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THE ERROR ESTIMATES FOR CRANK-NICOLSON
GALERKIN METHODS FOR QUASI-LINEAR
PARABOLIC EQUATIONS WITH MIXED
BOUNDARY CONDITIONS"

Sux Omm (#h #%)
{(Nankas University, Tianjin, Ching)

§ 1. Introduction

There have been a lot of papers on finiie elerhent analyses of the linear and
nonlinear parabolio equations, but only a few are concerned with the problems in
which the boundary conditions are of mixed type——the problems that are
frequently encountered in engineering applications. ¢ = |

In B}, the antHor considered the semi-discrete (Galerkin methods for quasi-
linear parabolic equations with nonlinear third mixed boundary conditions. In
this paper, we consider a discrete time Galerkin approximation for the same
parabolic problem investigated in [5]. In § 2, a Orank-Nicolson Galerkin
procedure for the problem is described and its solvability disoussed. In § 8 and § 4,
H'-norm and Ly—norm error estimates with optimal approximating order with
respect to the space mesh parameter % are developed respectively.

Consider the following parabolic equation and associated initial value and
boundary conditions:

r-?—:-—ﬂ‘?-(k(m, u) Vas) +0(e, u) - Vut+f(z, & u),
(=, )EQ X (0, T, (1.1)
() Yu=0, (o, 1)€on,x[0, T],
| %@, u)Vurv+o(a, wu=g(z, t; v), (&, &) E€oQyx[0, T], (1.2)
Uz, 0)=u(w), =E€Q, (1.3)

where Q is a bounded domain in RB* with piecewise smooth boundary and satisfies
the cone condition, 82 =088 U 8Q,, meas (83y) >0, b(=x, u) = (b1(2, u), ba(a, u), -+,
ba(w, u)) and v = (v, vy, -+, v,) is the unit exterior normal of 5.
Assume that %, b, o, f and g satisfy the following
Oondition (Ay).
(i) There exist constants k,, * such that
0<k.<k(s, P)<F', |b(e, ) |<F, V(z, p) EAXEY v
O<o(z, p)<k', V(s p)CoR.%x R '
(ii) &, & (¢=1, 2, «--, u), f, o, g are uniformly Lipschitz continuous with

* Received February 29, 1984.
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respect 10 their (n+1)th variable with Lipschitz constant I; for each & [0, T1],
f(zx, t; 0) € L,(2) and g(s, t; 0) € Ly(8Q,); and alse, f, g are continuous in variable
i ue(2) €E HI(Q2), where

H}(Q)={v: v € H'(Q), v|s0,=0}.

In the above notations, H7(£2) are usual Hilberi—Sobolev spaces on Q with
norm ., the subsoript will be omitted in the case r=0, Analogously, let
Hr(20) denote Sobolev trace spaces on 802 with norm |- |,.0; specifically, in the
case r=0, H°(002) = L,(002) and

8.0 | _ 0*ds.
Let X be a Banach space, and @(¢) a map [0, T]-> X. Define

T 1/p
“?’ﬂnp(x}“(jﬂ||¢’ﬂ§(f)d*) , 15 p< -+ 005 ||¢?ﬂn.{m=“§‘t1_§,"¢’ﬂx(t)-

The spaces L,(X) and L,(X) are the set of all ¢ such thai above norm are finite

Ttespectively.
Let J be a positive integer, and 4¢=T/J a fime step. Let ¢, =j&, and ¢’ =p(1y).

Define

|2

- T ., \U/2 J—1 i i N
lolio=(S 1015 4) ,  lolua =3 1o 134t) ",

- = +1/3
|eliz.cx ﬁﬁﬁﬂ@’”z; lelzeco nﬁflﬂﬂﬂ’ | =,

@2 = (@ () +@(t41)) /2.
For convenience, we write |@[z,arwn=|@lt,u, [@lsaan =lelz.ws and u(t)
=u(X, 1), b,(u)=b(e, v), flu)=f(z, t, u) eto.
The weak form of problem (A) is the following: find a differentiable map w(t):
[0, 7]—> H1(Q2) such that -

