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ON THE CONVERGENCE OF DIAGONAL ELEMENTS
AND ASYMPTOTIC CONVERGENCE RATES FOR
THE SHIFTED TRIDIAGONAL QL ALGORITHM®

Jisve Er—x10NG (3 & &)
(Fudan University, Shanghai, Ching)

Abstract

The convergenco of diagonal eloments of an irreducible symmetric tridiagonal matrix under QL
alporithm with some kinds of shift is discussed. It is proved that if ay—o—0 and B;—0, j=1, 2, -,
m, then a;~»A,, j=1, 2, -+, m, Where &,(j=1, 2, -+, m) are m eigenvalues of the matrix, and o is the
origin shift. The asymptotic convergence rates of three kinds of shift, Rayleigh quotient shift.
Wilkinson’s shift and RW ghift, are analysed.

#

§ 1. Introduction

The shifted QL algorithm is a very efficient algorithm for finding all
eigenvalues of a symmetric tridiagonal matrix. The global convergenoce of the
QL algorithm with Wilkinson’s shift is proved imn [1], [2]. The asymptotic
convergence rate of this case is at least quadratio™, and is often cubic or betier
than cubic except for special bizarre matrices if they exist™. The RW shift is
proposed in [8]. The global convergence and at least cubic aymptotic convergence
rate for the case of RW shift are proved in [8].

We apply the shifted QL algorithm to a symmetric tridiagonal matrix T'=1,
Let the k—th iteration matrix be

o AP \
B o AP

R o B _

BY:

The global convergence means that 8{->0. Does af® converge at the same time?
Although we know there is an eigenvalue A{¥ of T® such that

|af? — A | < | B, (1)

it gseems that no one has proved that for large enough %, Ay is independent of &.

Furthermore, if 8F->0 (§=1, 2, «-+, j) can we say o (4=1, 2, ++, j) are
convergent? -

In this paper the following theorem is proved:

Theorem. Let T =T be an irreducible symmetric tridiagonal mairiz. The QL
algorithm with shift {ow} 48 applied to T. If ol — g, —0 and BF—>0(i=1, 2, -, J),
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then al—>h, (8=1, 2, +++, §), where Ay, Aa, ', A; are § different eigenvalues of T,

Using the above theorem, we can give an improvement on Theorem 8.11 of
[4] as follows:

Theorem. Let the QL algorithm with Wilkinson's shift be applied to an
unreduced tridiagonal mairiz T'. Then as k—oo, 8:—0. If, in addition, B8,—0, 8;—0,
then as k—oo,

| Bs/BiBE | —>1ha—ha] ~3|As— 2| 2 #0,
whers A1, A, As are the imits of oy, oy, a3,
There i9 also a dicussion on the asymptotic convergence rate in the case of the
Rayleigh guotient shift and the RW shiff,

§ 2. Some Basic Theorems

Lot § O
x4 1
/Bi g ﬁﬂ
) T e * '.

3 . ﬁn—-—i

\ 0 Ba-1 G

be a real tridiagonal symmetric matrix. Given a scalar ¢, called the shift, congider
the orthogonal-lower triangular factorization

T—ocl=QL, (2)
where I ig the identity matrix, ¢ is an » X n orthogonal matrix
Q=(q1, 92, ***, Tn);
qi= (1, 95, ***5 Qi) T;
and I is a lower triangular matrix o
L=(1,;), 1,;=0 when. §>>4.

P=IQ+ol. (3)
Obviously P is a symmetric tridiagonal matrix too. Denote
el
Bi & Ba
|
o g f :aén—i

\ 0 En—i &n

and there is a relationship between 7' and 7, namely
T=Q77Q. - (4)
The transformation from 7 to 7 is a QL transformation with shift o.

