim of this paper is the study of the convergence of a finite ¢lement approximation for s
~ variational inequality related to free boundary problems in non-steady fiuid flow through poroms
media. There have been many results in the stationary case, for example, the steady dam problems
(3, 1]), the steady fow well problems®l, ete. In this paper we shall dedl with the -axisymmetric
non-steady porous fiow well problem. It is well kngwn that hy means of Torelli’s tramsform this
problem, similar to the non-steady rectangular dam problem, can be reduced fo a variational
inequality, and the existence, uniqueness and roegularity of the solution can be obtained ([12, 7]).
Now we study the numerical solution of this variational inequality.

1. Wo establigh nbw regularity properties for the solution W of the variational inequality. We
prove that W eZL=(0, T3 HX(D)), oW €L*(0, T} H3(I',)) and Dy €Z3(0, T3 HY(I',)) (see
Theorem 2.5). Friedman and Torellit™ obtained W € L2(0, T; H3(1})). Our new regularity properties

will be used for error estimation.
2. We prove that the error estimate for the finite eloment solution of the variational inequality

is

{8 W= T {3 Y/ O (Rt 277

(see Theorem 3.4). In the stationary case the error estimate is W =Wl aiy=0 (k) ([3, 61).
3. We give a numerical example and compare the result with the corresponding result in the

stationary case. .

The results of this paper are valid for the non-steady roctangular dam preblem with stationary
or guasi-stationary initial data (see [7], p. 534).

§ 1. Introduction

In this section we state the non-steady porous flow well problem and the related
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results.

1.1, Statement of the problem.

The non-steady state problem to be
considered is shown in Figure 1. An axisym-
metric well of radius s is sunk into a soil
aquifer of depth b and radius B. The bottom
of the aquifer is impervious. The outer
boundary of the aquifer adjoins a catchinent
area and the hydraulic head u(z, ¢) is equal
10 the constant b, along this boundary.
[0, 7], with 7" >>0, is the time interval during

which the filtration process is studied. C(2) is the water level in the well. We assume

* Received June 18, 1984,
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that O(0) =5y and 0<O(t)<by, VEC [0, T]. The water—air interface is a free
boundary. o(w, t) represents tho height of the free boundary. We suppose that
u(0, ) =5, vi€[0, T]. Finally we assume that the water is incompressible and
the poroun medium is homogeneous. | | | |

The mathematical problem can now be formulated as follows. (see [2]):
Problem 1.1. We look for a iriplet {p, 0, v} such that:
i) pis a regular function defined in [r, R] X [0, T'], satisfying

0<g(®, t)<bo, V(o t)E[r, R]x [0, T],
plr, )=0(1), p(R, t)=b, Vi€ [0, T, - (@1
¢(z, 0)=by, VaE[r, B]; o

ii) @ is defined by the relation:

Q={(z, 9, t); r<o<R, 0<t<T, 0<y<p(z, {)}: (1.2)
iii) w is 2 regular function defined in @ such that:
Bu= (zu,)s+ oty =0, inQ, (1.3)

u(r, y, =0 if 0<y<0O(s), 0<I<T,
sulr, y, D=y  if O@)<y<ep(r, 1), 0<i<T,

" - (1.4) -
u(k, y, 1) =by if 0<y<Cdy, 0<t<T,
Uy (z, 0, {)=0 if r<e<<R, 0<t<T.
On the free boundary S |
T 2={(z, y, t); r<a<R, 0<t<T, y=p(z, 1)},
w satisfies the relations |
Uz HUp— Uy, . By | o

This problem corresponds: to the. non—steady rectangular dam problem with
stationary initial data. Furthermore we suppose that

o) €00, T), C@)>-1. | 1.6)

1.2. Formulation as & varintional inequality.
In this section we reformnlate Problom 1.1 as a variational inequality.

Let S | 5t .
D={(=, y); r<ao<R, O<y<b}, -
Q=Dx (0, T),"

- Ly={(z, y); v=r, 0<y<b},
Lo=A{(e, 4); v=R, 0<y<b},
1“,={(m,.g); r-:::i:{R, y=0}

Set E

I'y=0D\T,.
We introduce the functions
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5y, O = [00) — (g+t-—D*dr+Z@+D,
| w, =] Bo-@+t-D1"e+2@+0, @D

-1

| Gz, 9, ) =gs+F— (92— 90),

where : -
Z2() == [(B—1)*1% VAER: (1.8)

The condition (1.6) ensures that™?
91€Wﬂ*”(1"1}< (0, T)),

{ gs € W= (I's% (0, T3, | (1.9)
GEW=(Q).
We now introduce the spaces, with the graph norms,
= 1 ! ===
{W {»& HY(D): v=0 on I's}, (1.10)
V={vEW; 7o0€ Hi(I'n)}s |

A
where v, is the tTace operator on 1.