(%“., v)+a(y; v, v)=(Bu)-Vu, 0)+(f(), 0)+<g(u), o,

where

B vec HiI(Q), 0<i<T, (18
u(0) =uy,
where
(w, m)=ju wydQ, <w, w>=mewds,
a(Q; w, @)=-L £(Q) Ve~V dﬂ—i-Ln‘cr(Q)ww ds. (1.6)
From (1.4) -
k| v)2<a(@; v, v)<k*(|v]i+2]3.:0), V@, vEH;(Q), (1.7)

where 'Eha semi—norm
9]3=(Va, Vo) = Sl

| Throughout this paper, we shall always suppose that the solution u(f) of
problem (B) exists uniquely and use letters g, 0, 0;, e to denote generic constantis

which have different values in different inequalities.
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§ 2. Crank-Nicolson Galerkin Approximation and Its Solvability

Let 83(Q) =span {¢+, ¢pa, *+, Px,} CHI(Q) denote a finite element subspace,
where the bagic functions ¢ satisfy the hypertheses: for each 4 € (0, 1],

¢¢GO(Q)HH1(Q) Iv‘ﬁi‘lﬁcm“eﬂx gii | (m{’f'm: t=1, 2, -+, Ny. (2.1)
f<n 4 kL,

Set 1={0,1,:-:, J}, the Orank—Nicolson Galerkin approximation {U’}J for the
solution % (¢) of problam (B) is a map: I—8,(82) such that

U.H-:l.
( V)+a..(z:ﬁ 7, V)= (b(UY-VU?, V)

At
- F (@D, VY +<0), V>,
@7 ' WES@, j=0,1, -, -1, @2
U is given in §,(2) such that U°—u, is sufficiently small for
some norm |- |z, ‘
where j=j+1/2, g'=(g'+¢"**) /2.
Lemmal., If H;(Q), the semi—norm |v|; is equivalent to norm |v], ([6]),
Lemma 2. For each fized QC H}(82), the bilinear form a(Q; w, v) is symmetric
positive definite and bounded on H,{(02) X HI(2) under condstion (A,) ([6]).
Theorem 1. Suppose that condition (As) and (2.1) hold; then for the Crank—
Nécolson Glalerkin procedure there exists ¢ unique solution {U’} for appropriatly small
4t. '

Proof. The existence can be shown by Brower’s fized point theorem under
those conditions given above ([1], [3]).

To prove the uniqueness, let {U’} and {U‘} be the solutions of problem (O)
and U°=0U°, Let B/=U'—0*. From (2.2),

(B2, v)+ram; -0, 7)

=a(U% U7, V) —a(U% U7, V) + ((B(UH - b)) .V, V)
+(BUH VB, V)+(f(U)— (7)), V)+<Lg(U) —g(TY), V>,
YV €8,(2), j=0, 1, «- J—1. (2.8)

Taking v=£7, using the trace inequality and the interpolation theory on Sobolev
spaces and applying a treatment analogous to that used in the proof of Theorem 1

in [6], we can prove that there are positive constants b, € independent of % such
that

L s p<o{ sigii+ 110, 2.9

where ¢ is an arbiftrary positive constant.

Choose ¢ such that O s{fc.;. and restrict 4¢ to being suitably small. Note that
B° 0. Then from

1) For the detailed description on JU%— |, see (3.17).
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JIB-‘“H;— | 87 <0(| B + 18117

we see that | 8] =0, j=1, 2, ---, J. The uniqueness is thus proved.

§ 3. H'-Norm Estimate

Tn order to derive the H-norm estimate of error u(i; ) —U’, we make somse
assumptions which will be referred to as condition (Aj).

Condition (A.g).

(1) [Vulpao<+eo, || 2. omn < +2,

(ii) w;y and wy are continuous in variable ¢ and e €L (HY), % € L.(In).

41 _
Let gy=g(t;) = g( ﬁ”“; f'-’-) and J,g' =-Z " —9  From condition (Ag) (ii) we see

Pat:
that
L g_"if_ _ i 1 33145 "‘_'
P’_( ot /3 A - 24 ( ot* /1, 46, 0<61<i (8.1
and that there is a constant M such that
g ° < MaB, V€L (3.2)

Let {¥#}! be an arbitrary map: I—8:(Q2), and set gl -Y!, o=v-Y,
ol =y — . From (2.2) and (1.5) we have
(A&, V) +a(TP &, V) =a(ug w, V)—a(U% Y7, V) +(b0) VU, V)
— (b)) «Vuy, VY — (f(ug) — (O, V) —<gup —g(U"), V>
+ (47, VY +(p, V), vV €8,(Q2), 0<j<<J —1. (3.3)
Set w!=u(t;) —u’. Then

