Vol. 3 No. 1 JOURNAL OF COMPUTATIONAL MATHEMATICS January 1985

HIGH ORDER APPROXIMATION OF ONE-WAY
WAVE EQUATIONS"

ZaANG GUuaAN—QUAN (R % %)
(Computing Center, Academia Sinica, Beijing, China)

Abstract

In this article the high order approximations of the one-way wave equations are discussed. The
-approximate dispersion relations are expressed in explicit form of sums of simple fractions. By
introducing new functions, the high order approximations of the one-way wave eguations are put into
the form of systems of lower order equations. The initial-boundary value problem of these systems

which corresponds to the migration problem in seismic prospecting is discussed. The energy estimates
for their solutions are obtained.

Introduction

The wave equatiot describes waves propagating in all directions. The equation,
which describes only the down-going {(or up-coming) waves propagating in the
positive (or negative) direction of 2, is called the one-way wave equation. In the
one—dimensional case the one-way wave equations are the simple wave equations

g sl €%
(25 7)o (1)

the general solutions of which are f(#Fz/¢). The consiant ¢ is the wvelocity of
propagation. In the two-dimensional case the one—way wave equations

| L,p=0 (2)
describe the waves f(#— (az+82) /e) for all a0 (or a<0), where o, B satisfy o+
B*=1. The operators L, can be defined in terms of the Fourier transforms as
pseudo—differential operators. For practical application it is necessary to derive
their approximations that have local character. Such approximations are obtained
in [1, 2, 8, 4] as the artificial boundary conditions for the wave equation, and
also in D, 6, 7] as the bagic equations for migration in seismic, prospecting.

The n-th order approximation obtained in the papers mentioned above is the
{n+1)-th order P. D. E.. It is difficult to apply them for computation when nz=2.
One of our purposes is to derive a new form of these approximations which is more
convenient for numerical application. First, we derive the explicit expressions of
the approximate dispersion relations, based on which the approximations of the
one-way wave equations can be obtained. Then we derive systems of lower order
P. D. E. a8 new forms of these approximations. Finally, we discuss the initial-
boundary value problem (migration problem in seismic prospecting) of fhese
systems and obtain the energy estimates for their solutions.

* Beceived July 2, 1984.
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1. Approximate Dispersion Relations

Consider the wave equation,

&p  &p _ 1 Bﬂp

2% e o S
where the constant ¢ is the velocity of propagatwn. Supposa that the Fourier
iransform p of the solution p exists

$(2 Ko, o) = ﬂexp(ﬂ'-wHw ) p(2, z, t)de dis

7%
then # satisfies the wave equation in frequency domain
| o 2 ) |
g+ K2 B (gy — K. ) (g —4K- )E=0 (-2
where K,-+K,=+K ~/1-K:/K?, _ (1.3)

in which K =w/0. (1.8) is called the dispersion relation of wave equation (1.1).
The one-way wave equations in frequency domain are the following
, (—d— — K ) p=0 for down-going wave,

dz
(1.4)

(%—Q;K )p=0 for np-coming wave.

From (1.4), we can see that the inverse Fourier transform p of o satisfies the
equation

Lope (az i )p_o g’ (1.5)

with the psendo-differential operators ¢, the symbols of which are K ,.
The objective of this section is to derive the rational fraction approximations

of K ,.
Let- o
S=(FK.,+K)/K,, r=K/K,. (1.6)
Then from (1.8) we see that § satisfies
§2—2r§+1=0. (1.7)

The smaller root S.. of (1. 7) can be approximated by §,, thh are defined by the
recursion relation™

? S.u-_-U, S"+1==1/(2‘J""‘Sﬂ). (1-8)
Lemma 1. (1) For any r>>1, the sequence S, is monotonically increasing, and

lim §,=8.=r—«~ r"—1<1, - (1.9)

y 8.8, —0(1/771), - (1.10)

(2) Sn (1) =Qu-1(7}/Qu(r), | (1.11)

where Qu(r) is the n-th order Tchebyschev polynomial of the second kind, d.e.