Given a symmetrie tridiagonal matrix T, let 7% =T'. We do QL transformation
with shift o to 7™ successively and get a matrix—sequence {I**}, such that

T® I =QuLn,

Let
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TO+D = Lo+ o,
Qu= (g, ¢, -, &),
L~ ().
From (4), we know T® ig similar to 7. 8o they have the same eigenvalues,
Let
> B
i aﬁ} ﬁm o
) . P D
p 7R ' . . - ) o TR |
< n—1
D, o

For the sake of simplicity, hereafter we will often omit the index ¥ and use Tt

for T%*+1) if there is no confusion.
Lemma 1. In the QL transformation ¢f the mcluded angle of g3 and e3=(1, G,
0, -+-, 0)7 is 0, namely q11—cos ¥, then

(T—al)gi=lis6s, ()
., iéﬂ =131 |sin #1. | (6)
Proof. See {4, 8-11-2 and 8-11-3].
Lemma 2. Lst
d,=det(Ts,,—cl), s=1,2, «, n,
dos1=1,
If o is not an eigenvalue of T', then in the QL tmmfa"rmtwn (2), (8), the i~th
component of ¢4 -

qa=(— 1)‘"131131)35' : 'ﬁi—.idﬁ:l/ d:l; g=1, 2, *»*, W; (7)

when i=1,

BiBsz++, Bia=1.
Proof. By Cramer’s rule, from (B) we geot

as Bi1 0 - 0 1 O 0 |

Bi as Bz e 0 0

Bs
1 " a_q O
I dy | Bia O B
0 Fus
" B
. 0 Boz G
_11,

""( 1)‘ Biﬁﬂ Bi-—:ldi+1:

where a,=0,—0.
Theorem 1. Let T be an irreducible symmeiric tmdmgonml matriz, Then in

the transformation (2), (8), the following equalities hold
i3 =di/ (d3+B1K?), (8)
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sin® § = B1K*/ (dz +B1iK"), (9)
Bi=BidiK*/ (d3+BIK"), (10)

whafe
K2 =@ (Bade)* (Bﬂﬁﬂdﬁ)ﬂ g ot (BBBE. Bm-—‘.l)EI
Proof. If o is not an eigenvalue of 7, then d;#0. So

ga= (1) 118185 Bi-18is1/ s
Because 3} ¢34 =1 and by Lemma 2 we get

im]l

11 Enl (B1Bs++Bi1dis1)? =1,

=1

So
2y=di/(d3+B1K?),

Siﬂﬂﬂ-'_—“ggi—i-q%i-]- - +q§1,
sin® 9=%(ﬁid3)ﬂ + (B1Body) *+ -+ + (B1Ba++ Bu1)
=14 83K ?/d5 = BiK?/ (&3 +BiK?).
At last by (6),
3 - Bi= 1%1m99=d23 K?/(d2-+BIK )2,

If o is an eigenvalue of 7, then (8) and (10) hold obviously. For equality (9)
in this case

: I =0 359%0 333%0 : Iﬂ,;’:‘r:o_

So ¢; (¢=2, 8, ---, m) are continuous functions of &. Since ¢y is the only vector

which is orthogonal with ga, ¢s, ***, ¢a, Unless a sign, g4 is a continuous function of
o t0o. Therefore both sides of (9)

in?@=31gh and BIK*/(d3+BIK?)

are continuouns functions of o. Usmg the limit we know (9) holds when o i3 an
eigenvalue of 7'.

Lemma 8. Let T be unreduced. If the shift oy mﬁisﬁes
a?’ —*a';,-,—a-D and 3(;‘:)

then
: Sin 9;,—-}0 4
where gin? &, — 22 (giP)*.
=

Proof. By (9),
sin® 6, = (B12)* (K®)%/ ()" + (BP)* (K )?).

Because |T®[y=|T]|s is bounded, 8%, B, ---, B{24 are bounded uniformly, and s0
are d¥, d§°, -+, dJ? and K%,
On the other hand,

dP =det (T—anl) = IT (uf~ow),
= :

where wi”, pud?, o, ud® are e1genva,1ue=s of T
By the Wielandt-Hoffman theorem,
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(ﬂi"":’ }‘ik))ﬂ 4 2 (}w{m g {ir.} 2.9 (BEU) 21

where A{”, AL, «-, A® are eigenvalues of matrix 7.
Smce 1" ig unreduced, A{®, AZ”, -+, A® are different with each other.
For a large enough natural number K, when 2> K4, we have

|6§® — oy | <min [Af?—AP | /10=5
and B <5/2. Hence £
I uf — oy | = 1P — A5+ AT — AR AP — o +a® —ﬂ'kl
= h}“-—}ﬁ”l —38=>738,
and there is a constant O independent of % such that

|ds? | = 11 | u§? — oy | =0 >0,

By (9) we have
lim sin? 93 ={).
Je—~s 00
Corollary. If g, is the Wilkinson shift or the BRW shift, then
gin 91;—3'0.

