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Abstract

We consider linear parabolic equations in a space-time domain with eurved boundaries and
nonhomogereous Dirichlet boundary conditions and discuss their approximations with isoparametrie
Bpace-time finite elements. A general error estimats js proved and applied to some elements of
practical interest,

1. Introduction

The fron#-tracking methods uging space-time finite elements are very effective
In solving moving boundary problems, as shown by numerical experiments
[Bonnerot and Jamet (1974, 1977, 1979, 1981);: Li (1982, 1983)]. During the
solntion process, the original problem is reduced 1o two coupled problems:
determination of the position of the moving boundary and solution of the parabolic
équation in a known space-time domain with curved boundaries.

As a first step towards the complete error analysis of the front-tracking method,
we want to obtain the error estimate of the approximation of the parabolic equation
in a known curved space—time domain. Jamet (1978) considered the case with
polygonal boundaries and homogeneous Dirichlet boundary conditions. In solving
the moving boundary problems, however, it is not an appropriate approach o
transform a problem with nonhomogeneous boundary data into a problem with
homogeneous boundary data before discretization, since the position of the moving
boundary is not known a priori, and such a transformation will greatly complicate
the problem. Moreover, in most cages, the moving boundary is not polygonal.
It is, therefors, necessary to consider the direct discretization of the parabolic
equation in a curved space-time domain with nonhomogeneous boundary conditions.
Such a discretization method will be described in section 2 of this paper. A general
error estimate of the approximation will be proved in section 3. It is then applied
o some finite elements of practical interest in section 4. We will follow Jamet’s
technique in the proof of the general error estimate. The results of this paper are
extengions of his resulis.

2. Description of the Discretization Method

Consider a time interval [0, 7']. Let 2(t) be a2 bounded domain in R™ and
* Received July 24, 1984,
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I'(%) be its boundary. Let RT={(P, ¢); P€R(),0<i<T} be a space-time domain.
2T={(P, t); PeI'(t), 0<i<<T} is ifa lateral boundary.
We consider the following problem:

-gw—ta—_?ﬂu=j in KT, (2.1)
U=q i 27, (2.2)
u =’ in Q(0), (2.3)

where f€ L2 (RT), v € L2(Q(0)) and g is a continuous funciion on X*. Vu is the
gradient of u with respect to the space variables.

Let @=G (1, t2)={(P, t); PEQ(), 0<t;<t<t.<<T} be a subdomain of RT
and @®(G) be the space of all Lipschitz—continuous functions defined on & which
vanish on the lateral boundary of G. Then a clasgical solution » of (2.1)—(2.3)
is also the weak solution defined by

Bo(w, $)=—((u, 22-)) +((Vu, V) )at+ (¥, Bavn— % Sawa=((f, $)e
(2.4)

for all ¢€P(F) and for all 0<tz<fa<<T, together with the initial-boundary
conditions (2.2)—(2.3).
Here we have used the notations
Q1) =gection {(P, ¢); pc ()}, (+,*)gwy—1inner product in L*(2(%)),

((, -)>G=i:ﬁner' product in L2 (@), ((Vu, V¢>))G=JJ Vu-Vdo dz di.

~ 'To define the approximate solution, we congider a subdivision of [0, T]: 0=
PP o Lo Lt =T, Lot Z% be a continuous and piecewise smooth approxima-
tion to 2*. Let G% be the space—time domain bounded by 27 and the hyperplanes

: N—-1 __ : :
i=t" and =11, Let RT= | ] G2. We assume that there exists a bounded domain
_ = .

R” such that RT>RT and BT R] for all small enough values of 4, the discretization
parameter, and for all subdivisions of [0, 7]. Assume also that the functions f, u°
and the exact solution % have smooth enough extensions f, u® and % to E™ which
also satisfy (2.1) and (2.8). -

Let Q7= Q2,(#*) be the section of BRI on the hyperplane #=¢" and G=G}—02}.
Let @} be a finite dimensgional subspace of @(G3), 1<ian<<N -1, and V', be the space
of all functions ¥, defined on Ri such that their regtriction fo each Q’;: coincides
with the restriction of a function ¢"™u, € @} to G}. Let also Up=wy+V 5 where wy is
a given function defined to Rj, which is Lipschitz-continuous on each G and
whose restriction to 37 is an appropriate approximation of the restriction of w to 7.

