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- § 1. Introduction

This paper is concerned with the superconvergence and the acceleration of
finite element methods. We start with the simplest finite -element method, namely
the linear elements. By using the piecewise strongly regular triangulation (see
Definition 8) we find that the sfress in the given domain can be approximated with

the accuracy O(h‘" log %—) (see Theorem 3.2). Furthermore, higher accuracy, like

O (}‘ﬁ log® —E—) or O (h* 1og® %),c&n be achieved if the extrapolation method is adopted.

It seems that the linear elements are good enough for achieving higher accuracy in
some cases.

As a by-product, some posteriori exrror estimates for finite elemenis are obtained
in the two-dimensional case.

The paper ig built npon the previous works by Lin, Lu, Xu, Zhu (gee [11—15,
22—26]). A number of imporitant related works which have influenced our analysis
are included in the bibliography.

We clarify the analysis and generalize the ideas inm [11—15, 22—24]. New
results as well ag shorfer and more revealing proofs of known results are obtained.
For the sake of expository continuity, the paper is essentially self—contained.

§ 2. Some Superconvergence Estimates

For simplicity, Let us consider the model problem: Find v € H5(Q) such that
—du=f in Q, (2.1)
where QC R? is a convex domain with Lipschitze continuons boundary.

We will approximate (2.1) by the simplest finite element method, namely
linear elements. For this, let T={K}, 0<h<ho<<l, be a finite triangulation,
which is supposed to be quasi—uniform, i.e. it satisfies the following condition:
Each triangle K € T, containg a cirele of radius ¢44 and is contained in a circle of
radius esh, where the constants ¢4, ¢s do not depend on K or A.

For clarity, let us introduce the definitions of some special kinds of guasi-
uniform triangulation:

* Reoceived May 10, 1884,



116 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

Definition 1. A triangulation Th={K} s called strongly regular ¢f any two

P, adjacent triangles of T'x form an approzvimate parallelogram, ¢. 6.
there exists a constant ¢ independent of h, K, such that (see Fig. 1)
P P, : — —
: | | Py Py— P3Py | k. (2.2)
Definition 2. A iriangulation is called completely regular
Fl')t . if any two adjacent elements form an ewact parallelogram.
ig.

Generally speaking, the strong regularity condition. is hard
to be thoroughly satisfied over all the given region. For ingfance, a generic
polygonal domain seomingly cannot be {riangulated in the senmse of gtrong
regularity. But it is eady 1o observe that the strongly regular triangulation can he
achieved over any guadrilateral or triangunlar region. For this reason we introduce
the following

Definition 8. A triangulation Th={K} on the polygonal domain is called
piecewise strongly regular, if Q ds divided info some quadrilateral or triangular
wubdomains with the vertices at the boundary, and the triongulation restricied on each
such subdomain is strongly regular.

Let S* be a piecewise linear finite element space on £, with zero on Q\ &y, and
u* € S* the finite element approximation satisfying

a(u, v =(f, v*), var €SP, (2.3)
For any fixed 2, € 2, the Green funciion G, € H¥1(Q) is defined by
a(Gs, v)=v(z0), VVECFT(Q) (2.4)
and its finite element approximation Gt €8* by
a(Gr ) =1v"(20), VV'E S*. - (2.5

The following estimates (for guasi-uniform triangulation) are shown by
Frehse, Rannacher and Scott® 1% Schatz and Wahlbin™®, Zhu'4:

|Gey— @ lss,a<oblog 3, (2.6)
|G, — G-, o, 1,2 < ch?®log® %—, | (2.7)
(G~ @) () | <c?|Log L2222l /12 —zol?, (2.8)
G2 — @, | 1,0<<chlog (2.9)
1
1 2 A 1
“ gn 10-“lﬂ+ (]'Og_j;) " Gﬂnnii ﬂ:ﬂgﬂ log —EI (2 '10)

where 23, 2. €0 with |21—2a| =O0(h).
I+ is also known that there exisis go=go (Q) € (2, oo) such that if ¢€1[2, 90),
then for all F € I2(Q), there exists ¥ c H2(Q) N Hi(Q) such that

—dv=F in 4,
|2]2,0,0<O|F |l0,q,2:
Temma 2.1. For each pE [1, 2) there exisis & constant ¢{p) >0 such thal
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S

| &=~ G,

for any 21, 2% € Q with |2,—2:] =0(h).
Proof. Let v*€ 8" be the finite element approximation of ». With the help of

the result given in [16] and the inverse inequality one has

. 5 1
”‘”h-@ﬂu.m.ﬂgﬂhg 7|

Io! Frﬂgch

d,d, O

Therefore
(Ge,—Gh,, F)=a(GL, =G, v)=a(Gh—G%, o) =2"(20) — 20" (22)

‘\:\2”"1?— 'U}I"ﬂ'm'ﬂ-l_ I’U(ﬁl) '—"ZJ(ZE) l‘gﬂh“Fﬂo_q,g.