Proof. It is knewn that in the case of the Wilkinson shift or the RW shift,
we have

a®—gpr>0 and BP—0.
Bo sin 493-—}0.

Theorem 2. Let T be an irreducible symmetric fridiagonal matric. From
T =T, successively do QL transformation with 3hmft ax. If af® —o3—>0 and ﬂm’ﬂ i3
an tnteger § (1<j<n), such ithat

BEH_}G: '?:'51: 2: ™ j:-

then
gﬁ}-l-l_)'oj 'f’='1.r 2: Sy j'
Proof,

P=IQ+tcr A

ﬁ1=912311-
By Lemma 1

|B1| =lu|sin b;

S0

|¢12] = |sin §].
In the cage j=1, the conditions of thig theorem are
i’ —g;—>0 and BF -0,

By Lemma 3, we have sin ¥—>0. Hence ¢15—>0. It shows that Theorsm 2 holds when
§=1.

Now let us use the Prinoiple of Finite Induction. Suppose the proposition is
true when j=m—1, From

(T'~el)Q=I7,
we have

¥ (T i ﬂ-I) Gm= zﬂllgl _[_zmﬂﬂﬂ e nb Al o o zmmem-
Lot

)

gm= (Qm:ﬂl; Qm—i'm.r '.-: Qmm)r



Neo. 3 ON THE CONVERGENCE OF DIAGONAL ELEMENTS AND... 257

and es=(1, 0, «--, O)TER* ™, Bo
(Tm-n —~ "-TI) Em = (zmm — Bu-1Gm-1, m) €1.

By Lemma 2,
Giom™ ( — 1) R (Imm o Bm—i‘.-?m—:l. m)leBm+i' "B{—idﬁ:l;/dm; 3 =0, M -4 1-; wer, T
Since »
gm= (01 O: s 0: QM—ipm: g;l;})i"
and
g?ﬂ-——i,m -+ 2 giz.ﬂ'l = 11

=

] §_im 3
2 Q?,m = (Em,m 3m~:1qfn-—1; m) (d?n+1+ BrEnGrﬂ}:) =1—Q3:—-1;,m;

=m dE;
where G =dd,2+ (Bni18mss)® ++*+ (Bm+1Bmsa*-*Be-1)?. Therefore
(o= BreiGm—t,m)* = (1—qh1,m) i
Ty ™ m-— _, m—1,m d?n+1+ﬁi9i s

(b= Brncsm-1,m) = £ (L= o ) V3] (s +BEGE)?,

,. lm“ﬁn—ﬁn-—:t.mi (1-g,2,,__1,,,,)1f“dm/ (d?nu +;9§;GE;)”E-
Since 8—>0 (¢=1, 2, »--, m), it ig easy to know
' |dm | =20>0,
|dms1| =0>0
for large enough %. So by the hypothesis of the induction ¢u-—1,m—>0
| lom | 0" >0

for large enough %, where O’ is independent of %.
The m~th row and m-+1-th column of the equsality

P=IQ+cI

and

i,

Bm = zmiﬂ'l. ST S Sl szm—igm—i. m+1 +zm9m- m+1 ™ tmnTm, v 410

iﬂ :
Thus &
Imymi1=Bm/lnm—>0.
Corollary. The agymptotic convergence rate of gm,m+1 19 the same as that of
Ba.
Theorem 3. Lt the QL algorithm with shift {c,} be applied to an irreducible
symmetric iridiagonal matriz T =T®. If there is an inder j (1<j<n) such that