Note that the functions 24€V, and w4, €U, are in general disconfinuous at time
=1, 0<n<<N —1. We denote v;(+, ") and v (-, i**°) by ¢} and ;™ respectively.
Now we can define the discrete problem as follows:
Find w, €U, such that uf=u°| o and

. Boz(us, 1) =((F, »))et, (2.5)
for all ¢, € D} and for all O<Cn<CN —1, |
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The uniqueness of the solution of the discrete problem (2.5) can be easily
proved. Suppose (2.5) has two solutions w1 and us,s. Then ws,1— s, =% EV, and
Bge(tis, ¢a) =0. Using Theorem 8.1 in Jamet (1978), we obtain t=0.

The existence of the solution u; is a consequence of ifs uniqueness.

3. General Error Estimate

First, we prove two lemmas.
Lemma 3.1, ZLet {a*}, {b"}, {7"} be three sequences of nonnegative real numbers
and a, B, 8 be nonnegative real constants. Suppose the inequality

(a™)21 (b" P <aa+ 85"+ E ¥ b* + 5* (3.1)
is satisfied for all n>>1. Notle that when n=1, the third term of the righi-hand side of
(3.1) is set zero. Then

a"+ 6" < \f—f( H+B+_’§7"+S), - (3.2)

Note. Thig lemma is an extension of Lemma 4.1 in Jamet (1978).
Proof. Lete®= ((a")®+ (3")%)7. Then (3.1) yields o
(< (ot B+ 3 o+ %, . (8.3)

=]

Consider a nonnegative sequence {d"} that satisfies |
(d")2 = (a-!—ﬁ)d"—l— E 7"1:3”-{—39 _— (3.4)

By (3.4), we have d"z=a+ 8 for all a.
Let g(y) =y°— (@a+B)y. Then g(y) is increasing for y=>a+ B. It is obvious that
g(d") <g(d™*'). Therefore d"< d"*'. This yields - /

(d™)2— (u-t—ﬁ—l— gv) ;ﬁééb. o £ (35)

n—1 ;
Let £=a+ 8+ 2> 7*. Then we have
=1 : : ; :

B (E+ N ETH487) [2<E +D.

Since g{c')<g(d') =8% we have ¢'<d*. Next, suppose c”%’d"‘ for lﬁvﬂn—l This
implies , . ,
g(e“) < g (d“) a.nd thus ﬂ“-gd“

By md,uctmn we conclude that - ;
"«gdwgm for a,ll n.

n—1
Therefore, A+ BN D c"g\/_( R LB zywa) Q. E.D.

Lemma 8.2. Let { 63 a baumfed domain in H" wmth L@psch@tz—cammwws
boundary I'. Then - | ~ |

VuEHitQ), |t ] 0,0

Qﬁ-ﬁ ] ?“.iq. o W_ﬁ]ul 0Ty (3.6)
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where d=diam Q, |+ |o,o=n0rm in L*(Q), and]‘i?u|u,p={j (?u)‘*dm}*’f.

Note. The nsual Poincaré inequality is applied to H3(Q). This lemma is its

extension to H*(Q).
Proof. Without loss of generahty, we consider only the case that £ is contained

in the hypercube [— K, K]™ with 2K <d. Since

Vs (gu?®) =mu?+2ug- Vi,
by Green’s theorem we obtain :
m Lu”d§== —Qj.nu@-‘?udg-l—lruﬂ_m,-gd& (3.7)
This yields
1
m|u|la<2 Hﬂ L(g-w)mg f+jﬂu?g-g ds.
Since
(> Vir)? o= (‘im i )ﬂ < K* 5 | O )ﬂ <mK?2 D ( ) =mK?*(Vu)?
and ~ =1 ; 3$; =]l aﬁb; i=1 3%
’ |%'£['“—“[‘21¢1F-:[€m31
We have |
m|u|? o <2K Nm | Vulo,00 |%]0,0+mK |u|g,r.
Thus ult.0<—7=Vulo,o [ulo.o+ (3.8)

