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ON THE ERROR ESTIMATE FOR THE
ISOPARAMETRIC FINITE ELEMENT METHOD®

WarNg Lie-BHENG (X 2l ¥)
(G‘ampuﬁng_ Center, Academia Sinica, Deijing, China)

Abstract

In this paper, the isoparametric element of 2-degree Lagrange type for second order slliptie
P. D. E. with nonhomogeneous Dirichlet boundary value iz considered. We prove

la—upl1,0=0("?),
which is the same as lu—~upl1,0,—=0(R?), where £2 and £, in E? are the domain of the boundary value
problem and the isoparametric-triangulation domain respectively.

§ 1. Introduction

We congider the nonhomogeneous Dirichlet problem?

fi
{ nd ¥ €V, such that (1.1)
a(u, v)={f, v», YvEV, |
where £ is a2 hounded domain in R? with a sufficiently smooth boundary 2Q,
al; v)= é i (2) Bud o da, ' (1.2)
=] frode, ‘ (1.3)

0, CEWE=(Q), FEW>UQ)(¢>2), g is restriction of a function in H?*(Q),
B =congt. >0, such that

2 2
Iél yj (m) gig.'\'}ﬁ E g?: V;’U E Q: gi E ﬁ: 3= 1: 2.1 (1 '4)
and '
V={v€E H(Q): v=¢g on 682}, | (1.5)
=Hy(@). (1.6)

The notations above are introduced from [1].
In [2], [8], Ciarlet and Raviart studied isoparametric finite eclement

approximation of the problem(1.1), in 2—degree Lagrange type, or the so—called typa
(2), as follows:

Let (.9 3)a-0 be a family of regular isoparametric triangulations of type (2),
Fr: K—>E VYK €9, be the isoparametric mapping of type (2) (ef. Fig. 1),

Qw=_lres, K, in general Q.G Q. Let X, be the isoparametric finite element space of
type (2), and

Vi={2€ X;: v=g at the boundary nodes on 22}, 1.7
Vor= {2 € Xa: =0 at the boundary nodes on 8Q}. (1.8).
* Recoived July, 3, 1984.
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Then the approximation problem with numerical integration is the following:
{ find - Vﬁ,, such that

an (s, vs) =<f, tain, Vr € Von,

where a@,(us, ) and {f, w)s are formmulas of numerical integrations (of. [2],
[3]). As to the isoparametric finite element approximation without numerical
integrations, it is not available in practice.

(1.9)

Qiarlet and Ravjart have shown the error estimate |u—us|1,0,=0(%") on the
isoparametric trigngulation domain £,. In [4], in order to obtain the error estimate
% —ual1,0=0(A%) on the domain @, Li Li-kang reformed the isoparametric element
approximation, which is not of the standard isoparametric type as in {2], [8], and
in which it ig necessary to have an expresgion of the boundary 202 in o.

In this paper, the standard isoparametric element ig considered. Section 2
contains the extension of the isoparametric finite element solution ;. In section 3,
we prove the error estimate |u—usls,0=0(A%) on the domain @ for the extension of
%, ad in section 2.

§ 2. Extension of un

In order to estimate the error between the solutions u of (1.1) and u, of (1.9),
it is necessary to extend w, from @, onto QU Q;, since the solution wa of (1.9) is
defined on £, only. -

As well known, the estimation of |%—a|1,0, on the isoparametric triangulation
domain €2, is independent of the way the solution « of (1.1) is extended from £
onto @1 O, in the case % remains in H® space. However the cage is different for
the estimation of u—uy|s, 0 on the domain Q if the solution u, of (1.9) is extended
from 0, onto Q) ). Let us show some examples.

Ewample 1. Let 7 be the set of bﬂundary isoparametric triangles, and K’ be

a curve triangle of reflection of K €.7 7} with Gitq, i.0. K cnns.lsts of asei, Gzag and

i LT
&% 1aln, and K consists of ﬁgﬂi_, ﬁgﬁg and 119y (Gf Fl‘g 2) Let Q.:]Qhu ( U K f)

KEed,

>, and since the boundary o2 is sufficiently smooth, let u € H3({) be the
extengion of u. If the extension u, of u, is defined ag the interpolation u! of % on K,
then it is easy to estimate e —utsly,g=0{(A"). But it is not available, since the
solution % of (1.1) is unknown,
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If the extension 1 of s is defined in some way on K’ with the values of u, on
K, then we may not be able to obtain the
error bound O(A®%). Let nug see the extension
to be below {(and cf. Remark 1).