' = é(?;:: )J+a 487, 0<y<l. Uh
From condition (A;)(ii),
fod | < M2, Vi€EL (3.5)

With ¥ =¢7 in (3.8), applying condition (A,) and the inequality ab<<ega®+b%/4s
(8>0) we can show that (of. § 3 in [5])

aCu; 1, ) —a(T; T, £)<0 sl 81t + - (IEP+ I+ 11D}, (3.0
(B VT, )~ (b(w) Vs, €)<Ou] a1l +5 18P+ I+ ID],

. (3.6)a
(f(uy) —F(OD), E)<0{|&)*+ [7|*+ ]|, (3.6)3

(g(u) —g (U, <L | _|o+a|+]]ds

<0 fal&l +-L S+ I ID], (-6

(dar, E)<el €+ 14mr|2, (3.6)s
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(o', E)<el&li+ o122 sl 1+ 1) (3.6)s
Combining (8.8) with (3.2), (8.5) and (8.8) we obtain

%. ﬂf’“_ﬂz;‘ P=E : ?agllfzﬁﬁo{ﬁﬂfjﬁ +E:|_-;(n§3ﬂﬂ+ 113+ | e |24+ M2 484) }

Choosge 8 small enough. Then there is a constant ay>0 such that -
ﬂf"”ﬂ“—l|§’||“+ﬂodtI|E’H1<U:{l§’“H“+llf’ﬂ“}AHGQ(IIn’H + [ Ao |21+ M2 365) 4.

Therefore
1 441
6922~ 18002+ a0 3 €510 4t < 20, D 1617 6+ O (1B

1 dm 13,y +M2T 48}, Vi G+L)A<T, (3.7)

Applying Gronwall’s ineguality in diserete form and taking 4¢ to be small enough
we see that there exists a constant 8,>>0 such that

€912+ B0 33 €518+ 40 O g, -+ 14,y + T84+ 0],

Hence

(€12 e +l§ﬂ?;ﬂ£‘: <O{|nlzemn + |4t at-482+|€°]3. (3.8)
By the triangle 1nequa11ty' we have
Theorem 2. Assume that conditions (A,), (2.1) and (As) hold, then for any
map {Y'}5: 1 —>8y(Q), the error ¢!=u’—TU* be bounded by

ﬂ“ UIIL:L.}"""“‘U"H(HH <O{|u— Y"ﬂm)'F"“—Yuﬁmu

14 (u~T) |z, -0+ A2+ | £°] 3, (3.9

whers O i3 o constant independent of h and Y.
Now we want to esiimate the approximating order of error ¢!, To this end,

assume that the following conditions are satisfied.
| Condition (Ag) :

(i) u€ L (H"), i‘f_”_e L(H™), uy € H(Q), (r>2) and condition (A,)

holds.

(ii) Condition (2.1) holds and 8, (Q) is taken from a family of apaces of class
81,.(2), r=2, that is, SH{(Q)C H :(2) and there exists a constant 0>0 such that for
each v € H}(2) N H(Q),

inf |v—e|,<Oh-?|2],, »p<i<sr, p=0, 1. (3.10)

& € Sy (L)

(iii) Boundary 8@ is regular enough such that for every € H(Q), the
unique weak solution g for the following boundary—value problem

| { —dp+p=1¢ in Q

op -0 (8.11)

ﬁ]?ﬂ;“ ; -E— 50,

obeys the priori—estimate ;
: lple<Cl]: (O is independent of i and ¢). (3.12)
Let Y (¢) be H*-projection into 83(2) of u(:), that is, ¥ (1) is a map [0, T]—
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Ay eyt i by

5‘,,(!?) defined by

(u—Y, )+ (Vu-Y), Vo)=0, Wwvc8,{(Q), 0<i<T. (3.13)
It is proved in [5] and [8] that there exist 01, (, such that

712 <O |, (2), [|—- =<0, a1 2% ("), Vi€, T].
Thus o
Inlzpny <ORu|p . (3.14)
Noiing that
otz [ | 2L a
e ot |1 '’
we have -
-3 ﬂ"
V4|2, i <OR 3 - (3.15)
Bince

At =02 +2'S (A, oF) 4t

f %=0

ﬂ’?“uﬂ'ﬁ "”?n'lﬂ'l' %1 ” ("?Hi)ﬂ“"' ('Y

<[n°}® + 2 (f Aer® |24+ | 7| D) 4,
from (3.14) and (3.15), and noting that [7°] = |7(0) | < [n(0) 1 we get

- r-1 Lok
I et <O (ful i+ 22| ), (3.16)
Choose U® such that
lue—U°| <O& 3, (3.17)
then
- [€°] =0 — Yl < [uo—U°| + | °| <OR™2, (3.18)

In order to get (3.17), it is sufficient to choose U° to be the L,—projection into
IS'; (Q) of Uop.