Let an—‘%n—_l?uh,p and Bﬂ=—g—|t£|§,r. Then (3.8) yields

+ |%]0,0< (a+ ~/a“+4ﬁﬂ>/2=€a+3
This is exactly (3.6). Q. E. D. .
Now we proceed to prove the general error estimate. We will use the following
notations: ' |

n—1 __ . =1
G (0, t") = L:EI}GL 2r=2TNeqd;, 2,0, )= q}};’,
+ | gty =morm in L2(Q(2)), |+ =norm in L(®), |Vuji=({Vu, Vu))e,
* | 0,3 (0, i) = DOITI) in LE(E;,,(O, t“)), d“mﬂX(dlﬂIﬂ Qﬁ(t‘), OﬁtQT).
Theorem 8.1. Let u be the solution of problem (2.1)—(2.8). Assume that u,u’,
f have smooth enough exiensions u, u°, f to BT which also satisfy (2.1) and (2.3) n

BT, Let u, be the solution of the discrete problem (2.5). Then, for all v,€V, and for
all l<a< N, |

ﬂv(‘” ua)llmt-wﬁ/—-lu ~— Uy | 0w

1

<~/2/m d {E{at (u— wﬁ)}ﬂz} +~/7ﬂv(ﬁ—‘l’h)ﬂa;m,m

+2 max |u’— v} g+2 2 |03 0 — o} | ox

1l <crgn
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+~/—{\/7_|“—‘w1in.x.cu.t-> (E 2 (i—)

ot
(3.92)
Proof. By (2.4) and (2.5), we have for all ¢, D%
- Bqt(ﬂh %)"((.?: ®a))ap
and Bog (u, ¢a) = ((F, ®1)) ez
By subtraction we obtain B
VouEDE, Bep(ti—ts, $1) =0, (3.10)
Since uy € Uy =wy+ V3, it can be written in the form |
Up = W1 ‘liﬁ with ﬁ}; - Vﬁ,- (3 .11)
Let W=u—w,. Then (3.10) vields
vth E djg; -BG_E (W s ﬁh: q-"h) =0, (3 . 12)
In view of the definition of V), we can take in (3.12) ¢ =¢"v,;—¢"i, and deduce
Vo, &V, Bep (W — 1y, W — g™y '=BG:.' (W" Uy, W - Q{"J@h) s (3 13)

It is easy to check that, for any v, €V,
Bex W — iy, W— g™, )=—((W——ﬁh, . (W—-%)))
H(TP =), VT —0)))es + <W~+1 1, [ gt oo
— (Wo—a, W— o3t g, (3.14)

An application of Green’s theorem gives

~(W -, LW )) - —-2,1— j j L (WP dyds

- _§.| Wnﬂ-ﬁw]ﬂﬂgﬂ +-§-]W"+ﬂ—ﬁg+ﬂ[g,

_iJ' W2y, dy. (3.15)
2 J)zp
We have, also,

(Wﬂ_ﬁz} ‘Wn__&g+ﬂ)or= (Wn__ '-"g’ an__ °n+n)p¥_ (Wﬂ_ﬁﬂ- ‘ﬁ"ﬂﬂil___‘W‘nu)mil
1\t oo nt0_ 5n40|2 1 840 __ Sn+0
"‘2—|W ] 2 IW | “EI(W — 1370 )

(Wil |2, — (Wi, T~ ") g (3.16)
Combination of (3.14)—(3.16) gives =

Boy (W —ds, W—qi) = |V (W~ |2, +-L | Wi —ign 2 Ly s

] .
"f‘—;* | (WHG__, !Eﬁ'"“_) —(W" ~ 43) | :, + (We—d, Wro— ™) g — % Lr Wv dy.
i (3.17)
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On the other hand, (3.14) yields

Boy (W —ih, W=g0) = (P, -5 W —00)) oyt (VT =), V(T =)y
+(Wﬂ+1_ﬁﬁ+1, Wﬂ‘l'i__ ’}a-l-l)ﬂg.“ e ('Wn__ﬁh Wﬂ-l-‘ﬂ_ }i+{})ﬂ#
+ (W —d, WHO—") g (3.18)

Combining (3.13), (3.17) and (8.18), we obtain that for all v, €V,

[V (i) g [ ot i 3y — 5

#

Ly (o —igry — (=) (% — 5 Lﬂ Wov, dy

. B
T ((W“uh’ ot W —u) ))Gg
+ (VW —d), V (W —v))) ag+ (Wit —dgtt WoHl— i) gpu
— (Pr—ip, Wr— D) e — (W —ag, (W= — (W —))op.  (3.19)