Using the same frick we can obtain

Lemma 2.2. |G — G2, 10, 2, 0Ch.

In order to siress the key idea in [11—14] :
we confine ourselves 10 the case of parallelo-
gramic or piecewise parallelogramic domain.

Let D be a parallelogramic domain with
the completely regular tiriangulation, ag is
shown in Fig. 2. We introduce the symbols I,
la, 13, which represent both the unit vectors in

the directions indicated in Fig. 2 and the mesh
gizes of the triangulation in the relative directions as the scalars.

Above all, les us study the integral JJ"G’ (u—u') Vo' dody for any fixed v* & S* By

Hig. 2

the Green formula, ’
T
_” (u—u") Vo da dy-: E;ﬂ - ( ”)__"5 ds (2.11)

: D
For brevity, we denofe Z; as the contribution of the line integrations in (2.11)
in the direction {;(j=1, 2, 8). Without loss of generality, we study ;. Obviously,

— L I e ] qh—- h —3 NN
2y (Lﬂ —I—Lﬁ + - +.[aa )(u u’) B (2P — v")deg=---,

ov* oo
where 31 and 5, lobresent the values taken on the two adjacent elements K and
K’ respectively. We have written out only the representative toerms and the
Tremaining ones are quite similar.

o . 0 O : . : :
Note that e ——amBE+cmaﬁa—y: (Elw the dlrecﬁmna,l angle of I; and evi-
dently independent of 2). By the symmetric positions of  and ¢, we only ought 1o

investigate the following integral |
2 s
T=(a ot +]a Jom) -, -
23+4E+ET+EB (u-u)&u(w ¥ i

Let § be the area of triangle K145 then

ot 1 ' |
@z = IS [(@Iﬂ—%)’l’f'{-(%“yi)ﬁﬂ" @1"%)‘1’3] on Ky,
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i
. =§~18— [(ga—ya) vh+ (Yo —Ys) vi+ (ya—ys)ws] 0D Kz,

ox
where v} =o*(=;, y;). Consequentily
53:—1}— v —"!Jh)—' yﬁ (1.?1 ‘IJ3+‘!.?4) on 133

Substituting it and the analogues into (2.12) we han.re- the following suppercon-
vergence egtimate

Jﬁ-ﬂﬁg'yﬂ[(ﬂ B ngjﬂﬂ B wi)(Ls _La) (vs = ‘vg)(".‘“ —Lﬁ)

+ (v — v§ (LB — Lw )— (vh— v10) Lﬂ ] (u—u')ds. (2.13)

(= fua) 12055 )] 3 2o

Illlr

e g e [ 2

K1z

Corollary 1. For the strongly regular triangulation and p, ¢ € [1, o] with

3 g | -,
p 4

a(u—u, v*)<ch®||u 3, 9,01 V%] 1,0, 05 (2.14)
furthermore

|0 |1, 0<<0h® Tog 5 [l 5,m,0- (2.15)

In fact, one has

j:f(m)dm b;ﬁ (f(ﬁ)"l"f(b)) == éj: (ﬂﬁ“—ﬂ) (b—m)f”(m)d:u.

Hence

(Lﬁ —La)(u—-uf)ds= (LHWIFT Lusﬂgi-g%b_ds)
-4 [ ooy oda=00 || |y |de

48 3 ol Ola 3
Note that ' ‘
A 4 Ov ov*

Vz— V4 33 333 O (h') 833 ’

v} =0} =vg="25o=0
By (2.13), we have

71<er ([ |- || 2 |t dy.
" oliols || Olg

Thus (2.14) follows irom
a{u—ul, v") éch”“]DEM | Dot | de dy<<ch®{wt|s,p.0| V"] 1.0, 0¢

Q
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(2.1B) is the consequence of (2.10) and (2.14).
Corollary 2. If the triangnlation on @ is completely regular and u& H* AtE(1D)

{g>0), then

| u—y' I 1, %48, ﬂgﬂhﬂ “ u;‘ 4,238, 0° (2 : 16)
In fact, from the Euler—Maclaurin formula
i *u j
—_nyf S, )15, 3
.[ 23 e~ 12 j a3 Ob3 ds+0(h) | p8) 3313
one hag, from Lemma 2.3,

[ \&u_ g,_bls '[ J i 2.17

(,Lﬁ La ol ds 25 EXER o oy (2.17)