Example 2. The homogeneous Dirichlet
boundary value problem is comsidered here,
ie. g=0 in (1.1). It is somewhat natual to
extend w; on S, with zero (¢f. Fig. 2).
However, the zero extension cannot enable us
to obtain the error bound O(A?). There exists
such funotion u € HE(Q) that |grad u|—=0=
const. >0 near 9. Thus

| —tnl1,02> [ —ts] 1,000, e
1,00, | %] 1,000,= 0" [meas (£\Gh)] e
and since meas (Q\Q,) =0(#%) in general, one cannot derive the error bound O(A%).
We now show an extension of the solution u, of (1.9) from Q, onto QU £,.
Let 7, be the set of the boundary isoparametric triangles, and K’ be a curve

triangle of the extension of K €.7;, such that a parallelogram consists of the Hwo

isoparametric triangles X and K’, where the isoparametrio triangle K consists of
—
two straight lines asa1, @yt and one curve @.@.84, and the isoparametric triangle

7 . 5 . O FoooF | 4 -
K’ consists of two straight lines ayai, a:a> and one curve adiay.a0 (of. Fig. 3).

= %]

Fig. 3
Lot Fr: Ki>K and Fg: Ri>K’ be the igsoparametric mappings of type (2),
guch that

’ Fr(a)=a;, 1<i<3, Fx(ay)=ay, 1<i<j<3, 2.1)
an
Fu(a) =a,, 1<i<3, Frplay) =0y 1<i<j<3. (2.2)
Then (of. [2], [3]), 5 4 4
FE(HJ)=FE(L‘U)+HE($), (2.3)
Fr(2) =F g (@) +He (), (2.4)

where Fx and Fpg are the affine mappings from K onto straight triangles
K = Aayaqas and K’ = Adiabaly Tespectively, cueh that
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Fela)=a, Fr(a)=a, 1<i<3, (2.5)

H g (2) =p12(2) * (t19 —a13) = H (), (2.6)

with D19 € Py(K): P12(G1a) =1, P1a(@) =0, 1<E<8, P1a(@1e) =P12(a2s) =0. By a
simple calculation, it can be deduced that

and

1 FE(‘.'E) =BE£E+E|E, Fﬂ:‘:(iﬁ) =Bxf'£+bxr, (2 .7)
an
Bg = By = (Ga—a1, 63— a3), (2.8)
bﬂ'=ﬂri, bEf=ﬂg. (2.9)
In the derivation of (2.9), it should be noted that
@3 — Gy = Gy — Gy = &1 — G, (2.10)

gsince the quadrilateral a;aja.as is a parallelogram (cf. Fig. 8), which is the key
point of our extengion.
We now extend u,. Let # denote the point on K, and 2’ that on K’, and let

Un(2') = —upo Fg (53) + (ua (1) +ua(aa))

+ 8461 (1 1) (un(ara) — 22l Fra(a) ) 2.11)
" 3
where ) )
= Fzi(2), f‘em(f"‘). (2.12)
. |
Then ;

1y (ay) = —upo Fy (&1> 4 (ua(ay) +ua(@a) ) = —up (@) + (’h"h (“1) +fﬁh (Gﬂ)) =up(aa),
ﬁn (m’g) = — o g (Eﬂ) + (ua(@1) +us(@a)) = ua (‘31):

i (aha) = — 20 Fr(G1a) + (ta (1) -+ (aa)) +2{ 1 (aag) — 2280 TG00 ) (g,

from which we hﬁva

- ———

Uy =1 ONn the curve g,a@,.as,, (2.13)
and .

u;(m) =-=u;.(m), VMGQ}.“Q. (2.14)

§ 3. Error Estimate
In this section, we will assume that v € H?*(Q) with 222U ( | K", Yi>0

i Kexg
by extension of the solution « of (1.1), and we will estimate error |u—us/;,go.