Lei
alu, v)= gﬂﬂ: (um’!?u“’umﬂﬂ) dwdy,

< by, v) =L1 @D yyous Dy do, (1.11)

C (n, @)=Lu-*vdwd/y.

Wae finally introduce the closed convex sei
K(t)={v€ H(D); v=G on It

We now introduce a variational inequality:
Problem 1.2. Find a function W (£) € K (¢) such that

W eI~(0, T; HY (DY), W.€I?©, T; H*D); - {112
V(z- VW (£)) €L=0, T; L*(D)), . (1.13)
where the gradient is taken with respect 10 variables (=, 9),
a(W (2), v—W (£)) +<ay W (8), vo(0—W (B)>+ (&, v —W()*) >0, (1.14)
voc K (t), a.e., t€ [0, T,
where 7, W is the trace of oW /oy on I',, and the brackets {,) indicate the duality
between (HY3(I,)) and Hi/o(L'w),

e D,y W+ D, (zDy)yoW =0 (1.15)
in the sense of 2’ (0, T'; (HZ(T W),

7iW (0) =g, (1.16)
where q__;Zf (0) N — bﬂ' ! A .
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This problem corresponds to Problem W of [7]. We now state the main results
about Problem 1.1 and Problem 1.2. Since these results are similar to the corres-
ponding results of [7] and [12], we omit thelr proof.

Lot

Qi={(2, v, £); r<e<R, 0<t<T, O0<y<b+T—¢}.
Let {p, 2, u} be a solution of Problem 1.1. We iniroduce the functions

E={u(m: Y, t) in ﬁ ; |
y in Ql\g . . (1 17)

W=f{u(m y+i—7v, 7)— (y+t—2)}ds+Z(y+t) in Q.

Theorem 1.3(See [12] Theorem 2,1). Let {9, Q, u} be a solution of Problem
1.1, and let W be defined by (1.17); then

W>0 inQ, W=0 e:an, = B (1.18)

and W satisfies Problem 1.2, ._

Theorem 1.4 (See [7] Theorems 2 1 and 2.2). There exists o unique solution
of Problem 1.2.

Theorem 1.3 and Theorem 1.4 show that Problem 1.2 may be considered a
weak formulation of Problem 1.1. Moreover Theorem 1.4 gives a wuniqueness
theorem for Problem 1.1, )

1.3. Some regularity properties for the solution W of Problem 1.9.

Theorem 1.5(See [7] Theorem 4.5).

WEL0, T; HX(D)); = W=0, W,<0 "in Q.
Let |
(= (D:—DpW. | (1.9)

About the function { we have:
Theorem 1.6(See [7] Theorem 3.8 and Lemma 4.1).

LELA(0, T; HY(D)); (>0 inQ.

Let
¢(z, t)=sup{y; W(z, ¢, t)>0}, r<ae<<B O<i<gT, (1.20)

We now consider two porous flow well problems with data b, Ci'(t) (i=1, 2).
Denote by W'(#, y, 1) the solution of Problem 1.2 corresponding 1o the data b}, C*(¥)

and denote by y=¢'(w, #) the free boundary correspnndmg to W'
Theorem 1 7 (See [T] Theorem 8.4).

If
s=b3; C(H)=0(%), O0<t<T.
then
Wiz=W? in Q,
DWi<DW? in @,
gvl(m D =e(z, t), r<w<_R, Oﬁtas;T
From Theorem 1.5 and (1.12), we have
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. wWelL*©, T; H°(D)), W.,eL*(0, T: H*(D)).
Hence (see [11] Ch. 1, Theorem 3.1) S - =
weo(o, T1; H**D)), Weo®@. (1.21)
1.4. Another form of Prﬂblem 1.2, |
Let

K ={v€H(D); »=Gon s, yooE€H(T)}.
Problem 1.8. Find a function W () € K (¢) such that :
WeL=(0, T; H¥?(D)), W, L0, T: H*(D)). i (1.22)

W (), v—W D) +b([ W @dr, v-W (®) )+ (o, v* =W @)

;—-L o-q-yo(v—W(1))ds, VWER(®), 2.0, t€[0, TI. (4 o3

Theorem 1.9(See [12] Theorem 3.2). Problems 1 2 and 1. 8 are egmmlmt
About Problem 1.8 we prove the following two theorems.
| Theorem 1. 10 Let W be ths solution of Problem 1.8, then (1. 23) holds for any
t€[0, T1.
Pq'aﬂ f. Frnm (1.21) we deduce

7o, W (Ddr€O([0, TT; avryy. (1.24)

Let 20 €V, By (1.9) we have G(¢) €C0([0, T1; H**(D)), wGGO([ﬂ T HNIG)).
Then .,
{we(t) co([0, T1; HY(D)), o
Yo(vo+G () €O([0, T1; H'(I')). |
We choose v=2,+G(¢) in (1.23). Since (1.23) holds for a.e. t€ [0, T], by (1.21),
(1.24) and (1.25) we deduce that (1..28) holds for any {€E [0, T]_.