2
‘Ug HE WE e zﬂ 313 (2 '18)

Consegquently

- [ S 5 a0 [ i
B ([ 5 22 wagromn [ 1 wotaesn 0

Fagsa FPasss

Note that ., *

Ilr
23 =0 on K. ) Ksipo. (2.20)
3
Thus from (2.15)—(2.30) we can conclude that
P, Fu 8 J.j 4, | B 9 a1
5 =ch ” S dmdy—f—O(h)D | Vou| [VoP |dody, (2.21)

where ¢ is a constant independent of A, ¥ and o".
Now let D=8, z;, za be any two adjacent nodes of the mesh, W=yt —ul, vt

& —@,
1 p¥ 3
'wh(zl) 5 wi‘(’zﬂ) HQ(G::.—GQIJ ‘wh) -=w(u.-—u1, ’uh) =j21 E:f:

where 2, is as shown in (2.21), and 2,, &3 are gimilar,
By the Green formula and L.emma 2.1,

o ot |~ ||| e
J‘J 33%332 Ol g 339 % dmdy Qchluldpﬂ.ps-

T Bl Ol
By (2.10) and the inverse inequality, “ | Viu] | Vor| do dy < 0(8) |%] 2400, Hence
re)

we obtfain from (2.21) that
| 21| <ch®lu]4s, a4
Thus we have |
| (21) — w*(20) | <o w4, 2100
This implies (2.16).
Corollary 8. If the triangulation on the polygonal domain (2 is piecewise
gtrongly regular, and u;e H*2*(02), then

1402y ﬂgﬂhﬂ ]'Og h H u“ 4,248, 0

|t —t
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B=ry

In fact,
(e — Mz = 3 ||V (u—w) Vot dody,

: D
where ¢*=@* —@G?, and D is the subdomain of & which is quadrilateral or

triangular and strongly regularly triangulated.
For each D, instead of (2.21), we have, by means of Lemma. 2,3,

Pu ot j Fu on®
- 2 g
21 =l j j oliioly Ol o Gy ~+-osh i O} Ol ds

“!l': S8 0

.3
+oah? LB g?;- 2’;’3 ds-+0(h°) |u
Integration by parts shows that |
‘J *u  ov* (JESL= J‘ Fu 'UhdS‘QJ. |‘Uh|dS]u3“p-
ap o2 Ol | Az O3 Al AB o
Since
LB | v*|ds<[*|1,1,0, (2.22)

taking (2.6) and (2.10) into account yields

2 Pu ot 1
.LB o ol ds| <chlog T“u’"&ﬂ-ps.ﬂ-

o'u v
j on 33%_ 853 dS
Then, argning as before, we deduce the desired results.

Remark. The idea stated above can be generalized to the case of curved

boundary and we will discuss it in detail in a separate paper.

Similarly,

@hlog%[[uuﬂ_m.,.

§ 3. High Accuracy Appm:;:imation to Stress in the Whole Region

On the superconvergence of linear triangular elements, a main conclusion is
that the midpoint of the common side of two adjacent elemenis can be approximated
with nearly two order accuracy™. By means of this result and the interpolation
Krizek and Neittaanmaki®® have proved that the sitress at every poini in any
interior domain of @ can be approximated with the accuracy O(A%logh). In this
section, we will generalize the said resulta.

First of all, one can easily prove (see also Lemma 4.1)

Lemma 3.1. Let M(h) be the set of all the midpoints of common stdes of any {wo
adjacent elements which form an approzimate parallelogram, and N (h) the set of such
interior nodes that adjoin siz elements among which any two adjacent ones form an
approzvmale parallelogram. If u€ H*=(Q), then |

max ]‘?(u u) (M) | =02, MceMG),

McM(h)

max |V (u—u’) (V) | =00, NeEN®, .

NeN(h)
where ¥V represents the arithmetic mean of gradients on tka relative adjacent elements.
The above lemma together with estimate (2.16) leads to
Theorem 8.1. For the {piccewise) strongly regudar triangulation,
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=8 T 5 =

mex |V (u— u“)(M)l=O(hﬂlog%), MEM(h),:

MclMA)

max |V (u—u) (V) | = (hﬂlog%), NecN),

NeENM

moreover the factor log -};— may be removed sometimes (¢f. Corollary 2 in § 2).

