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Introduction

The primary motivation of the work deseribed in this paper comes from [1],
in which Lin Qun and Lii Tao have suwocessfully presented the so—called splitting
extrapolation prooess and obtained a series of extrapolation, correction and combined
algorithms for the solution of multidimensional integral equations and elliptic
equations. These algorithms can give higher accuracy results and are especially
suitable for patallel computation,

In this paper, the idea of [1] is generalized to evolution egquations. It is proved
that, under certain conditions, the finite—difference approximate solution of the
differential problem can be expanded to power series of the mesh width, so that the
splitting extrapolation process pregented in [1] can also be used. Some correction
and combined é,lgorithms for the solution of a heat equation are given, so as to
obtain higher acenracy results. In addition, the accuracy of the method by B. K.
Saul’ev'® taking the arithmetic mean of the non-symmetric schemes is discussed,

1.

In thig seetion we shall confine ourselves to linear evolution equations. An
expression connecting the finite-difference solution with the analytic one will be
given as a starting point of later discussions. As the condition of our main theorem
requires some smoothness for the solution of the differential problem, this paper is
mainly concerned with the Cauchy problem and initial-boundary value problem
with the boundary condition of the first kind for the parabolic equation. 1t is well
known that these problems are properly posed™. As for the hyperbolic equation,
our conclusion will also be true provided that the solution is smooth enough.

In a suitably chosen Banach space, the problem in question can be expressed,
following the notation of [4], by

{ '.:%' U(@) =AU +g(t), 0<i<T,

U(O) “Uﬂ:
where 4 is a linear operator and, as in [4], does not depend on ¢. The boundary

a.1)
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conditions, if any, will be supposed to be homogeneous linear, and be contained in
the definition of the domain D(A4).
In solving problem (1.1) by the difference method, we choose mesh widths
At = ko, Ay = hy = ¢, (4t), and suppose ¢, (4t) —>0 as 4#—>0, i=1, 2, «--, p. The
corresponding difference scheme is denoted by |
{ B, (4t)urt = By(4)u+ 9“,
=,

where »* is the numerical approximation to U(ndt), g*=g(ndt), and B, (At) B(4¢)
are linear difference operators.

The difference problem (1.2) is said to provide a consistent approximation for
the initial-value problem (1.1) if, for any function (¢, X) having continuous
partial derivatives up to the order m+1, and u(3) € D(4),

By(4t) u(t+ 4) — Bo(48) u(d) { 8 —A}u(t)ﬁ
=| B (Bau) (@A +OR™), - (1.3)

s | 8 <m

where the integer az>1, h= (ho, Fg, ==+, hﬂ): Zﬂm?x Ay, B_(BO.I B, >, Bﬂ): B: are

positive integers, |B| =R+ Bi+-+By, A =h5h5-hfr and (Rsu) (i) are elements
in the Banach space (in fact they are the derivatives of the funotion (%, X)).

Set O(4t) = B71(4t) By(4t). The finite—difference approximation (1.2) is said to
be stable, if, for some constants v>>0 and M >0,

|O(4t)"| <M, 0<di<7, O<ndt<T. (1.4)

(1.2)

In addition, it is assumed that there exisls a consiant N >0 such that
| BT (48) | < N 41, (1.5)

This condition can be satisfied by usual schemes.

We can now prove

Theorem. If

1) equation (1.1) and the finite-difference approvimation are oconsislent in the
sense of (1.3);

2) scheme (1.2) is stable; and

3) eondition (1.5) is satisfied,
then, for any solution of equation (1.1) hawving continuous partial derivatives of order
2m+1, the following equality holds:

wWw=Uma)+ I V(ndt)R®+Q(nit), (1.6)

®x | 2] St

where V 5(£) are independsnt of kb and |Q(ndt) || =O0(A™1).
Proof. For any smooth solution of (1.1), from (1.3), we have