Theorem 1.11. Let W be the solution of Problem 1.8, thm

L WO =Z(@). # (1.26)
Proof. By Theorem 1.10, W(0) satisfies the following variational inequality
(W (0) €K(0),
m(W(U}, ‘IJ—-W(G})-F(!E ? —W(O)*) |
= — L weqgey{v—W {(0))dz, VoE E (0). (1 7)

It is well known that (1.27) has a unigue aolutmn (see [10] Ch. 2, Theorem 8.5)
" on the one hand. On the other hand we can .verify directly that the function Z(y)
is a solution of (1.27).

§ 2. Some New Regularity Properties for the

Solution of Problem 1.8

The main object of this section is to establish some new regularity properties
for the solution of Problom 1.8 (cf. Theorem 2.5). They will be used fnr error
estimation. First we neod the following lemmas. - -
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Lemma 2.1. Let W be the solution of Problem 1.8; then |
' EW =z H(W) a.e. mQ (2.1
where H i3 a Heaviside function. |
Proof. Let | | o | |
Q={(e, y, HEQ W(z, y, t)>0}. (2.2)

We take S € 2(Q). Since W €O(Q), there exists Ay >0 such that for each real ) with
|A| <A, one has W+24,>0 in Q, hence (WAt =W+nr,., We take v=W 44, in

(1.23). Then by integration on. [0, 7] we obfain

T o 4
L a(W, &) dH—L (3, Ay)dt>0,

from which, as the sign of A is é,rbiti'a,ry,

r P | |
Jﬂ ﬂ(W: l;’)dt_l_“’ﬂ (m.r th)dt=0.
By Green’s formula we have o

(R

EW =« a.e. in £,
and we can deduce (2.1). |

Lemma 2.2. Let W be the solution of Problem 1.8, and

Ot
{W:‘?O of 'y{qu,
Proof. In Theorem 1.7 we take
}lgbﬂj §=0ﬂ1

. . o? (t) G bﬂr Gﬁ(t) =(Jy.
It is easy to verify that

W1=Z(y)=% (b =),  Wi=Z(y) =-§(O’u—y)*’.-

Hence

Zy(y) <W (5) <Z (),
from which we can deduce (2.4).
From Lemma 2.2 we have

Wz, b, t)=0.
Lemma 2.8. Let W be the solution of Problem 1.8, then
- Wel=(0, T; H3(D,))
where Di={(z, y €D, y>8}y, O<e<h.:

(2.8)

(2.4)

(2.5)
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Proof. By (1.21), (2.1), (1.9) and (2.4) we have
wec(, T, H'(D)), -
EW=cH (W)€ L(Q), | :
W|r=g €ELP=(Ty%x (0, TY), W|p,=g: € L*=(I'ax (0, T')),
W=0 if bo<yy<b,

(2.6)

from which and from usual regularity results (see for instance [11] Ch. 2) we obtain
W e L=, T; H*(D,)). 8
Set | |
Dy={(z, y) €D; y<04}, - (2.7)

where €, is a constant with 0<01<C,, C, being defined by (2.8).
Lemma 2.4. Let W be the solution of Problem 1.8, then [ defined by

L (Dr'—Dv)W (2-3)

saitsfies '
(co=(Dy), ae t€[0, T], (2.9)
’ (e LP(0, T; HE(Dy)) (2.10)

for any integer K =>2.
Proof. From (2.1) we have

EW ==z, a.e. in Q.
Hence |
E{=0 in the sense of 2'(Q).
Since { € L2(0, T; H(D)) (see Theorem 1.6) we deduce for a.e. £€ [0, T]
E{=0 in the sense of 2'(2(%)). (2.11)
where | |
Q(2) ={(z, ¥) €D; Wz, y, )>0}. (2.12)

Let v, be the trace operator on I';(¢=1, 2). Since W|p=¢g: where g; is defined by
(1.7), we deduce (cf. [7] Lemma 8.1) in the sense of L*(0, T'; HY2(I'H)

Y5 =76(Dy— D)W = (D;— D) veW = (Dy— D) g
Hence (see (1.7))
vif = [O(t) —y]* in the sense of L*(0, T; HY2(I'y)),
{y§§= [be—wy]* in the sense of L?(0, T; HY3(I'5)).
From (2.1) we have |

(2.18)

EW=2 a.e.in Dix (0, T)- .