It is also easy to verify
Lemma 3.2. ILet P;(i=1, 2, 8, 4) be fm poinis on R?, Pg the infersection

POlIl'h GfPJ_Pﬂ; Pan. 'P_-[.Pg] [P3P4I=O(h-), 21=P1Pﬂ/[P1P5], Eﬂ P3P4/ IPgP.g,l Ij
A, B, (i=1, 2) areknown and satis jy

ER 2 (P~ 4, { ] o Pua) = B;] =0(k*|log h[°)

Jor e=1, 2 and some constant 00, then two such numbers Ao, By can be determined by
A{, .B‘ (‘i"=1, 2) that f
)

vu(Pn)"(B

Using the techniques of extrapolation and interpolation, we can obtain from
Theorem 3.1 and Lemma 3.2 the following main result.

Theorem 3.2. For (piecewise) strongly regular iriangulation, a piecewise
linear function DM C H () x HX(2) can be constructed by u® such that

"VH—D]‘H o,m,p=0(kﬂlloghl).

— O |Tog b ).

0

§ 4. The Asymptotic Expansion and Extrapolation
for Finite Elements

1} The case of parallelogramic domain.

Let £ be a parallelogramic domain which is first divided into several triangles
as is shown in Fig. 8. Siarting from these triangles, a
successively refined friangulation is constructed, i.e. the
k—th refinement is obtained by connecting every midpoint
of the edges of all triangles of the (¥—1)-th refinement, —
Having refined for s times and setting A=1/2", we then
obtain a family of successively refined triangulations

{T'3}. Corresponding to T, and T 2 the finife element Fig. 3
h
approximations and interpolations of u will be denoted by w*, u? and v/, u?
respectively.
Theorem 4.1. i) If uc H**(Q), 1
(uﬁ—uf)(z)=w(z)hﬂ+o(h3(mg-}];)ﬂ), V2 E0Q; (4.1)
ii) ¢f ue H4=(2), ;
V (ut— ) (2) =V ()R +0(h 7)), VzEQ, (4.2)

Vr—u')(2) =Vw(z) A+ O(};,ﬂ log® -}a_)" VzE o} | (4.3)
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itf) ¢f u€ H%=(Q) U H** (),

(uP—u!) (2) = w(z)hﬂ—l-()(h* log? -i—), Vz & £, (4.4)

where O CQ, 3<q<qo(2) (see § 3), w(z) s the solution of the auailiary problem
— dw=D'u in Q, (4.5)
w=0 on 080, . (4.6)

where the differential operator T* will be described below (see (4.8)).
Proof. With the same argumenits as in § 2, we can obtain.
(WP —ul) (2) =alu—u, G)

o*u d*u ot
o= h2 ; ; L A
“ ,U("l?zlazﬂ ols %2 2R ol ol "C8 B 81, Ol )G“d“’dy

2
+O(h3)“]'i?6‘2| | Vi | do dy. 4.7)
e
Set o - )
. _ ; 4 ;
D=0 zmaa—t % paal, | GRonols )

then (4.1) follows from (2.10), (4.7) and Lemma 2.2.
In virtue of the theory of P. D. E. (see also § 2),

w€ H»9(Q) N H>=(£2); (4.9)
hence™®

e e g e DG 1Y, (4.10)

|w—"|0,0,6=0(k). (4.11)

Lot K 1q9 bo an element of T, A1, A2, As the relative barycentric coordinates,
and v*=ub~u’. For 2€ K 143, We have |

V(ut—u') (2) =i21 P(§) VA= (P (1) ~0*(8)) VAs+ (#*(2) — 9" (3)) Vs

= ('Uh_, G;T = Gﬁ) Viita ('IJ", G‘E = G;) Vs |
=a ('u' K u'I: G}_ Gg) ?1'1"}'“ ('u’ — u’f.: Gﬁ B G%) VAa. (‘4 . 12)

As analogous to (4.7),
a(u—u, Gi—G%) =h"'” ﬁ“u(@’{—@’ﬁ)dxc&yﬂi—a(ha)jnj V(@ —GY) |dady.  (4.18)

Q
From (2.6)—(2.9),

it @G =12 [ D@~ G dndy+0(1 108° )
£

=12 (w0 (1) —(3)) -+ O * log® %) (4.14)

Likewise
a(u—u!, Gi—G%) =r*(w(2) —w(3)) +O(h“‘ log® =\

Bince |VAi|, |VAs|=0(h™), thereiore
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V(u*—ul) (2) =22 ((w (1) —w(8)) VAs+ (w(2) —w(8)) Vi) +0(f-"“ log® '}';)

— 13V (2) + O (A log? _};)

Thus (4.2), (4.3) follow from (4.10), (4.11),
In order to prove (4.4), we take one more term in the Euler-Maclaurin

formnla if «€ H>>=(Q), i. . ingtead of (2.16), we now have

'H u 5 *u
— _ 1 U 1 AT
.La e’ e 12 Jaa 2% i T30 Jas Ol ds+0CA)