Qu(r) =2 T1(r—an0), Gni=cos(lm/n-+1). (1.12)
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Proof. From (1.8), it is easy to verify, by induction, that (1) holds and that
S.(r) is a rational fraction of r, i.e.

Sn('r) =Pﬂ(r)/(Qn('r)?

where P,(r) and Q(r) are respectively the (n—1)-th and n-th order polynomials
of r. Therefore

T X (. P SIS e QD _
" Qﬂ+1 (T) % Sn (‘I") 27— Pn (‘I‘) /Qn (‘?‘) QTQ_Q (T) = n('r) ’
from which we have | |
Poy1(r) =Qu(r), (1.18)
Qi 2(1) =2rQ, (1) = Po(r) =2rQ,(r) — Qu-1(r). (1.14)

(1.14) with the initial condition Py(r) =Qo(r) =1, which follows from (1.8), is the
recursion relation for Tchebyschev polynomials of the second kind. This yields (2).

From this Jemma and (1.8), the rational fraction approximations K ® of K,
can be obtained immediately:

K=+ [K—K,8] =% [K~KIR, 1(K., K)/R(Ko, K)],  (1.15)

where
g 7 R,(K,, K)=EK;Q.(K/K,). (1.16)

Since S,(r) is a rational fraction of r, it can be decomposed injo sums of simple
fractions. Thus we have

Lemma 2.
ﬁ (T—'mn—ig j) »n
S, (r) = Qu_2(1) T e 1 Bt 1.1

(T) Qn{'r) 2 ﬁ(r‘—ﬂﬂ,g) 2 l;—-El ¥ —COp,g ’ ( 7)

where i -
Bar=TI (1 — g1, 3) / T (On,i—Ofn, ) (1.18)

fe=1 Il

Moreover Bare=Bans1-1>>0, (1.19)

g ﬁn,!= 1, (1.20)

Proof. (1.17), (1.18) can be easily verified by multiplying (1.17) by (r —an,1)
and substituting a,,; for ». Because of (1.12) we have

O, 1> Opp—1,1 57 O, 8 > G, 3 7 " 7 Oy, 11 2 O3, 1-1

Oy, i ST G, 17 00 S Op— 1, 1 Gy - (1.21)
and |

: Oy, 1 = — O, 310" (1'22)
From (1.21), (1.22) it follows that B,,:= B, ns1-i and that the numerator and the
denominator in (1.18) have the same gign. This gives (1.19).

From (1.10) we have

0(1/12*1) =8 — 8= (r—~/r"—1) —é_hgl Tﬁﬂi -

- [31;+0(q%§-)] [ ;q_ > Bn,;+0(£§-)]. ' (1.23)

I1=1
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‘The coefficient of 1/¢ on the right-hand side is egual to zero. Thisg gives (1.20).
Using (1.17) and (1.6), we can write K¢ in the following form

KQP=2(K-K8)=+[K 3;3 E K——-ﬁ‘;K,]' (1.24)

- 2. Approximation of One-way Wave Equation

In this seciion we consider only the approximations of the One-way wave
equation for up—coming wave. Those for down-going wave can be obtained in the

‘same way.
Substituting expression (1.15) of K™ for K_ in (1.4), we obtain the
-approximate one-way wave equation in frequency domain

(%—iﬁ"f_’” )ﬁ={£—+£ [K—K2R, ,(K,, K)/R,(K,, K)J}ﬁ=0- (2.1)

'Using the correspondence

o ; 1 o S W
P + K, and T e i 1K (2.2)
we have from (2.2) that the inverse Fourier transform » of 7 satisfies the following
approximate one-way wave equation e
.3'133)6'18,. . & 4 &N\ &7
[R" (i or’ c. .ot (32 e ot /) q‘R""_i({""' oz’ ¢ ot ) or® ]P—O' 4.8)
This equation is obtained in [3] ag the radiation bounda ry condition.