Eut W —t, =2 —uy,and W —op=u~— (wy+v,) With w,-+oa€Us. Moreover, u"t®=u"
W s = (U—w2) | 5¢- ;f"rﬂm (8.19) we deduce that Vv, CU,,

Sl 1.2 1~ 1
" v(ﬂ'—-ﬂh} "2? +—2—[*ur““-—ui+1 ig“ —-2-— [u"—-u’“i? +'2—|HE+D—"H§'E:

- =~ (8-, Z-G—w))), + (VE~w), V-0

o (un+1 n+1’ vt u+1)w+1 - (ﬁ“-——u}}, {Eﬂ__mf;) ox

+ (ut—af, V50— op +% Lg (u—wy) *v; dry. (8.20)

Summ a tion of equali’nies (8.20) from n=0 10 n—1 yields

|V Gi—) [Bum - [~ |5+ S L= w5

y=0
- E((ﬁ““m -Te (ﬁ—’l’h))) + ((V(u—u), V(%—v4))) arom
o n—1 P
+(—up, =R, + 2 (W, ) g +% L ooy Sy B
(3.21)
for all v, €V, and for all I<a<N.
Applying Lemma 3.2 and noting the fact that |»;]| <1, we deduce
"V(‘” ‘u'ﬁ)“ﬂa(ﬂf")_}"%_ | un “h|2 +"‘ I ”+n_”§|f};
Ph—w) | d (S| 2 3 '\ v }
<1V G- laom{ (3 |- G- [ )+ )],
+ |u"—uf| g+ U —‘vnlnﬂ-i*z | —u| gy » [ 030 — vk | o
1
1l ~ (3.22)

- 2
+-./d/2 |‘H ‘wn‘nz.cu.t':n =7 (U— ) ¢

Now let
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L - # 1 ™ |
G- uv(uhui)iﬂn(ﬂd"'h b -ﬁlu _u’“ﬂg;
nf t! n-—1 - |
“‘Tm{z 5 (40
B*=a/2 max|u”—v}| o, ':r' =2 |30 — o} g,

lﬁﬂﬂn

, c b
" } + IV (i — o) | g,00,tm5

n—1

. 3"={\/€m1£“whln.mm,tn)( >

1r=(}

o

0 1
2 (i) |

7 1.~ 7
T ) +'§'|“"'Wh|!6.mﬂ.tﬂ)} .

Evidently, a", 8" and 8" are all increasing with n. By (3.22), we have

lex

n—1 :
(&™) 2+ (") *°<o*a+ B*b"+ Z_; Y'b+(89)%, 1<n<k<N. (3.23)
Application of Lemma 3.1 then yields
— ig—1
o'+ b"<<~/ 2 (mk+ﬁk+ Ef,»-”+ak), l<n<Ck<<N, (3.24)

p=1

‘Taking k=n in (3.24), we obtain (3.9). Q. E. D. |
Remark. (8.9) generalizes Theorem 4.1 in Jamet (1978), since, in the case

of polygonal dontain with homogeneous boundary data, if we fake 2F =27, u=1,
w, =0, then (3.9) will yield Jamet’s estimate.

4. Error of Finite Element Approximations

a) General Lagrange elements (cf. Ciarlet (1978) for the definitions concerned
‘below). |

To define the approximation with a family of Lagrange elements, we place a set
of nodal points on the lateral boundary 2T and define, for each n, a triangulation
J% of the subdomain G% such that G = {U K:K €J3}. Denote by X7} the finite element

space corresponding to J§. Let Ry= U (. Then 27 is the lateral boundary of EJ,

=0
‘which is, in fact, the finite element interpolant of 27. - -

We choose @3={v, € X7; v4=0 on 27} and choose w; such that its resiriction on
each G} coincides with a functmn g®w, € X? and that w,—% on the boundary
nodes. So w, | =1 lEI an interpolant of | g.

Denete by J%; the set of top faces K’ of all clements K € J2 1 , and by Jiu.0 the
sot of boltom faces K’ of all elements K €J%. In general the Ela'bﬂ Jie and Jiio

are net the same, since the sets J; 7' and J% are independent.