Corresponding to (2.19),

(o} — ob) (Lﬁ -Lﬂ )(u—u’)ds

Pu ot j’ j &y ot
= 3 g b A
o .[ J T ols ol dody+Odh” || a1 ety

2254 Passe

+O(A%) ” g:’:

FPaspa

Thus, as analogous to (4.7), we can obtain, for »*E€ 8%,
’

T a(u—ut, o) ==h5‘” Drun® do dyy+ O (A%) ” | VT * | dz dy.
g i
Taking +*=@G? and using (2.17) lead to (4.4).
If w€ H%, we can obtain

a{u—ul, @) =h? L[ﬁ‘u(?i dzx dy

de dy.

+O(h‘*)” | Veul |‘§?w"|dmdg+0(hﬁ)ﬂ|‘?ﬁu} | Vot | dz dy.

L
Thus (4.4) follows from (2.9) and the imbedding relations H**G H*= and H*'G
HY2, |
Lemma 4.1. Suppose M (%), N (h) are as described in Lemma 3.1. Let B(h) be
the set of the barycenters of all elements, B (k) the set of poinis on the edges of all
dlements which are located in the middle between the points respectively in N(h) and in
M (k). Then
i) of u€ H>=,

(-2 ) @) 00, vz B,

(1- 222 ) ) =0, V€ EM);

(1= 255 )0 0w YY), veend,

1

— ! )(z) #O(hﬂ(log%)z): Vz & E{h);

bo
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L Ao e

iii) ¢f wuc H*=,

7 (u- 2 )@ -0, 2EN®).

3
For the proof, let us introduce two equalities (ef. [25])
3 1
(=) () = — (o) | 10Ru(M ), (4.16)
3 1
V(=) (p) = — 2 VA(p) | st at, (4.16)

where P, are the vertices of an element, A, the barycentric coordinates, M,=P,+
(P— P)t, P=(z, y) the variable point. |

i) and ii) can be easily proved by careful calculation with the aid of (4. 15)
and (4.16).

In order to prove ii), we need a result given in [26].

Lemma 4.2. There ewists ¢ constant 0>>0 such that for any segment I"C8,

[u| ey <e|dlog d|*3|uls,e, Yu&H (L),

where d=length of I"<do<1.

Now we confine ourselves to the proof of the first formula of ii). From (4,15)
we can deduce that

5
1 2

(w=252) @ | <o )
where M,, analogous to M;, is defined in correspondence with T%, but

+ } E 29 (M) dt

jitﬂa?u(ﬂ )0t l <ch® Jz | Ve (M) | di<<ch® J;| Veu (€, n)|ds

: 5 1 1/3
< ch | Voul sy <ch®(log 5} [ulasio

where we have used Lemma 4.2 in the last step.
The desired result is therefore proved.

Theorem 4.2. i) Ifu€ H*?

R
du? —ub g 1A,
seﬂ?lfn{m ('u. 3 )(z) O(h (10g h) )r (4.17)
ii) if ue H*=, h
_ AT — o _ e LY
max |V (u—=Eg (3 0 (#*1og® +); (4.18)
iii) ¢f ug€ Ho=| H%,
k ;
dug® — ul i
en (”’ 3 )(z) ‘ O (h log Hfa_) (4.19)

Proof. Obviously, (4.17) and (4.19) are the consequences of Theorem 4.1 and

Lemma 4.1.
Now we prove (4.18). Let zE N (k) be given and z be any vertex, other than z,

of the elements that # adjoins in %—meah. Set wt=u?—ul., From (4.7), we have
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@ G) — @) =a(u—ud, Gi~@)
i j J D (G — G da dy+0(h“)g IV(QE— G dzdy. (4.20)

Using the estimates (2.7) and (2.9), we obfain
W (2) — u(2) =hﬂﬂﬁ4‘u (G —G,)dz dy-{—O(h* log? %),

).

1
k

namely el =hﬂﬂ Dtu 5=+ 4 dy-+0( K 1og?

|z —z| |z —2]

Likewise

WG — wi(@) —(&Y H‘ Dty Gi— G devdy+O( 1 Tog? ‘}:)

F—1] T T
Thus, (4.18) follows from the above two equalities.
12
Remark 4.1. The factor (log%-) "~ in (4.17) can be removed when u € H* %*e

(e>0).
Remark 4.2. By using the technique of the regular Green function (see [6])

it may be proved that (4.17) is also valid when u € H* =,

Theoremn 4.8. By the approzimations u* and ut/?,
i) under the assumptions of i), ii) in Theorem 4.2, the piecewise quadric funciions

PE D), DG BLO) < HMD) son b sonstractad sush that
& 1/2
|‘“5—''Hf"’“11r.===u.r.r--—-O(h3 (log%) ):

1
s i 3 =)
| Vit~ DPu]o,m,0= O 1 log® -);
1) 4f u€ H%*>, g piecewise cubic funciion u® € H(Q) can be constructed such that
6~ 2o,m,0=0( h*1og® ).