aP—g,—0 and BP0, =1, 2, -, §,

5

then

g#"_}:Eeﬂ ﬂmd ﬁ-ﬂf—'}a‘h 3=1: 2: "'J'j:r

where Ay, Aa, **+, A; are § different eigenvalues of T'. |
Proof. For j=1, by sin 6—0, we have ¢;—>+e¢;. Now we prove

gm_*::em, m=2: 3: Wty j‘
By _
' (T_FI) gm—_"Zmigj_ _I_Imgﬂﬂ + “""I'"Emmeml

Qim’ (Emm"_ Bm+1gm-—1+m> Bd?rwl/dﬁu
In the proof of Theorem 2, we know |
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(Imm = ﬁm—igm-—:l. m) = (1 B grgn—l,m) dﬁi/ (drzn+1’+ B?HG?H) *

So
\ Qﬁm= (1-— gi—i.m) dﬁ:-l-l/ (d2m+1+ Bi ﬁu) —>1,
namely
Gm—> 1 Em-
Now we comse 10 prove a;—>As:
miﬁ:]
oy’ 0 Bisa O
oo — %, +( 4 ),
o) 0O ¢
O | ;El.n
whero
0 B
B 0 AP
Bia= . - ;
. 0 " (k)
= E J
B}R} {]

Obviously [B;.1]7>0 under the hypotheses of Theorem 3. By the Wielandt—
Hoiffman theorem, we know there is a natural number K, such that when 4>Kj,

| — 2 | <8y, 8=1, 2, -, §, (11)
81{]]13'.]1 |.?(.i'—3..3|/10,
424

where

Ai(§=1, 2, +++, n) are eigenvalunes of T', which are different since I’ is an irreducible
matrix,
On the z-plane, there are n circles
'z_?\'ﬂgah j=1.r 2, 5 n (12)
disjointed with each other.

We will prove that for large enough %, the eigenvalue A, in (11), s=1, 2, +--, 4,
are independent of 4. For this aim, we will show that if af® falls in the circle

!ﬁ""h['@ai (13)
then o*1? falls in the same circle (13).
By
T=QTTQ:
HO |
&3=QET Ti},
By g-~>+te, wo can write ¢,= *e,+ s,, where 5,0 (h—>o0),

gy=(tel +8)T(xe,+e,) =e§'Ta,:!:2s§'Te,+szs,=—-—-m.+ 287 Te,-+ 8] T 8.
We can find K> K ;. When 5> K ; there holds
[o T — P | L8,

Therefore
a0 — 3, | = a0 —a® 4 g — 1, | << |0V —a® | + |0 — 4, | <28,

It says that af**® falls in no other circle of (12) than the cirele (18). It shows that
when k> K ,, A, in (11) is independent of 4. Since §; can be arbitrarily small, henoe
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Hm a{® =A,.
fo—t oo

§ 3. Asymptotic Convergence Rates for Some Kinds of Shift
Loemma 4. If af?—03,—0 and B—0 (i=1, 2, -+, §), then

dir—> 11 (M—?ﬂ)-

m=4+1

Proof. By Theorem. 38,
o —>hy, 8=1, 2, =, J.

Let the n cigenvalues of 7 be Ay, Ag, **+, Ae, Aesa, ***, An. Denote n—j eigenvalues
of T!+1m a8 Ljgds Mssa; """y Hae BF the Wielandt—Hoftman theorem,

(logpr— Aga) 3+ (ara—Agga)? oo+ (o~ An) 2| Bs—1] 7.

dip1= f[ (ﬂ’m_ﬂ')- (M*M)+E,

m=1+1 m 1

b

where a—>0 while |B;,1]5—0. Since f[ (Am—Aq) is independent &, when & is large

m=4+1

enough,

dip1—> f[ (lm —= B-:l) ]

m=4-+1
Corollary. When j>2, K> ,,1:13 (Aes—A)®.
Now we turn to the asymptotic convergence rates for some kinds of ghift.
(1) Rayleigh quotient shift. In this case
o =af..
Tt satisfies the condition af® —o,—>0 obviously. By (10),

Bi=pBdiK?/ (d3+ BiK )2
Sinee "
d:l'= (ﬂi'—ﬂ')da— %ds"" —B:i)da,

B3 = Bd3K? / (di+ BIK *)2.