Let Jy= {UJ}, 0<n<<N —1}. For each element KedJ,, let IIg be the finite
-element mterpolatlon operator. We define the U;,——m‘[:erpola tion operator II; such
that for each function u CO% RY), I, €U, and rgllu coincides with I grgu, whera
-rx denotes the operator of regtriction to K.

Assume that % is cuntmuous in RI. Taking. v,=1II ,,,u in (3.9) and using
dnequality |o3*t0—ae}|<|o3* —u”|, we obtain

IV @~ ua) [ gaconm «/1? | ”".'— U3 | op
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<7 B -2 i)'V E 1 G i) 10}

+ 2N wax ( 3 |a—Iul% )f+2(N —Dmax{ D |u—Izu|i)?®
1<y ¥ K’ EJ;“’ 1<ra Y B’ EJ‘%P.’.D

+ 4/ 2 {'V d/2 |t — w0, 550,m°

2 e
) +-%"' | % — 2w | 3.:.{1:-.#)} .

(3.25)

Let 3(8)={(P, ) € BT, t fixed} and d =max{diam Q(%), 0<t<T}.
Theorem 4.1. _Assume that u and 27 are continuous and have enough smoothness
and that the family of fintte elements have the following approximation properiies:
1

15 { 3

He Sy

2 (i~ Myt U i)fgoihk, (3 IV @E-Isi)|3) T< O,

N 1 - - 1
D (D |u—Heu|i)Z<O05, ( D |u—Ixu %) 2O,

K’ ed§ K edhip

3) |%—tws]w,na0um<OH*,
4) meas (27) = Lipd';"s;@.;, where the constants O, 1<i<4, depend only on 4, ZT

and BT, not on k,
5) Nh<<A<co,
T hen,

- i 1
| V(% — ) | gaco,m .,,/1? | — v | oy < oh®+ Bh e (3.26)
for all 1<n<N, where

"‘:“/—(\/?nz

Proof. (3.26) follows immediately from (8.25).

Next, we apply the general error esfimate 10 some particular examples of
practical interest.

b) Biquadratic isoparametric space—time finite elements for one-dimensional
problems. |

_ We congider a problem with the boundary

i s conditions

--—}----——— _ y=g($) on =0 and u=0 on z=8(2).

2 | } A As shown in Fig. 4.1, we use a regular family
of blquadratm isoparamseiric space—time elements
for discretization (cf. Li (1982, 1983)). In this

‘cagse the curved boundary 2=S8(f) is approxi-

- ———= mated by a piecewise parabola §,(), which
| mterpnlateﬂ the curve =8(%).

vig. 41 On #=28,(t), wy,=0. Let A be the greatest

length of the sides of all elements K €J,; then we have max {|S(f) — Sa() |} <

[0,7)

3
-1)05+ 400, B B=(~3d 0:0s VTi - Jl?wgog)!.

|
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-max |8 (#)|. On

(0,71

8 ’"e 3 . - e | 42 3 ..31.?
Ok lllglﬁﬂﬁ' () |).This implies | —aw,| |u|-€0k~ max | ——

w=0, |7—w,| = |g(t) —ws| <OR*max |¢" (1) .

Since 5, (f) approaches §(¢) uniformly as > 0, it is obvious that meas (8 (£))
<O meas (S(2)). Therefore the agsumptions 3) and 4) of Theorem 4.1 are satisfied
with constanis

A

oz
The interpolation errors on an element KX are
I{E'— H_Ea | 1.5%0}55 “ ﬁ”ﬂ,ﬂ' and |€£'— HE’E | KJQO}LE ‘ ‘E | 3, K’

where |« |0 and [ ¢[ 0 are the standaxrd Sobolev seminorm and norm (cf. Ciarlet
(1972, 1978) and Li (1982)).