By (40)U (i+48) — Bu(4)T®) =g+ 3 (R OW+Ro(®),  (1.7)
where |Ro(2)| =0(A™t1). At the mesh points {=ndt, subtmuting (1.7) from (1.2),
we get 1 |
By (4t) (ur ~U 4+ 4} — B(4) (w* ~TU @} = =3 (RO W —Ro(®). (1.8)
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Corresponding to every term of |8|==a on the right of (1.8), we oconsider the
following linear equation

{_%_Vﬂ(t) = AV s(#) — (R:U) (¥),

¥V s(0) =0.
From (1.3), the solution of (1.9) satisfies
By (4)V 5 (64 48) — Bo(4t)V o(#) = — (BU) @)+ 2 (B V)W +R:(1), (1.10)

S | fh | <1
where u= (o, t1, ***, Mp) With integers u:>0, and
| Rs(2) | =0 (Am+).
Multiplying (1.10) by %%, and subtracting the result from (1.8), we obtain

B (At) {urtt—U (¢ + 4t) — | Eﬂ Vo (t+ At) %}
~Bo(d) {wr—U ()~ 33 Va(t)hs}
=-— 3 (RPU)(E+R.(T)

g+l Bl <m

P | R.(8) | =O(A"*).
Repeating the above argument, we know there exists a series of V,(?),
a< | B8] <m, such that

By () {urP =T (t+4t)— 2 Va(i+4)A}

(1.9)

and

a<|Bl<m
— By (4) {u*—U(t) — ;m"": V(YA =R(t) (1.11)

and

|R(2)| =O(A™+).
Write ‘

Q= ur—U(ndt) — %{ V s(ndt) 2
and
R*=R(nAt).
Then we have
{ B, (4t)@ — Bo(4t) Q"= R",
Q°=0.

From ocondition (1.8) for Bi'(4t), we have

Qi ~0(4)Q+ B,

1.12
oo (1.12)

with

| B =0 (hoh™*).
By induotion, it is easy to get

Q= ﬁla(At)"-*EH.

Then, using the definition of stability and the estimation of §B*], we have

| @} =0 (A™*). (1.13)

This completes cur prc;of.
The splitting extrapolation method for the multi—-dimensional problem
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presented in [1] is essentially based on a relation between the analytic solution
and the numerical one, whioh is similar to the expression (1.6). Since (1.6) has
been proved, the same method can be applied to our problem. But, since the fime
variable is given the same treatment a8 the space variables, this method will not be
very efficient in practice. Therefore, we should seek other correotion and combined
algorithms. |

2.

The foregoing disoussion suggested that, if the solution of equation (1.9) for
| 8| —=a has been found, it will' be possible to improve the accuracy of the
approximate solution. But the difficulty lies in that the (B,U)(#) on the right of
(1.9) is a high order differential of the unknown U, which is not easy to be found.
However, in the case =1, the lower order differentials of the unknown are
contained among (RU) (t), so that we can solve the difference equation (1.2), and
by means of the numerical solution with lower acouracy, the approximation to
(RU) (%) for | 8| =1 can be given by the difference quotients., Thus equation (1.9)
can be solved numerically, and the obfained solution will be used to correct the
numerical so_lu-l:ion of (1.2), and the accuracy of the a,pproxlmaﬂﬁmn will be
improved.

As an illustration we oconsider the heat equation. We first use the explicit
4-point scheme and then construct a new scheme. |

(Congider the Cauchy problem of the heat equation

=U;#, 0 ¢ TJ
{U, << | (2.1)
U(z, 0)=f(2), —ocolo4oc0o,
Denote a‘=——j 5 The explicit 4-point scheme is

'“?H =} 41 (U] — 20} +uly),

*" “ 2.2
Lu?=f(j‘dm) “__ff.l j=0: 1; 352! i “‘=01 1: e [ i ]; : ( )

with truncation error
_[ 4t Ax? " o
By~ (- Ua—3 U"); +O (48 + dot)

1 .
H(%_.ﬁ A2 (U 100) + O (482 + dort) .