Hence
D,{=D,(D,— D)W =D,DW +2-D,(aDW)~1 n.e. in Dyx (0, T),

from which and (1.15) we conclude (cf. [7] Lemma 3.1)
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ALk g

VL= 70(Dy) = DiyiW + = Dy(aDeyoW ) — 1

=—1 in the sense of I*(0, T; (HY2(I,)"). (2.14)

From (2.11), (2.18) and (2.14) we obiain that for a.e. ¢+€ [0, 7] the function {
satisfies

E{=0 in the sense of 2'(2(2)),
76{~=[C(®) —y]* in the sense of H¥/2((0, b)),

Y6 {=[bo—¢]* in the sense of H¥72((0, 8)), 318
71{=—1 in the sense of (HY*(I.))".
We now introduce the function
E={+u. | (2.16)
Then for a.e. :€ [0, T'] the function & satisfies
£ € H'(Dy),
E&=0 in the sense of 2’(D,), 2.17)
vo&=C(t), y2&=0, in the sense of H2{(0, ), '
LyeE=0 in the sensge of (H E,{;*'(F,,))’,
where ' _
Do={(=, y) €ED; y<Op}, (2.18)

and Oy is defined by (2.8).

We now extend £ across y=0 by reflection and denote the extended function
gtill by &. Then from usual regularity resulis (see e.g. [8] Sections 8.8 and 8.4) we
can conclude that for a.e. t€ [0, 1] '

1€ axeoy <O €| mrepey + O

for any integer K>2, where C; and C; are constants independent of . From this
weo have

(2.19)

{&'E'U‘“(Di), a.e. t€ [0, 7],

£€I?(0, T; HE(Dy)).
Hence

{6 Eom(ﬁi): a.0. tE [0: T-]:
" L €LP(0, T; HE(Dy)).
Theorem 2.5. Let W be the solution of Problem 1.8, then

W€ L=(0, T; H*(D)), i (2.20)
YW € L=(0, T'; H*(I',)), DyyoW € L2(0, T; HX(T,)). (2.21)
Proof. i) Proof of (2.20). By Lemma 2.8 it is sufficient 4o prove
W e L=(0, T; H*(D,)), (2.22)
where
Dy={(z, y) €D; y<O,}, (2.28)

and Uy is a congtant with 0{02<01/2.
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Lot
D={(z, v); r<z<R, 0<y<b+T}, Q=Dx(0,T).

We introduce the function

Z(m Y, t) if (m i, f') EQ: | 'f
- {0 if (o, y, ) €EQ\Q, s

where { is defined by (2.8). By (2.4) we have =0 if bn«gygb Using this and

Theorem 1.6, we deduce that
- Terio, T; H(D)). | (2.25)

Lot us now set

W*=£Z(m, y+t—7, r)dw—t-Z(y—Fﬂ in Q

Since (D;—~D)W*=(D,—D,)W={ in Q and since
W*|tco=W lico=2(1), W |yas=W|ys=0,
it i deduced thab

EV=W'=IZZ(::=, y+t—=, v)dv+Z(y-+1) inQ._ (2.26)

If (=, y) E.bg and {>C,, then
Ca -
W-=j: Prn oo, fr)d'v—l—L Lo, y+t-7, Ddr +Z(y+1)

—W (2, y+03, t~Ca)+ | _ 1:(:1: y+t—z, ¥)dv. - (2.27)

Since Dgyiy—l—t-r*:\:y—l—(}'ga(?i if (=, y) € Dy and {—Ca<sv<t, we have
| | <[ 1t@ gt Dlodr, (229
C*{Da) —0a
t
[ 1@ v Dlowdr<Olllvomoar

Taking K =4 in (2.10) and using H*"* (D, )G O?(Dy),we obtain for a.e. 1€ (Og, T)

L_ﬂ{(m y+t—=z, v)dv

" IXNO, T H (D))"

¥
Nl’ (-(m: y-}"'f"""ﬁ', T)d'rl[ﬂ‘{ﬁﬂgo'

i=~{y

Hence on the one hand, we have

[ @ y+t-m Dde€lr (0, T; H(D2))- (2.20)
On the other hand by Lemma 2.3 we have
Wz, y+Cs, t—Cs) €EL~(Co, T; H*(Dy))- (2.30)
From (2.29), (2.80) and (2.27) we get ' - |
| W e Le(Cy T, Hﬂ(Dﬂ)) (2.31)

If (=, y) €Dy and t{(}'q then
; e : " :
=Llj(m, y+i—=w, 7)dv+Z(y+i).
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Analogously to (2.29) we have