2) The case of generic polygonal domain.
Let £ be a polygonal domain. First, we divide £ info several tfriangular

domains &; (¢=1, 2, -+, m) which meet at a point A€ Q2 (see Fig. 4). Then, a
successively refined triangulation

T is constructed in the same way
ag is described in 1).
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Theorem 4.4. Suppose =)0, Q). There exist two continuous funcivons
§f=1

Ko(2) and K (2) € H*»=(Q), such that
i) if uc H*=,

(=) () = K o ()1 +O( 1 log 1--+4* | log |48 ‘/]A—z]ﬂ)
for 2€ 8\ {4}, (4.21)
v (— ) (£) = VK (2)h*+0( K og? L) jor 2€8; (4.22)
#1) i&f u€ H>=U H*?,
(ur—u") (2) =K(z)hﬂ+0( h* log® %—) for 2€ 4,

Proof. Since

m

(w—u) () =3 ”V(u—uf) V! dw dy,
Ly

taking fixed ;, as is illustrated in Fig. 5, we study the Iintegral

A

j jv(u—uf)m:dmy.

Ly

As analogous to (2.13), we have
s -anf, +@-on(], -],

+@-an(f, -], ) r@-a(f, -[, )] w-wa
T

U (@3- @) Lﬂ (u—ut)ds.

By the Euler-Maclanrin formula and Lemma 2.3,

Lﬂ (u—u')ds = 1 Fj I — - ds+O0(%%)

12 o
i 3?39 j. 2L >Fu E 5 31 j >u 5
248 oli olq i o 1215 )1a 013 BHOO,

113

where 12, 93 are the midpoints of the relative edges of diss and 123 the m1dpomt

of the connection line of points 12 and 23.
Therefore, in correspondence with (2.21), we have

Bu oF* j &u OG*
== h= i d
Ziy=h ("1 L J N Dly Ol daoytes) o a0

1: 1| ﬂ.j

& 3@“ 8 h
0 LJ@E i, ds)"'o(h J@

where the constants ¢s, €s, ¢3 do no% depend on A, u, 2

Integrating by parts the line integrations Lj and oy obtain
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A
E¢1=hﬂ (Gi J:[ o oG e gl dy‘l" (ﬁg‘{"ﬂa) 332 (.A) G* (.A)

o12ol, oly
_ » O°U _ A 3 h
Ca deG 331 ds Oy - G 332 333 dS)'l"O(}& ) ‘G 11,1 0, (4.23)
Hence (4.21) follows from the estimates (2.6)—(2,8) and an ineguality like

(2.22),
In order to prove (4.22), we first make a further investigation into a(u—1,

@) as just studied, but we define 2€ Q. Using the Green formula and estimates
(2.7) and (2.8), we can obtain from (4.28)

g 'y
Bl (A‘D- ooy Gedndy +B 332 O ANELAD

- LB P,(uw) G, ds+ Jm Q;(uw) G, ds)

+0 (h*log”%-)+0(hﬂ) |G 11,1,

where A;, B, C; are constanis independent of 4, u, 2z, P;(u), Q;(x) are linear

combinations of some order (<8) derivatives of u.
Defining the function #'1 such that

A dulz, ) .
F-‘l(m: ?,f) '=-A-l‘aﬁ Ol Ol if (m.r y) = 'QI:

we obviously have F; € L>(Q). Consider an auxiliary problem
_ ﬁ¢1=F i in {2 ’
§b1==0 on 842.

Then ¢, € H2(Q) N H>=(0).
On the other hand, set

ifry (2) =4-E1( - P, (v, ds +LA Q. () &, ds).
From the property of the Green function, we see that

sy (2) EW2=(Q2).

To sum up the above arguments,
Z1= 3 Ba = h($1(2) + 12 (D)) +O () | @2 1,1,0+ 014 log? .};)

Likewise there exist other four functions ¢,(2), ¥,(z) € W*=(2) (j=2, 8) such

that
Zy=h*(P;(2) +¢u(z)) +O0%%) |62 1, ﬂ+0(h* 8" %

Set
K &) = 3y +ih (@) € HH=(@).