The solution obtained from (2.2) satisfies

wt =U(jdz, ndt) +0(4t+ 40). e - (2.3)
To improve the accuracy of the solution (2.3) we apply the same scheme to solve
the equation

V =Vg= + __-"_' 9 ;

{ : ( 2 )U"' (2.4)
LV (2, 0)=0

‘with U, replaced by the difference quotient expressed by «}. If U is smooth enough,

we have
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1 [t 821:}‘}_ 1
LS Sl — (Ui +Oat+ 20,

where 8%ult=ul_; —2u!+u},1. Such a treatment does not change the accuracy of the
numerical solution of (2.4).

Let @} =u}+ V42% From the above, the error of u} is O(4t*+ 4a*).

This correction algorithm requires the solution of two different difference
equations in turn. To avoid the trouble, in solving equation (2.2), the initial data
of each time step are considered to be exact, and after every step the solution will be
immediately correoted., Combination of these two steps will give a new scheme,
namely

Wit =ul+rduf ( ; 112 )r{ﬁ”(u}‘ﬂ-— 2'1.{:*}—%%}'_1)}. (2.5)

Tt is easy to prove that the truncation error of the scheme iz O(4¢*+4+*). By the
Fourier method the amplification factor is

1 . 9 k.ﬂm _i -4 kﬁlm
G =1—drsin® Z57 +(8r —3 Jraint 232,
and the stability ocondition is
-
£ | 4"5;52 ;

Thus, scheme (2.5) hag a Tather less strict stability condition in comparison with
the explicit 4-point scheme.

(2.5) is a 6--point scheme which uses five neighbouring points at the time level
t,. I+ can also be msed to solve the initial-boundary wvalue problem with the
boundary condition of the first kind. This only requires the replacement of the
second order difference along e—direction by «***—u" in computing the approximate
value at points cloge to the boundary. | |

Tabie 1
; Explicit Correction Scheme Analytic
4-point scheme algorithm (2.5) solution
ik 0,475528 0, 482675 0.4R82675 0.,482495
' 0.769421 0,780084 | 0.780084 0.780693
. 0.311237 0.325269 0.825481 0.325117
' 0.503592 0.526296 0.526640 0.526050
e 10.203707 0.218014 0.219481 0.219072
: 0.329606 0.354373 0.355128 0.354466
5 0.133328 0.1473854 0.148003 0,147616
: 0.215730 0.238424 0.239473 0.238848
G T { 0.872645x101 0.990674 x 101 0.998024 % 101 0.994677 x 101
' 0,141197 0.160204 0.161484 0.160942
& 0.847952% 1072 | 0.110282x10™1 0.114271x 101 0,113421 %101
' 0.137202 %101 0.17R440 5¢ 101 0.184894 x 101 (.183519 % 10t

W
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It must be pointed ount that a similar scheme for the heat equation wusing the
game mesh points has been given in [2], but it was obtained by a different approach,
and has different coefficients and accuracy.

As a numerical test of the above methods we congider the heat equation (2.1)
for which f(#)=sin2xz, 0<<@<1, and the boundary value is taken to be zero. The
resulis of the explicit 4—point scheme, correction algorlthm and scheme (2,5) are

rocorded in Table 1. Here d2=0.1, r=—r j;ﬂ =0.b. Because of the periodicity of the

solution, only two meaningful values are given. It is easy to see that the correction
algorithm and scheme (2.5) give better results than the explicit 4—point scheme,

Besides, the computation by scheme (2.5) with ¢ =% also gives satisfactory results,

3.

The proof of the theorem in seotion 1 indicates that ¥V 4(3) is determined by the
truncation error of the difference equation. If two different schemes used to solve
the same equation contain such truncation error that their lowest order terms,
with opposite signs, 4re related to each other, then, a proper combination of the
two corresponding solutions will give a result with higher accuracy. To illustrate
the method we still consider the heat equation.