[ L@ y+t-s, DareL=0, 05 B:(Dy).
Hence

WGL‘“(O Ca; Hﬂ(Dg)) . (2.32)
From (2.81), (2.32) we have

w.eirg, 7 H?(Dy)).
i) Proof of (2.21). Let
' {Doa={_(m, y) €D; O3<y<0y},

Du={(z, v) €D; Oy<y<0y},

where 0; is a constant with 0<< (< C, (cf. (2.8), (2.7) and (2.23)).
By (2.20), (2.1) and (1.9) we have

WeL=0, T; H*(Dy)),
EW =2 a.e.in Dux (0, T),
viW =g €L>(0, T; H*(I)),
P yoW =ga € L=(0, T H?*(ly)).
From usual regulanty results we conclude (see e.g. [11] Theorem 5. 1)
W e H2(Dy,), a.e. £€ [0, 2],

(2.38)

(2.84)

and

Wm0, <O{|BEW | g1,y + [ 73W [ meon + | ¥EW | mrrny
+ W | evowr}, a.e. tC [0, T'],
where U is a constant independent of t, L1=I'1N8Dy3, I't=1I3N8Dys. Hence

P | W € L=(0, T; H**(Dy)).  (2.35)
For t>C% we set

W'=r (2, y+i—z, ©)de+W(z, Cu, y+i—05) if (2, ) € Ds.

41—~y

It is clear that (D,—D,)W*= {. Hence

(.Dt‘—.D#)W= (.Df""".Dﬂ) W*=§ if (m, y) e:z_jg, t}aﬂ-
bince Wz, O, £) =W"(2, O, t) we deduce

W=w"= JH . {(z, y+t—v, v)dv+W (s, o, y+i— C’E)
§+E—L)

if (z, ¥) € Dy, $>>0.. | (2.36)
For t<<C3; we set |

14 iy
=j0C(m,J yt+i—=, v)dv+W(z, y+i, 0) if (2, ¢) € D..
Analogously to (2.86) we have

W=W'=J:§(m, y+t;w, v)dv+W(z, y+i, 0) if (@, 4) €Dy, t<O,. (2.87)
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Taking y=0 in (2.36), (2.87) we gei

j C(m 1—1, ’F)d’t’—{—W(ﬂ} Ca, t—Og) lf Ug{t{T
Wz, 0, 1) = g~ P (2.38)
j C(ﬂh t—1, ‘F)d"ﬂ'—]—W(ﬂ}, t,_ 0) if 0<3<C 04,
Analogously to the proof of (2.29) we have | |
j t(w, t—7, 7)dv€L=(Cs, T H(r, R)) (2.39)

By (2.35) we have
W (=, Cs, t-og‘) € L=(0s, T; H?*(r, R)). (2.40)
Fram (2 89), (2.40) we get
Wz, @, t)EL“(Oﬂ, 7% H“(F,,))
Similarly we have |
W (z, 0, t) €L=(0, Ca; H>(Ty))-

Hence 5, % ,

. W (z, 0, ©) €L=(0, T; H*(I's))-
Similarly one can PIove | o '
DW (=, 0, 1) €L, T; HA(LW),

and (2.21) is proved.
Theorem 2.6. Let W be the solwwn of Prome 1 8, then for any 1€ [0, T] the

function W satisfies _
W=mH(W) a.e. in D, (2.41)
W=G on Fﬂ, (2 .42)

5 :;s«ylW-wwdm==b(ﬂW(fr)d'r, ’w)+Lﬂm-q-w’U dz, YvET. (2.43)

Proof. By Theorem 1.10 we have for any tE [0, 7]
a(W, fu—W)-}—b(f Wdz, v— W)—l—(m p¥ — W"‘)

;-L peqoye(o—W)dz, YvEEK(®). (2.44)

Let
Q) ={(z, y) €ED; W(z, y, t)>0j}. (2.45)
We take Y & 9(& (t)) Analogously to the proof of Lemma 2.1 we have
(—EW -+, ¥)=0.
Hence for any t€ [0, T'] |

EW =« in the sense of 2’(02(%)). (2.46)
Since W € L=(0, T; H2(D)) NO(Q) we can deduce (cf. Lemma 3.8)
W () € H*(D) for anyt€l0, I']. | (2.47)

From (2.46), (2.47) we have for any 1€ [0, ¢4l
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ol ——

EW =2 a.e.in Q(%).
Hence for any ¢t€ [0, 1] |
EW=aoH(W) a.e in D,

We now prove the assertion (2.438)..
By (1.21) and (2.41) we have

{WEO([U, T1; H¥(D)),
EWcl>(D), vi€[o, T].
Then it is deduced (by [11] Ch. 1, Theorem 7.3) that

WO, T ZWDY).  (2.48)
It is clear that on the one hand '
r YW (#)dvc O([0, T]; H*(Iy)).  (2.49)

On the other hand, from (1.15) and (1 16) we can dedmce (cf. [12] (3. 25)) that
for a.e. 1€ 10, T

J -m-'}’iw-i’quw%b (YW(T)EM *'t!)—l-L_ argeyov de, YvEV,  (2.80)

The assertion (2. 43) now follows from (2.50), (2.48) and (2.49).
Finally the assertion (2.42) follows from (1.21).