Substituting (3.14), (3.15), (3.16) and (3.18) into (3.9) we obtain
Theorem 8. Assume that conditions (Ay), (As) and (8.18) are satisfied; then
lvu~Ulz. o+ |%—Ulzsa ‘go(ﬁ_tﬂ‘l'hr--i): (3.19)
where O is a consiant independent of U, h and 4.

§ 4. L>Norm Estimate

We now tarn to an L;—esiimate for error ¢/ =u(¢,) —~U/.

Taking ¥ (t) to be a Galerkin projection into 8,(2) of u(¢), that is, Y (¢) i3 a
map [0, 71— 8,(Q) satisfying

a(u(t); Y(2), V)m=a(u(®), u(®), V), VVES®D)), 0<i<T, (4.1)

By Lemma 2 and the Lax-Milgram theorem, the solution ¥ (i) of (4.1) M
existent uniquely and differentiable in variable 2.

Let n=u—¥Y, &£=U-—Y again. Since a(u(?); «, «) is positive definite and
bounded, and 8,(R2)c8,,,(Q), ¢ s

Inl:(8) <0y inf ju—ai() <OR{ul.(2).

&€ Hy(d)



208 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

Using Nitsche’s method we got

[l () <OF|u|,(2) .
Hence

|7l zecz <Ok || r.can, [7lz.@0 <Ok’ |u]z cam. (4.2)

Now, assume that the following condition is satisfied. '

Condition (A4).

(a) Assumpiions (i) and (ii) hold in condition (Ag);

(b) (k(+, ule, D)), (-, (s, ) and (b(@, u(@, £)))au(i=1, 2, «, 1) are
continuous in variable £ and belong to L.(Qx[0,T]); (c(-, u(-, )y (c(-,
u(+,t)) )y are in L, (82 X [0 T]) and continuous with respect to #; (b,(z, u(z, 1))),,
EL.(QX[0,T]), 6=1, 2, -, u;

(o) For every ¢EH1(Q) and very vEH“‘”E(BQ) (=0, 1, the solution of the
linear problem

a(u(t); , v)=(P, V)+<v, 9, Vo€ HI(Q), 0<I<T (4.3)
obeys the regularity estimate

140 <O L+ [ Diss/2.00}, E (4.4)
here constant C is independent of i and .

According to. Lemma 8 and Lemma 5 in [B] we have |

Lemma 8. Lst S,(Q) =841,,(Q), uEL,(H"), p=2, +co, and Y (¢) be the
solution of problem (4.1). If conditions (Ay) (1) end (A,) (o) hold, thm there is a
constant C such that

uﬂuiﬁﬂ’*csﬂn ="’M“—I’r ﬂﬁﬁ'{ﬂ'*{mn Qﬂhr"“"ﬂ;fﬂm p=2, oo, (4.5)

Lemmad. et u(t) and Y (2) be the solutions for problems (B) and (4.1)
respectively. If conditions (Ay) and (Ay) hold, then there is a constani C such that

; o h
| 4in]zcan<Oh (H“”L.(Hf} i {%"L.KH"H)- | (4.6)

Using the trace inequality we can prove the 'follnwing lemma in a way similar
to the proof of Lemma 4 in [6] (of. § 3 in [6]).
Lemma 6. Let Y (1) be the solution of (4.1), then under conditions (A;) and
; Y ' U  0%u
(E:), (b) 29 (.A.4)_, I[—F- 65255 can be bounded by "'H'HL_(HI); i T and 208 L_('Hl}'

To finish our derivation, as usual, we have to make the following assumption
(21, [4], [8]).
Condition (Ajs). There exists a congtant K which is independent of % such that
for each 2 € (0, 1], the solution Y () of problem (4.1) satigfies
IVY s o <K. (4.7)
For the discussion on condition (4.7), see [2], [8].
Now, estimate each term on the right—-hand side in (3.3) with ¥V =£%, From