‘We have the main theorem.

Theorem. Let Q be a bounded domain im R? with sufficiently smooth boundary
9Q, und (T 1) -0 be regular isoparamelrie triangulations of type (2). Assume that the
hypotheses concerned in problem (1.1) hold and the solution u of (1.1) ds in H3(Q).

T hen, _
Hu—-—uhh,p=0(hﬂ), (31)

awhere T is defined as the extension of (2.11) and (2.14).
" Proof. By use of (2.11), V&' € §,,
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u(z’) — 1y (@) =uoF g, (5) +urc Fg (5) — (ualay) +ualas))

— 82+ (1 — ) ( Uy @1a) un (@) ;—u“ Co), )

P {"MQFE: ({E) MUFK(E) o (u(ﬂi) +'H-(ﬁg))

~ 8, (1— 1) (u(asa) u(a) —;u(mﬂ) )}

+ (upo Fr(z) —ueFy(2)), (3.2)
ﬂ!’=Fﬂ'r(£). (3.3)

From (2.3)—(2.9), we can derive that
unFH:(:i?) "|"M°FE(§) o ('u'(ﬁi) +u‘(ﬁﬂ))

— 823 (1= 1) (u(ans) - L2100 )

e Typo B g (2) +ttgo B g (2) — (u(ay) +ulag))]
£ 8:’51 (1-— ‘-;1) (H(ﬁ:m) u(ay) ;u(ﬂﬂ) )

s 4 (o PpA@) —uoFp(2)] + [uo Fg(2) —uo Fr(2)]. (3.4)
And ﬁrsﬂ{v, we have (cf. Fig. 4),
wo F g () +uo Fr(z) — (ulay) +ulas))

—uo( — Fy (&) +a;1+aq) + oo By () — (u(ay) +uas))

= u(z") +u(z) — (u(ar) +ulas))

=2u(a4a) +Vu(f’) (;J_Em) +Vu(£) (E_Eiﬂ) — (u(ay) +u(aa))

= (Vu(&) = Vu(£)) * (G1z— &) + [2u(@12) — (u(ar) +ulas))], (3.5)
where 2=F¢(2), 7' =2d—«. By using the imbedding o
theorem™

where

H¥}{(D GOV (@), 0<a<d,
we take A=1/2, Then :
| (Vu(g) —Vu(®)+ @u—5)| . ol
<Clulsz-|& —£[Y? |G1a—2] |
<O{u|s,zk#", (3.6)
and | 2u(@10) — (wl@1) +ulaa)) |
= | (Vu(na) ~Vu(n1)) (@1 —@1a) | o
<O|uls,z* |12 —n1]""* | @1— 1] Fg. 2 -
<O|u|s z+h¥" (3.7)
From (3.5)—(3.7), we have -'
|20 B (2) +uoFy(z) — (ua) +ulae)) | <O|uls 5. (3.8)
And from (8.7), taking account of |G — @] <OA%, we have

u(ass) —— 3T | <ofuls, 5+, (3.9)
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and from (2.8), (2.4) and (2.6), we have
{ o F g (&) ~uo Fio(2) | <Ot 1,00, 3o hg- <Ol s, 5%,
wo Fg(2) —ucFp(2) | <O|u|1, 0 5 W <O uls, zh.
Finally, by use of
1T s | 0,00, 2 <0 meas(K"), |J5zo,e,5<0/meas(K) (3.11)
(of. [2], [3]), we have

J’m. \une Fg(2) —wo Fg () |2 dat

(3.10)

<|_luaoFu(@) ~uoFu(8)|°det

< Trelomis 1972 |o,mx-| |1 (8) —u(a) |?da

'EEQGJ’E s (@) — u(w) |2 de. ' (3.12)

From (3.2), (3.8), (3.9), (3.10) and (3.12) and taking account of meas(S;) <<
Chi, we can deduce that

loy— s |3, 5, <O | u 2. 5h% « (meas(8)) +3[us—ul? x

<O|%|3, 5k +2|ua—ul} x,
from which, we have
ﬂ“‘ﬁl"ﬁ.mnimﬂz [ —ta] 3, 5, <OR®|u|3 5+ 2| ua—ul3,o.. (3.13)