We therefore have
a(u—u!, G) = KK (3) +0(* log: %)

Arguing ag in 1), we dedﬁce that



128 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

Y (ur—u!) () = VE () h+O0(h* Tog’ =y

The idea in proving ii) is the same and so the detail is omitted.

That completes the proof. |
Theorem 4.5. Under the assumptions of Theorem 4.4,

i) ifu€ H*™,

(1- 2252 ) — {108 -+ rog LAEL| /14-1)
for z€ N (h) UB(h)\{4}, ' (4.24)
ﬁ(u %F;uh-)(z) =O(h310g-%-) for :EN(h) n&; (4.25)
i) if u€ H»=U H>?,
(u 41.52’— u )(zj =O(h"' log® %—) for 2EN(B) N 4. (4.26)

Theorem 4.8. Under the assumptions of Theorem 4.4 and by the approzimations

¥ and ¥,

1) if u€ H%™, fhe piecewise quadric functions e HA(Q), Du€ H'(Q2) x H*(Q)
can be constructed such that

(u— ) (2) =O(hﬂlog%+h‘-"
[V~ DPufo,, 5=0(* log® 3 )
i) if u€ H5=, a piecewise cubic funciion b€ H1(Q) ean be constructed such that
o 1
o, 5= 0(* log® ).

Remark 4.8. If the meeting point A is at the boundary of 2, the terms with
“singularities” appearing in (4.21), (4.24) and (4.27) (see also Theorem 5.1) can

be Temoved.

/[A_—z|“) for z€ 2\ {4},

§ 5. The Posteriori Error Estimates

As a by-product, the following posteriori error estimates can be obiained

immediately from the results given in § 4.
Theorem 5.1. 1) Under the assumption of Theorem 4.2,

(u—u?) (&) == pp)

for zEN (k), R(k)=0(#*(log %)1”) ifu€ HY,

R(E) = O(h‘ Jog? -11.;) if uG Ho=) H%,

R

S _ VuI—ur)(z) | 4 1
V(u—u?) (2) =—— -0 (108 7-)
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Jor 2k €N (h) and u€ H*
ii) under the assumption of Theorem 4.4,

G P (“Lg") &) L R

for €N\ {4}, R(k)=0(h*log 1+ |log ’A}:*”*’l I[/]A—z[ﬂ) if w€ 1% fop

sEN(R) N8, R(k) =0k log ) if u€ H= HoA,

V(i) () =L@ | o100 1)

Jor zEN(B) NG and u€ H*,
Furthermore, the main terms of the errors in i) or ii) satisfy

) VeT—wN)(2) ..
(% 3u 2] U 3u 2) —O(h®)

for ¢ in its relative range.

§ 6. Superconvergence, Extrapolation and Deferred Correction

Superconvergence, extrapolation and deferred correction can all be regarded
as the methods for accelerating the convergence of finite elements. One may hope
that some synthesizing utilizations of these methods will produce some new results.
In this section, we would like to give some examples to demonstrate that there may
be some potentialities in this regpect.

Theorem 8.1. Let 2 be triangulated in the sense of piecewise strong reqularity,
and B,(h) ={z € 2|dist(z, 82) =0(h°)} (0<o<<1). Then

? A

('u; 4”2_ % )(z) =0(h** % log h)

Jor 2& (N (B) UB(R)) N B, (k) and

h
T _
(u o 5 U’ ) (2) =0(h* 7 log k)

for e € E(h) N B, (k).
Proof. Let z&€ B,(h) and 2,€0Q such that |wo—z| = disgt (2, 2Q). Using the
superconvergence results in § 3, we have

| @ —u?) (2) | = | (@P—uh) (2) — (uP— ") (o) |
<eh% | — ! | 1,0,0<ch?*"|log b,

namely (u*—u') (2) =0(A*"°logh). Likewise (u% —u%) (z2) =00k 1logh).

Therefore the desired resultes follow from Lemma 4.1,

By Chen and Lin ™ more productions can be gained by means of the above
ideas. In fact, we have

Theorem 8.2. Let the assumptions of Theorem 4.4 be walid, D, (A)={zC
Q|le— A =02} and 21, 22€ N (h)\Dp(4) be any two adjacent wnodes with the
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midpoint 2E N (%) Then

u(®) = u¥ (2) += [ (20) + U7 (22)) — (W (22) (1)1 +O(h* log &)

Proof. Wo can obtain the following superconvergence estimate analogous to-
Corollary 3 in § 2:

|“h‘ U | 1,00, \Dy4) = O(%* log k),
therefore

(i —u®) (2) — (uf —uf) () =O( log 1),
i.0.