(4.1),

Ji=a(us; u, &) —a(T% T2, &) =a(ug ¥y, &) —a(T% V7, &)
=a(uy; Y7, &) —a(U% Y, &) +a(uy; Py, EH)=I1,+1,, (4.8)

where
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| | Yy 1/9%Y — .
P;=Y;—Y'=Y ($;31/2) 5 = B(atﬂ - A2, 01,  (4.9)

By Lemma 5, there is a constant M such that
| P, l.<MAa?, Viel.
Note that Hv““L.{L.} "':."""Dﬂ, Il ‘?Yﬁ;_{m_-ﬁ: -+ o0 and H‘wﬂn_(n_(ag)}{ +oo, We have

Li—a(u; ¥, £)—a(U% ¥, €)<0:{el€li+ 481+ 171+ 1]

+[_To@w) —o@@ )P s +| | [o(u) —o(@)1ds
<O (el @13+} +0al€0 5 o+ 17y oo+ OsCIE1] +1€ g 00" U]y, o0+l

ez, 1 -3 ¥ % ;
<O {el@1+ S+ PRI+ 171y 0 12

(4.10)

Also,
I=a(u; Py, ©)<0{el& +-IPili}.
Thus, |
7s<0 ] sl + 2 (181 I+ 171y o [l HIRIE)) 41)
Set

Ja=(b(T%) VI, &) — (b(uy) Va3, £) = (BT (VU -VY7), &)
+ (T - (V¥ ~ V), £)+ (B0 —b(wy)) -V, £) 38‘1+‘Sa+ﬂa-

(4.12)
Obviously,

s.<ox(slelt + 2 1817), (4.13)

85 <O3(|E1+ |7+ [']®), (4.14)

Sa= — (B(T?) - (V' + V'), £)<— (BT -V, ) +C:(|8€]*+ [o'|D.

Bince |Vn[r a,<+oo,
BTV, &) =BT —b(uh)) -V, &)+ (b(«) -V, &)
<O (€12 + 7D+ (B(uh) -V, £).

Integrating by parts for term (b(w?)+Vy’, &) and applying the duality of
H-/2(92) with H'*(9Q2) we obtain

S:<0i{ 1813+ = (IO P+ 171+ P12 0 | (4.15)
Therefore |
i< el81+ LU+ P+ 171 o +lefiD). 416)
In addition,

@(M)_Q(UJ): §]>'£;L(" 53“2%“" HEE‘I%.QH' Il’f"_%_gp_{_.ﬂm!"%)

<o 1€+ AEP+1P1y ot D | @1T)
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—y

With V'=¢& in (8.8) and using (4.11), (4.16), (4.17), (8.6);, (3.8)5, and (3.6)¢
we Obtain

e
Vil

o

L vhleiz<ofelen + (el i+ 1

Fiaw 2t PP D) (aas)

Repeating the argument in Theorem 2 and recalling (3.2), (3.5) and (4.10),
we see that when the time step A¢ is small enough,

] o
1§72+ 25 1613460 {Inl 40y + 1713 1000y, + 14071 rmay + A8+ €0

Hence
[€1 2.0 + 1€zt < O{nlzean+ Mnlzaaiooy + |dm]tias+42+ €0}, (4.19)
and
””"U”E.(L.}‘QO{ "’*?"II_(L.}‘}‘ ”7?"34’(1-:)+ ”'ﬂ"ia‘{ﬂ‘*tﬂﬂ)}"" "At“'?ﬂf.(ff*l} +F+ HU“'—Y"H}-
(4.20)
Applying (4.2), Lemma 3 and Lemma 4, we get
Inle.co + 0] 2eczo + |7 2ecdcooy + |4z, E-n <OW. (4.21)
Choose U? in problem (C) such that
|U°-Y?°| < Op". (4.22)

Specifically, we can take U°® to be ¥°, where Y is the solution of problem (4.1) at
=0,

Substituting (4.21) and (4.22) into (4.20) we obfain
lot~ T | 2. <O (B + 48%). (4.23)
To sum up, we have proved the following result:

Theorem 4. Let u and {U'} be the solutions for problems (B) and (O) respectively
and choose U° such that inequality (4.22) holds, then under conditions (A4), (A,) and

(As5), the Lonorm of error u—U ds estimated by inequality (4.28), here O is a
ccnstant independent of h, {U’}, and 4t.

For spaces 8;,,(Q), the approximation order of A in the right-hand side of
(4.23) is optimal.
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