§ 3. Numerical Approximation <

In this section a finite element method is used to obtain numerical approxima-
tion of Problem 1.8, and the error estimate is obtained.
Let {T';} be a regular family of trlangulatwns of D, where A—max dim(I). Let

Uerl,

K _%, where N ig a positive integer. We denote by II, the linear-interpolation

operator. For a continuous funciion 2 (2, y, t) defined in Q, we set

{w‘=w(éK), vi=Iyw(tK) fori=0, 1, ..., N, (3.1)
ve(f)=2; if1€(G—1K, ¢K), i=0, 1, ---, N, '
We put now
{Xn={‘!?n; fu;.GG‘(I_)), ’Uth‘EPi, VK ETn}, (3 2)
‘={1:§,,EX;.; v=G% on Iy, vi>0 in D}, .

where P, is the set of all polynomials in two variables of degree-gi and Gf§=
IIyG(eK). We set
wm,e(t) =0 ifi€((i-1)K, i+K), i=0, 1, ---, N, (3.8)
where v € K} (¢=0, 1, --., N).
We now consider the following discrete problem:
Problem 8.1. Find a sequence WiC K} (¢=0, 1, ..., N), such that

Wi=II,Z(y), (3.4)
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a(Ws, va—Wi+EKb(W3, h—Wh) + (s, vi—W}i)
=1 :
>-KW(Z W1, h=Wi)=| 2:q-7(-Whds, V€KL  (3.5)
where ¢=1, 2, ---, N. |
Theorem 3.2. Problem 3.1 has o unique solution.
Proof. Consider the space

V={v€ HY(D); vov€EH*(I',)}
with the graph norm. The convex set K3 is closed in ¥ and the bilinear form
o(W, w) +Kb(W, )

is coercive in ¥. Hence by applying inductively (see e.g. [10] Ch. 2, Theorem 8.5)
we find that there exists one and only one solution W} of Problem 3.1.

N 1/2
We now derive an error estimate for {2 | W —Wi| oK } . To do this we need
=1

the following lemma:
Lemma 8.8. If«CL=(0, T; H2(D)) NC(Q), then

v(t) € H2(D), Vi< [0, T]. (3.6)
Morecover

[ o' — 25 5 my <O 22| 2| 100, ;20D VO<i<CN, =0, 1. (3 7)
Proof. Take t€ [0, T]. Since v€ L=(0, T; H2(D)) then there exists ¢ € [0, ']
such that i, — ¢ and »(#,) € H2(D).
Clearly we have
“w(tu) "H’(D)‘q\: H@Um.r;ﬂ-m}n Ve,

and o we can on the one hand extract a subsequence of &, still denoted by a, such
that

v{ts) =" in H2(D) weak. (3.8)
On the other hand, since v € C(§) we have
| v(t)—>v(#) in I2(D). (3.9)

Comparing (3.8) with (3.9) we find :
() =" Cc H*(D).
This establishes (3.6). The agsertion (3.7) follows from (8.6) and Theorem 3.2.1
in [4].
We now prove the main theorem of this paper.

Theorem 8.4. Let W be the sobution of Problem 1.8 and W5 (4=0, 1, +--, N) be
the solution of Problem 3.1; then

{Sywe—ws

where C is a constant independent of h, K.
Proof. We congider the relation

a(W'~Wh, W—Wi) =a(W'~ W, W—W$) +a(W*, Wi—W$) =
—a(W, Wh—WL). (5105

K PO+ K*®). (3.10)

By Green’s formula we have | .
a(W* Wh— W) = --L 2y Woro(Wh—Wido+ (— EW*, Wi—WL. (3.12)
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g Qe e

Take v =W+ in (8.5). Then
~a(Wi, W= W< (s, Wi~ W5 +Kb (Wi, Wi—W1)