From the above estimates we deduce

(Up=C max {ma:x
K

. 1S (%) |, max|g’”(£}|} and O,=0 meas (7).
™ [$.7]

[0,

1
o~ ot 28\ Z i~ pour
(2,15 G-eD ) <OWITlm <Ol
(3 |2 G-mi]" Y <omlilaz
. \¥enl oz g e

st st 1 ot
(X |u—Igu|k ) <Or® max|u|s,da,

Kedt, 0t T

g ) 1 Ay
( 2 Iﬂ“ﬂfu|%:)r'§0ha max Iﬂlg_ﬁ(ﬂ-

E’€Jhsro <t T
Therefore assumptions 1) and 2) are also satisfied with constants

Gi-ouﬁﬂg,ﬁr and Og'=o m&x“ﬁ:lgiﬁ{ﬂ.
i T

Application of Theorem 4.1 then yields the following resulf.

Theorem 4.2. Assume that |

1) G€ H}(E") NO°(0, T; H*@())), S €0%[0, T1), g() €C*([0, TD),

2) the family of the biguadratic isoparametric space—time fimite elemenis s
reqular, .

3) Nh<h.
Then

ni(i—u;) + |5 -} a<vh®, (3.27)

o
for 1<n<<N, where the constant 7y is independent of h, n and N. |
Note. The smoothness assumption 1) is made to ensure the boundness of the
constants U, 1<<é¢<4.
¢) Tri-linear isoparametric space—time elements for two—dimensional problems.

We consider a problem where the lateral boundary 27 consists of iwo parts:
2T=27) 27 with

G (0,17}

3T {(P, ); PEOQ(E), O<t<T}
ST {(P, t); PEB,R(Y), 0T},
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e T

as shown in Fig. 4.2. The boundary conditions are u= 91 2, 1) on 27 and u=0 on
ET

We use a regular family of tri-linear space-ftime
elements for discretization (ef. Li (1982))

Theorem 4.3. Assume that

1) acHA(EBHNC* 0, T; HY@()) and @ has
bounded second derivatives, |

2) 27, =1, 2, are O? surfaces,

3) t}w family of tm—hmw @snparamtrm elements
is regular,

4). Nh<<h, where h is the greatest lmgth of the sides

Fig. 4.2 |
of all elements K €Jy. Then | g | 5
|V (u—u) aao,m+ |4 —0" | gp<?h, (3.28)

for 1<<n<N, wke:r'e the constant vy is independent of h, nand N. -
Proof. On 25,, wy=0. It is eagy to check that

i ] st = | 8] 5t <OR (. Fig. 4.3(2)).
On Xf;, w, is the piecewise bilinear interpolant of #, so
s |%—1p] w25, <OR? (cf. Fig. 4.8(b)).

Therefore asﬂumptmn 3) of Theorem 4.1 is s&tmﬁsd Emdently, agsumption 4) is
also satisfied. '

(b)

Fig. 4.3

Using the interpolation error estimate (ef. Jamet (1976); Ciarlet (1978))
B | — HH“|1 E‘QO}*’””!:E K and  |u— I zu| 0 <OP*[u|s,x,
wo can show - - - | '
1

" PP T T
(|G- ) <om, (3 |VGE-Hxi) 1D¥<0sh,
I I PR LR
( E IH‘—H‘EUIH:) QC’ghﬂ ( 2 iﬂ“ﬂfﬁl%r)fgaﬂhﬂ- ;
; K EJ;.,, 5 3 o | EfEJ;H. : ¢ g & a:

Application of Theorem 4.1 then gives (3.28).
. d) Simplicial elements and prismatic elements.

When we use straight elemenis such asg ﬂlmphcm.l or prismatic elementq (ef.
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(1978)) for discretization of a problem in a curved space-time domain with
homogeneous Dirichlet boundary conditions, we take wy=0 on 273, It is eagy .fo see
(cf, Fig, 4.4) that |

u=0(A*) on Z3
Then we have in (3.35) - |
| % — 403 | 0, zy0,em =0 (A7)

ET

(a) Simplicial eloment (b) Prismatic element
Hig, 4.4

»
Due to this effect of houndary approximation, we can expect error estimate of only
second order at best, i.e.

|V (‘E — ) | a0,m T | U — I ay=0(h%).

In fact, by a more precise analysis similar to that of Strang (1973), §4.4, we can
show, for elements of order >2,

| (&= Jouonm+ |~ = O (B3).
Using the maximum principle, we can also show, at best,
‘ u—uy—0(h?).
Therefore, there is no point in nging straight space—time elements of order higher
than quadratic for problems in & curved space-time domain.
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