R h
w(z) =u?(2) —u?(z) +u(z)+0(h%logh).
By Theorem 4.5,

1.3
2

©(2y) = (du h;‘h) (z1) +0(RPlogh).
Consequently
* u(s) =uf (2)A “%"’*3‘“) (2) 1O (h 10g b -
Similarly
u(z) = uf (2) + <“%"§“) () 10 (W 10gh).

The theorem is proved by combining the above

two formulae.
Now, let us show how the deferred correction

method may be nsed in the extrapolation. Taking two
adjacent elements (in h-mesh) which form a square as
is shown in Fig. 8, we have, by Taylor’'s formula,

u(0) == ijlu(e:) ~ L Bau(0)+0(),

Vau(0) =_i—i Vu(i) - = BV 4u(0) + O (A).

§=1

Noting that —Ju—f and using Theorem 4.2, we finally obtain Theorem 6.8.
Under the assnmptions of Theorem 4.2,

w(©) =L 34T —u2) (§) -+ KF (0)+O(h log' ),

Vu(0) = g V (4 —a)(5) 4+ WVF (0) + O (R log? B)

Remark 6.1. If two more elements are involved, similar results can be
obtained with respect to the midpoints of the right angle edges (say, the segments

12, 28 ete.).
' Remark 6.2. By Theorem 6.8, the approximations at the nodes of the refined
mesh (i.e. Ty2), those of T, excluded, may be more accurate than those we had

in Theorem 4.8 since less elements are locally taken into account here.
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§ 7. General Linear Second Order Elliptic Problems

The results stated in § 2—§ 5 were all proved in accordance with the model
problem, most of them are valid for the general problems. As the proof is slightly
different and a little more difficult, in this section we make some investigations on
the following problems |

e = O ( o i
* Inu= :.:2=1 oo, @y 3&:‘) E bk = Fegu=F in £,
L ¥=0, on 242,

where £, for simplicity, is supposed to be a parallelogramic domain, and the
coeflicients ay;, by, ¢p are sufficiently smooth.
In order to outline the key idea, we merely prove the analogous (4.1) in § 4.
Let &7 be the Green function associated with the said problem for z€Q,
therefore |

(u"—uf) (2') '=.A1+.A.5"‘|"A3,
where A = é J &y; 3(’M Iuj) 3(;# d'wdy,

=1 o,

&

=3 ”'b;, 3(1.;%13) G} da dy,

k=1

”c.;. (u—~ul) Gt de dy.
| ol
By the Green formula.

g - 3{315 3@:
Ai bj= 1 J..[(u 5¢ 3:15 dmdy

G
g AN - A,
¥ % J o O%; :]= At A,
2 ;!
— > ” (v —ul) 3(2""@*) dw dy.
k=1 & Ty

By the Euler—Maclaurin formula,

— gl =_ij & (ay(u—u'))
J‘gg ﬂ'ﬁ(ﬂ U )ds 19 i 331 dﬁ

L

Hence Aye can be estimated in a way Similar to that in § 4.
The estimates for Ay, Aa, A are infrinsically the same, so we only study 4,

noxi.
From (4.15), we have

(=) (3, 9) =~ 2 3 0u(2, ) [(6—2)%ss(a, 9)
2w —z) (Y — ) Uy (2, ¥) + (¥ —y)uy(z, ¥)]
+5 2 (2, 9) [ 2 amaa.
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Therefore

Ag= *%[:Zl l—%“l“jg?hz(m: y) (@ —m) v de dy - ] + Ra1+ Bsa,

where "H(m, ‘y)=Cu(m, y)usm(m; y)G:(-’F: g):
Rom —1 335 ([uGe, 9) @00~ | e, m) G-e?0de oyt

1
S ¢

I=

: jjz,,, (o, y)ﬁt’ﬁ?u (M) dt oG da dy.

K
In virtue of Lemma 4.2, arguning as in § 4, we can prove that
| Ra | <ch®{log h|**|u
By meansg of the well known Bramble-Hilbert lemma, we can obtain
|R31| <Ch*lv|1,9,0-

4-5;5‘-

Consequently

| Ry | <<COh®|log h|*?|co 2 5,2, 0¢

100

» a
Sinece it iz easy to show that 4 ” Mz, y) (82— o) dedy and the like are
= K| z
independent of K, we can sei

Ok = —%— ——-—-Hh;(m, y) (@— )" dx dy,

To sum up, we obtain

Ay 12| [ Corttat oty + st 00 A dy-+ O (42 | 10g A 1.

i

The rest of the proof is trivial and the desired result is therefore obtained.
Remark. The Dirichlet boundary condition is not essential to our.
Proof. In fact, most of the rosults also hold for the problems with some more

general boundary conditions.
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