By using the result |u—uale,0,=0(A%) (cf. [3]), we have
| —urlo,0=0(R®). (3.14)

We now estimate Iu—ﬁl 1,0 10 complete the error estimate in H* norm,
By (3.2) we have Va'€8),

Vo (u(@) — s (2)) =?;(unFm(:E) o Fg(d)

—82,(1~ ;) (w(aw) — L LUD) ).y, 7o)

+Va(uao F() —ucFg(2)) Vo Frl(a). (8.15)

To begin with, we estimate the first term on the right hand of (3 156). By use of
(2.8), (2.4) and (2.6)—(2.9), we can deduce that '

Vﬂ(uﬂFx*(m)'*‘u“FE(fﬂ) Swi(l—mi)(u(ﬂu) -”(”1)';“(““‘) )) Vo Frl (2)

~ (Vue (VeF g (8) + VaFx(8)) —8(1— 25, 0) (u(az) — %) ;“(ﬁ“) ))-VoFz )

= (2‘?%- (VD12(2) (@gn —~ @12))

—8(1 - 2%, 0) (u(ﬂu) AN, -;—u(wg) )) VoI5t (2),

from which and taking actount of [a@yz—ay.]|<Ohi and (3.9) and by use of
1P 4, e, e <Chx? ([2]), we have
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IVE(MGFE:(:E) —I—unFH(é)—851(1——51)(15(:519) u() +1(as) ))-V.;Fi—? (a') ;

2
<O(| %1, 0,5 B% + |u]a,5-5%%) A%
<O|uls ¥ (3.16)
From (3.10) and (8.16), we have

|t — s | i‘*,ﬂ.=jﬂ |V (@) — 11, (2))) |2 de’ < O|u)2 5+ hx »meas(Sy)
+- QJE | Ve(uro Fx(@) —uoFg(2)) Vo Fgi (o) |2 do’. (3.17)
Finally we estimate the second term on the right side of (8.17). By use of

. O
IFKI;,..H,&'@(E?&, | F5? | 1,00, 8- <COR, |, .,_ﬂ,ﬁﬁﬁ-mgas(E"), [JF?'D-%E‘;‘ meas( K )’
and (VeFg(z)) 1=V, Fz(z) (cf. [2]),

L, ]vﬁ(un“Fx(E)—quﬁ-(é)).?#‘,F}}(m#) 12 da’

gJ’E", ' VE (HhGFE(’E) —HUFK (5)) 'V,.FEI (m) '?EFE({E) -?.:F_TI? (EUF) l! dﬁ"

qj Ve(tao Fx (&) —uoFx(8))  V.F5 (&) [*da
Lo B0 | F5r | {cormr
-=£;J’K|?uh(m) —Vu(z) |2des | Fg

* | per|0veer 8 | TF? | 0,00, &
QG,H—thiE. (3.18)

From (3.17) and (3.18), taking account of meas(8,)=0(kk), we can deduce
that '

* ’FK JF:JI'U}H..R

P
1] Lo E’

e | Fxr

5. 5°hk+0|u—uiii, 0. (3.19)

Iu_ahliﬂlﬂn=ﬂz lw_ah'%rﬂnga!lu
By using the result ju—up}1,0,=0(h?) in [2] and [3], from (3.19), we have
|u—unli, o< |u—ual3, 0, + |6~ 1|, 00, = O (A*). (3.20)

Thus the theorem is proved completely.

Remark 1. As the extension of u, at the end of example 1 in seotion 2 we
find Bg+ Bg.-#0, in which one may not be able to obtain the error bound
HM_?.’E;L 1.Q=O(}ﬁﬂ).

Remark 2. For the homogeneous Dirichlet problem considered in example 2
in gection 2, it is well known that the extension #, of the linear finite element
approximation u; on £\Q, can be taken as zero extension to retain the error bound
[ — 1, ]1,0=0(hk). But for the 2-degree Lagrange finite element method (with just
affine but not isoparametric element) one may not be able to obtain the error
bound [u—u,l:,0=0(A%?) with use of zero extension. However, the extension
congidered in seotion 2 can be used to obtain the error bound on £ as well as
on (2,.
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