§r

| aegeyo(Wi—Whde. (3.13)
Substituting (3.12), (3.13) into (3.11), we obtain
a«(W'=Wi, W' -W)<a(W'-Wi, W'=W}) + (- EW'+z, Wi—W})

i
+EB(ZWh, We—Wh )= | oriWiye(Ws—Wide

J=1
] L | i-— ‘ . -= e n -
+_L"ﬂ? 4_? Yo(Wi—Wh)de, i=1 5 B, »eny N (3_14)
By (2.48) we have |
~| oWy W= W+ | orgeyo(Wi—Wh)da

o 5 |
o b(L W (v)dr, _W}—W;). (3.15)
By (2.41) we have —EW'+2>0, (— EW'+4x, W*) =0. From this we obtain
(= EW!+a, Wi—Wi) = (~ EW'+a, Wi~W)— (—EW'+z, W)
+(—EW'tz, WHS(~EW'+az, Wi—W"H. (8.168)
1t is clear that '

Kb (ﬁ Wi, Wi— Wi) 2 b( j:f Wax(7) &.-,-, W — W ) (3.17)

Jm=]

Substituting (3.15), (3.16) and (3.17) into (3.14), we obtain
a(W'—-WS, W—~WD<a(W'—Wi, Wo—W*) + (- EW'+o, Wi—W*

iE | |
+b(L (Wa,x~W)de, Wi—W3), i=1,2, -, N. (3.18)
Multiplying (3.18) by K and summing over ¢, we obtain |

S (Wi—Wi, W—WHE

=1

' |
< D oW Wi, W-W)K +3(~EW'+a, Wi-Wi) K

f=l

I iK ; '
+26(L (Wax—W)de, Wy—W4 K =8:+83+8,  1<I<N. (3.19)

=1

By (1.21), (2.20) we have W € 1=(0, T, H *(D))NC(Q) and then by Lemma
3.3 we obtain

{”Wi_W}”L“(D)'gohﬂﬂw"L"{mT;H’{D)}: (3.20)
| W = Wilpoy <Ch|W | .z, 4=1, 2, -, N. |
- Using this we can deduce that |

$1<5 X a(W = Wi, W= WHE +OR|W [$armam (3.21)
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P/ ol 1 —— (3.22)

Substituting (3.21), (3.22) into (3.19) and then applying the Poincare inequality
we obtain '

: _
- ‘21 TWt— Wi | K <Ch?+ 83, | (3.23)
where

4 $H
83=§b(fu (Whx—W)ds, Wy—W$ )K

-5 ( J:K (W =W x)dr, j

=1

—Sp (J:f (W W x)dv, j

$=1

iK

W ~W,.x)de)

(d—1)H
{K

(W—W,..E)d—r)=8%- z

(I-1K

After simple calculation we obtain

15[ T —Waw)ds, = 7 —Wnue) i)

S ([T, W -Waa [ - Wasie)

§= (—-1)K
y, 8 IE a
=o([) W-Waar, | F-Wd)-5:.
Consequently,

=10 ([F v w0 @, [ W -Warir)

iR )
>a| |, 1 ~Wae)s (8.29)
0 (T
where o is a constant. On the other hand we have
Fow IR R J tH m [
8% 2T i=2|1 0 Yo(W =W, g)dv H'cr,,:.E
G } f | W W 2 3 2

+E—_i=1 .[ﬁ-—i}E ?“( - I’H)dw HLU ) » ' = & g ( 2 5)

where O is a constant. Substituting (3.24), (3.25) into (3.23) we obtain
; K
SIW = Wil +a| [ 70 - Wy x|

2

Hi(l's)
2

K

H(I'y)
2

o $H
<= 2 L Yo(W — Wi, g v

C { th
+ 2 3 oW W) de

(I-1)K

+OR, VIISN,  (8.26)

HY(I'n)

Hence
A

IK
[, 7o ~Whm)dw

H(y)

o EN 2 I 2
Q 21" = "[ ¢ W — W) "Hlm.}
el ‘W W )de | ORY, vi<I<N (3.27)
= K = I.'G-J.JE Yo (W — 1_:.1:) ”HI{P,.) +0h%, Vi<I<LWN,. :
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=17 2 e = e

Multiplying 3.27) by K and summing over I, we obtain
N IK |
EEI” Tn(W—Wn.r)d’T”z K
I=1 4]

HY(I's)

<33 nw-wpa| &

=1 Hi(Iy)
+ 3" - Wads | +OTH
K G-DE 4 M HYT, g
COonsequenily,
| N || ME 7
> I Yo(W — Wy, x)dr I K
i=1]J0 B |
G NI MK 2z
<5 j po (W — W ) +ORA. (3.28)
K- FEvy | | (’i—i}R‘ Hi(I'g)

Taking =X in (3.26) and then substituting (8.28) into (3.26), we obtain
S W - Wi | K

=1

0 » 3 2
<g 2| W -Wanas |  +om. (3.29)