For a mixed problem with boundary conditions of the first kind in a rectangular
domain, the non-symmetrical Saul’ev scheme for one space variable presented in
[2] has two different forms as follows, with the diagrams indicating the mesh
points used by each form.

'u'n+1_"u'“ & ! n R " 11—« n %
a) 'Li_ (’u*j-fll "'"“.f“"'?-ﬂj +'uj+1) +T (U1 —2u] -+, 1),

T R
. ®
. W L %
g+l .0
b) X u{-=—'—'(”1— —wy —uy g )+ 1 = (g — 205+,

'“'

)

where v =A4¢, h= 4=z, o is a parameter and 0<a<{1; when =1, (a) and (b) have the
simpliest forms.

In [2], it wag shown that the arithmetic mean of the solutions of schemes (a)
and (b) can be used as an approximation, and the algorithm is called the arithmetic
mean method, To discugs the error of the method, the boundary value was supposed

.#“——.:
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il #ﬂ——#—.ﬂ

to be zero in [2]; then, the arithmetic mean expression. was given in matrix form,
and by Taylor’'s expansion, it was declared that the truncation error was O(h?) at
the middle point of the interval and only O(k) at other mesh points. To overcome
this defect, the so—called multipoint symmetric method was guggested in [2].

However, by the foregoing discussion, it is easy to see that the error of the
arithmetic mean solution iz O(A*) at every mesh point, so that the multipoint
gsymmetric method is unnecessary. To show this, we only need %0 calculate the
truncation errors of (a) and (b), |

&0 vr , 1—« 20\ R/ aU Y :
a) Ri=u &) Tt g ( B )jﬂr —12( o )’—}-(hlgher order terms),

(TN z , 1—c 20 \» K (U Y :
b) R}= ﬂ(&fa@t ;h+ 3 (atﬂ ’1: 12(3# )J+(h1gherordertarms).

‘When —Eﬁ- = const., - O(h), the terms of order A in the truncation errors of both

schemes (a) and (b) have the same absolute value, with opposite signs. Therefore,
in the approximate solution expansions of schemes (a) and (b), which correspond
to (1.6), the goeﬁcients of the terms of order A have the same absolute value and
opposite signs, In arithmetic mean, these terms are cancelled, thus, the arithmetic
mean solution has the same accuracy ab any point in the interval.

In [2], the algorithm using (a) and (b) alternately is called the mixed method.
Especially, when a=1, the scheme becomes

. 1 " .
= {r (fta-Hufet) + (A=),

v = (ot + (L r)uf T,

which is called the Saul’ev scheme in r4]. If the computation from time level 2n to
2%+ 2 is regarded as one step, it is easy to know that the truncation erToT 1S

e e O

_2(%_)T+1(%)ﬂ + (higher order ferms).

BRecause the scheme is anconditionally stable, the main term of the error is O -%:—-)

Meanwhile, consider the Du Fort—-Frankel scheme

u‘;";’j” —uy Trelg — 2t " +u§f’{_1_

27 h® 2
which has the truncation errTor
1 /280 \ , 1 (8T "0
L2y, mlaw),

aﬂU 20+l s 2 :
- =5 ), (7}_) + (higher order terms).

R??H'l o



200 JOURNAL OF COMPUTATIONAL MATHEMATICS Yol, 3

k= I e R = LTy v

This is a three-level scheme. If the initial data at two time steps are exaot, it is easy
%0 prove that its solution has an expression sgimilar t0 (1.6). In view of the relation

2
between the coefficients of the term containing (-—E—) in the trunecation errors of

both the Saul’ev scheme and the Du Fori—Frankel scheme, we take the linear
combination

@? = [2(‘!&}') D-p1 (u}‘)mvn] /3
a8 the numerical solution, which has the accuracy O(di?+ do?), although the

2
iruancation errors of both the original schemes do contain the term O( ( ) )

In Table 2, the numerical results of the Saul’ev scheme, the Du Fort—Frankel
scheme, and the combined algorithm are shown. The computed problem and the
parameters used are all identical with those in Table 1, The initial data at two time
steps for the Du Fort-I'rankel scheme are given by the analytic solution.