For n=1, we have
Ro(K, K)=1, Ry(K, K)=2K.
Thus (2.3) becomes

-

2 8/0 1 0\, &1
['c at(az c E)' aasg] % @9
which corresponds to the Claerbout equation™ in the coordinate system
7=z &'=2 =i+z/c. (2.5)

For n=23, we have

[(; 33; %)(%“%%)4‘% 33;]?“0, (2.6)

which corresponds to the so—called 45° equation®®.
For n=38, 4, we have

G ) s )t EE-&) S0 @

[16"34 12 & ,34)(3 16){(5-35 4 &

¢t atf ot'on? o’ oz ¢ ot otlor: ¢ Ptovt ]? =90,
(2.8)

which correspond to those obtained in [7, .8] ;
. We can gee that (2.3) is an (n+1)-th order P. D. E., which is difficult to
apply in computation of the case n>>2. In order o overcome this shortcoming, we
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derive a new form for approximations of the one-way wave equation. For simplicity
we discuss only the case of even sn. From (1.16) and (1.12), we have for even =

n/2—1
H(Kn K) =2" ]:[ (KE“%IK) n-i(Et; K)=2“-1-K H (Kﬂ*aﬂ_:h KE)
(2.9)
Hence (2.3) becomes
2y 1 & 4 @ g 1 2
[mhﬂl @ o o amﬂ)(az ¢ ot
41 8 =71 &

#2712 2T (G oo aﬂ)w p=0. (2.10)

Now we substitute expression (1.24) of K* in (2.1) and introduce new
functions ¢;, the Fourier transforms of which are defined by

4 K2
g‘(EEKIJ ﬂ.}) == Kﬂﬁ ;;IKJ P(ia';K;, &1')- (2.11)
Then because of (1.19) and (1.22), (2.1) becomes
d >, i w2 5
» (Tﬂ;—F'!fK)p—iK ég’;ﬂﬂ. (2.12)
Using correspondence (2.2), we have from (2.11) and (2.12) that p, ¢; satisfy
(1 & o &’
{(?ﬁ_ﬂg.l -y )QI=ﬁan 31-3?; r z=1: HERy “/21 (2'13}
o 1 & 1 22 o
e Y o T R ;
(32 ¢ Ot )P c =1 ot (2.14)

Thisg system is a new form of approximations of the one-way wave equation.
Theorem 1. If {p, qi, +-*, @nsay %8 a sufficiently smooth solution of sysiem
(2.13—14), then p satisfies the approvimaie one—way wave equation (2.10).
Proof. From (1.17) and (1.22), (1.19), we have for even n

n/ 2 I(Kﬁ K_E) 2 [1 KH"— E )]% ﬁﬂ.l
o1, K o r 11( i, = E"‘—ai‘f.;ffﬁ_

= I ﬂiﬂ[ﬁn.a ﬁﬂ(K — Ol 1 KK 3):' (2.15)

Sl

which implies

HE L) Fe G St D) @®

=1 ol

nf2
Applying the operator 2° n(% %—— o, 3?; )to (2.14) and using (2. 13), (2.16),

we verify immediately (2.10). The theorem is thus proved.

Applying %—;—tﬁ (2.14) and using (2.13), (1.20), we.obwin
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which can be considered as a corrected equation of the first order approximate one—
way wave equation (2.4). The second term on the right-hand side is the correction

term, e |
System (2.18—14) is more convenient for numerical computation than equation

(2.10). Equation (2.18) is of second order with the one-dimengional wave operator

el O Equatioﬁ (2.14) is of first order with the directional derivatives

T e T

@ B U P

—'?-——-i-—a_ and --‘?—- It is not difficult fo consiruct finite difference schemes for

these equations. In bomparison with equation (2.10), system (2.183—14) has
another advantage in that it is uniform for different orders of approximation n.
Therefore this system for different n can be treated by a unified computer program

in numerical application.

3. Energy Estimation

In this section we discuss the initial-boundary value problem of system
(2.18—14), which corresponds to the migration problem in seismic data processing.
This problem consists in extrapolating downward the up-coming wave, recorded
at the surface of earth. The mathematical problem in coordinate system (2.5)

is the following:

—] n/2
1 ﬁ
_l.':j- aa::ﬂ a‘il gﬁ)gl_ﬁmi%: z=1.: nEy ﬂ'/g.l (32)
(2, &, V) |emo=op(2, V), | (3.3)
p&, o, )=q(@, o, ¥)=0, fort'>T,,,, - (3.4)

where p ig the up-coming wave field, the known function. Yi{z’, ) is the record at
- the surface of the earth. (3.4) means that reflection waves can be neglected for
sutliciently large time ', Now we fransform these eqnations in the new coordinate
gystem z''=2', " =g/, " =¢(Tp—1").