therefore

Moreover if 8,~>0, then

B/ (BILK ) — ﬂgﬂ (Do — Ag) 4 0.
If in addition 8,-»0, then
d%—-—'ﬁ' ﬁ[a (}«m“‘?‘*i) ﬂ,

K> [T (=),
and

2/80—>(ha—21) 0.
Therefore we have: '

Theorem 4. Supposs the symmetric tridiagonal matrix T is irreducible. We do
the QL transformation with Rayleigh quotient shift successively. 1f B1—0, then

1/(BIBE®)—> I1 (Am—2a)~*#0.
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If in addition By—>0, then
1/Bi—>((ha—21)*) "1 0.
(2) Wilkinson’s shift. In this case ¢ is the root of the equation
(01—0)(a3~0) — Bi=0,
which is the one nearer to a;, namely
o =a;—sign (8) 81/ (8] +/3+87),

where 8= (@y—a1)/2. We have |[ay—o|<B8;. By [1], [2], we know Bi—0 in this
case. So it satisfies the conditions of Theorem 8 when j=1, namely

a;—oc—>0 and £;—0.
B}' Theorem 3, gy—>A1. On the other hand .
Bi— BIBK? /(&3 +BIK™)*

and
dy = (ﬂi"ﬂ')dﬂ —3%533;
S dg=‘(ﬂ5—ﬂ')d3f-ﬁ§d4.
0 :
" Oy == ( (o :cr) (aa—0) — B ds— (e —0) Bidy= — (&~ ) B3d,
an
. " Bi=Bi(m—0)BiEK?/ (d3+BIKT)1.,
Therefore
Bi/(B3(a— o) 2B K 2)—> Ez (Am—2Aq) %50,
Moreover
: %y —0 =R/ (aa—0).
0
P Bi=BIBIIK /(e —0)*(d3+ BIK2)Y),
an

- Bi(aa—0)"/ (BIBIRE )~ T1 (hm—2s) ™ %O,

If in addition B;—>0, then
Qg — g '-')'1.2 o }“1 3k 0
and

K3 n]*;il:ﬂ(hm-“ A3
Therefore
Bi/ (B3BID)— (ha—Ay)~° IT (Am—21)~#%0.
If in addition 8;—>0, 8:—0, then
dﬁ-—-} 1:!;"-;[4 (3.-,. e 3-'1)51

and

Bi/ (B1BE)—>(ha—11)%(As —Ag) ~2:0.
We write these conclusions as follows.,
Theorem &. Let the symmetric tridiagonal matriz T be irreducible, and make
QL transformation with Wilkinson’s shifi successively. Then
BY(oa—0)/(BIBIGEE ™)~ T, (Am—2s) =440,
If in addition 8,0, then
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32/ (BB — (hg—Ay) E3 (A — M) -2 0.,

If in addition Bﬂ-—-)(l, ,83-—)0, then
B2/(BBY—>(Ag—Aa) % (A — Ag) "2 %0.

Theorem 5 is an improvement on Theorem 8.11 of [4], where a—A,(i=1, 2, 3)

are considered as conditions.
(3) RW shift (see [3]). In this case the shift ¢ is Wilkinson’s shift, namely

o =01—sign(3)B1/(|3] +v/&+81), 8=(aa—01)/2
if B3<28%. And the shift is the Rayleigh quotient shift, namely
o =ay

if B5>>241.
By [8] we have 8;-50 in this case. From the definition of the RW shift, it is
¢asy to know ay;—o—0. So the conditions of Theorem 38 hold in this case. We have

a—>ha, dy> IT (m—2a)™

Theorem 8. Let the symmeiric iridiagonal mairic T be irreducible, and maks
the QL tmn;fnrmtwn with BW shift successively. Then

B/ (@B~ H (Am— A1) 40,

=2

where
G { diK?®, Bi=>28,

BediK?/(ea—a)?, BE<28%
and in the case B3<<283, we have (aa—0)*=>0>>0, O being a consbmt independent of k,
for large enough k. ' '
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