Table 2 _ |
——___-_'———l—'l——-—-_—-—._.—__.______
z Baul’ev D-F q ~ Combined |  Analytic
scheme schome algorithm solution
o i
&b . 0.350953 0.315797 0.327515 0.325117 |
) 0.559539 0.510970 0.527159 0.526050
. J
B 0,242712 0.206692 0.218698 0.219072
" 0.388554 0.334434 0.352476 0.354466
—_— 0.168359 0.135281 ¢.146307 0.147616
' 0.269871 0.218890 0.235883 0.238848
i i 0.116863 0.885429 % 101 0.979828 x 101 0.994677 x 101
‘ 0.187346 .| 0.143265 - 0.157959 0.160942
. 8 0.810776 x 101 0.579521 x 101 0.656606 x 10™1 0.670230 x 10~1
' 0.129902 0.937684x10~1 0.105813 Q,108447
S 0.139855 % 101 0.860375 % 109 0.103977 % 101 0.113421 x 101
| 0.285020 x 101 0.189212 x 101 0.171448 X 101 0.183519x 101

.-W

The above combined algorithm can be generalized to the two—dimensional cage.
We consider the heat equation in a rectangular domain of #-¢ plane
ol _o°U | &*U
ot 9t | By’
with boundary conditions of the first kind. Take a=1, 4o =Ay=A. The correspond-
ing non-gymmetrical scheme of B. K. Saunl’ev hag four djﬁ'erant forms

Uy, }'1 i, 1 +1 +1 1 +1 +1
" [ i n n [y n
A: ——b = (W = i) — ) g (U — w5 — g+l ),
,un-+1 e 3 ‘U}“ 1 i é 1 : :
B el - il 2 (Uig,g — Uiy — uﬂ + Ui, ) +—5 7,3 (uf j—1 — Ui~ Uis TULTI1) s
n+1 ]
— 1 1 1
C: =t z = Xl (s —uiyt — ..1"[‘ ’1-5¢+1,j) Ty x (U o1 — U — il Ut il
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D. urj b 'u'?.:f _— 1 " 1% -1 n41 1 n+1 ntdl 1 u
- o 3 (Ui_q,y—usy—uiy + uiii,g) -+ T (uijze— Uiy — iyt Usss1)e

When A and B, or C and D, are used alternately, two different mixed methods can
be constructed. The arithmetic mean of their solutions has the truncation error

i Bréuxes , 178U . 0 VP
Biy | 3( ot® )4,3 TQ 6\ oz oy )i,;f A
+

_2(%)2 [( :;2 | ;;2 )EU :j: ' (higher order terms).

In the case of two space variableg the Du Fort-Frankel scheme is

22

on+1 On 42 2941 On+1 Op+2 o on+1
Us. 5 — Uiyt

— Ui} _ MUy1,9 T Uiy — iy U1 +u£.j+1'—ui.j Us, 51
27 h? h? ?
and the corresponding truncation error iIs
L (2Y Y 1 (29 2Ty
on+l _ e 2 -
R 31\ &t /i 12 \ ozt o oyt /i

- (%)ﬂ (%I% ):H + (higher order terms).

h‘.‘l

| 2
Noticing the coefficient of term (%) , combining the solution of the Du Fort-
'I-

Frankel s¢heme with the arithmetic mean of the above—mentioned two mixed
methods, we can get an approximate solution with the accuracy O(=?+h®), The
method is suitable to the parallel computation and is explicit.

Finally, the author expresses his thanks to Professor Lin Qun for his valuable
help, and to Professor Hu Zu-chi, who carefully read the whole paper.
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