For simplicity we use the notation 2, =, ¢ for 2", 2", ¢". Then (3.1—4) becomes

op 500 g

o T for 2>>0, t>0, (3.5)
& & & '

('gj‘_aﬁ.l'aﬂ_) QI=ﬁn:I amf:: Z==1_, Ry n/z,l (36)

2(z, z, t) [smo=(z, £), 3.7)

p(z, =, t)=gq;(z, &, 1)=0, for <0, (3.8)

Theorem 2. Let {p, g1, *--, gnsa} be the solution of problem (3.5—8). Assume
that p, q1, *+, Qus, ¥ and their first derivatives are quadraitcally imtegrable with
respect to w. Then the following estémaies hold
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:{j[(gp(ﬁ, 2, t))ﬂ + (26 20V Jana

+ijjﬁ1 [aﬂ(aqx(z x, T-')) (1 g)(aq;(z z, 7)\

(ﬁml (za: ¥) fnd 39:& z, :-r)) dmdzﬁj[(¢£+lpf)dmdt | (3.9)
| sz Bonc ) o (antspnay o
<const j j(%-l- P dw d, . (3.10)

a

where the interval of integration with respect to @ is (—oo, ©).
Proof. Applying —51— to (3.5), multiplying by 2 gﬁ and integrating with

regpect t0 z, we have

2 ((epY =jé‘a"’”359: -
b j( )dm ’ 3m(:=21 3t3m)dw' (813
Multiplying. (3.6) by 32 ; 33{7; and integrating with respect to ©, we have

o il 8q; \? o0g; _ o[ op &q .

o1 jﬁ.,;[( ot ) +(“" 3m) Jae 2J‘ Ps D105 $:12)

From (3.11) and (3.132), we got
5 (@) a2 (SR g e 039
Using (3.12), we obtain

a2 [ Op ¢ ( &' g,
2““".[ 5 2 2% oo an

2 3 J@p 3g;dm Jap 3ﬂq; dﬁ}

ot ) oz o dx Ot o

-l Hz o ﬁi;[("%_)' +(“""%%)ﬂ]}dm'

Hencs
2| 5 558 a2 [ T Elows Fhrati oo
g [(G) (e G e
.=__é-‘_j:j al(Bs v G )+ (on ) Lo 830
Applying jt to (3.5), multiplying 2 -g—f and integrating with respect to #, we

have



= hO

3

09 fon
+ (ent 2L ) ]dm—o. (3.15)
Combining (3.18) with (3.15), we get
O {[{2pY (22 _J‘?th o {01 \?
2 [am)+(3ﬁ)}d+ 2,{3“,[ (851;)
1 3?1 I ap 2 BQl ! ARy

+(1+a2) (S ) (8. L +af, 2 ) |dz=o0. (3.16)
Integrating (3.16) with respect to 2, ¢ in the domain (0, z) % (0, 7), we obtain

immediately (3.9).
Using conditions (3.7) and (3.8), we obtain by integrating (3.18)

£

5, j é Bi.; [( ag“zétm’ T)) +<“’““ =S Z; T))

In the same way, from (8.15) we obtain

d dzf:ij dem dt. (3.17)

-3

w2
> fﬂ(ﬁ, v, T) J 8;?](2 &, T) 39‘!(2 L, T‘) 3q£{{ﬁ: L, T
Ju’j:%' {ﬁn’i< ox ) + e ox . O% ;3,,,_;( ox )
Ky, E}gi(z &, T) } : . fj j 2 ’
3 BM( - ) dodz<| | b2 da ds. (3.18)

Because of (1.19) and (1.12), it is easy fo obtain (3.10) by multiplying (3.17)
by a sufliciently large constant and adding (3.18). The theorem is thus proved.

Using sysdtem (3.5—8), we can perform sfeep dip migration by the finite
difference method. This will be digcussed in another article.
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