It is clear tha.t-

H‘E Yo(W — Wn,x)d‘l'“ HP"}“§|}£‘_1)E Yo(W — W')d'r; ﬁ

-1DE

HY (T )
i
T U oW =W,z d ! . (3.80)
(‘I—l).ﬁ' HY(D )
By (2.21) we have
% W iK ix
l“ U=k Rl I EH‘(P..] j (-DE I | DeyoW [eerydt d
K
<[ GE—)"2 de) Diy¥ Lo xmacr
@-1E
= K32 DyyoW || 0,1 mc 33+ (3.31)

On the other hand by (2 21) we obtain yoW € L= 0, 1’y H2(I',)) N0 (Twx [0, T])-
Analogously to (3.7) we have

" Yo (W‘ = 1') ﬂ HYD) '5; Ch ” ‘}-’uW

1K
) 7o =Wy

o {($~1)K

| z=c0, T3 3T 3y (3.32)
Hence

N
< [Ye(W' =W | mr .

HYI'y) {(—1)K
I°(0, T HY(T,)))* | (3.83)

- <Oh|yeW|
- Bubstituting (3.81), (3.83) info (3.30) we obtain

M‘K ')’ (W —Ws,p)dv H

(-1)K

From (8.29), (8.84) we deduce

N 2
i21|H‘17’“—.— Mo K<O(R*+K).
This completes the proof of the theorem.

<C(K¥+Kh), Vi<i<N. (3.34)
HY( W) |
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§ 4. A Numerical Example
Let | "
JHv) =%(¢3 (v, )+ Kb(w, )+ (=, »)+Kb ( E Wi, '.u)

+J. xeqeyovde, t=1, 2, «-, N. (4.1)
Iy

In view of Theorem 1.2 in [9], Problem 8.1 is equivalent to the following
minimization problem:

Problem 4.1. Find a sequence Wi€ K} (6=0, 1, .-+, N), such that

Wi=1Z (y), (4.2)
J‘(Wﬁ)=mi£¢7‘('v), i=1, 2 «-., N, (4.3)
VEN

(4.3) can be wriften in the following form: |
JHWh) = m:;x% {VFTAV+2B*V}, (4.4)
PrE

where A is a known M x M mairix, B is a known M—vector, M is the dimension of
X3, and V is an M—vector (v,,,), ¥sq denoting the values of @ at the gridpoiné
(%p, Ya)- z

The solution W4 (¢=0, 1, «--, N) of Problem 4.1 wasg computed using 5.0.R.
with projection (see e.g.[5]). |

As an example we consider the specific oase r—4.8, B=76.8, by=48, because it was
previously considered for the stationary case by several authors (see e.g. [6]). We
note that in [6] the stationary water level in the well is equal to 12. We now set

—0.86:+48 it 0<<#<<50,
C(H)=<18x1074(t—150)2+12 if 50 <150, | (4.5)
12 | if 150<%.
Y L Becanse the solution changes most
l rapidly mnear the well, the subdivisions
oA h * were taken to be wniform in the g-direc-
! fion and logarithmic in the a-direction.
4 A If n and m denote the number of subdivi-
a2 sions in the & and y-directions, the co-
2 i ordinates of the gridpoints were given by
201 4 " . {w;-rﬂxp[(ifﬂ)”ln (R/r)], 0<i<n,
&) »
10} y,=j-%, - Ijsm.
' i : ' (4.6)

04.810 20 30 40 50 60 70 76.8 For m=4, n=6, K =1, the solution

Fig. 2 Approzimate free boundary at the different /2% of Problem 4.1 is given in Table 2,
values of time for m=16, pe=24, K=1. where the position of the approximate free

1. t=25K; 2.1=50K; 3.!=15K; 4.3=100K; poyndary is shown by the first zero term
0. i=120K. in each column. For comparison with the

stationary case, in Table 1 we give the solution for the stationary case which was
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HILE

computed in [6]. In Figure 2 we plot the approximate free boundary at the different

ki s

values of the time for m=16, n—234, K =1,

disoussions in preparing this paper.

Table 1 Solution In [8] for m=4, rn=—=_g

Finally we thank Prof. Xiao Shu—tie and Prof. J iang Li-shang for the useful

X
4.80 7.61 12.09 19,20 30.47 48.38 76.80
48 0 0 0 0 0 0 0
36 | o0 0 0 0 3.03 31.59 72.00
¥ 24 0 17.55 43.61 81.33 135.09 204.06 288.00
12 o | ss.ss | 182.02 283.14 394.37 517.10 648.00
0 72.00 | 252.00 432.00 612.00 792.00 972.00 1152.00

Table 2 Solution for m—4, n=8, K=1, t=200K
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