ON THE CONVERGENCE OF DIAGONAL ELEMENTS AND ASYMPTOTIC CONVERGENCE RATES FOR THE SHIFTED TRIDIAGONAL QL ALGORITHM*

JIANG ER-XIONG (蔣尔雄)
(Fudan University, Shanghai, China)

Abstract

The convergence of diagonal elements of an irreducible symmetric tridiagonal matrix under QL algorithm with some kinds of shift is discussed. It is proved that if $\alpha_1 - \sigma \to 0$ and $\beta_j \to 0$, $j=1, 2, \cdots$, m, then $\alpha_j \to \lambda_j$, $j=1, 2, \cdots$, m, where λ_j ($j=1, 2, \cdots$, m) are m eigenvalues of the matrix, and σ is the origin shift. The asymptotic convergence rates of three kinds of shift, Rayleigh quotient shift. Wilkinson's shift and RW shift, are analysed.

§ 1. Introduction

The shifted QL algorithm is a very efficient algorithm for finding all eigenvalues of a symmetric tridiagonal matrix. The global convergence of the QL algorithm with Wilkinson's shift is proved in [1], [2]. The asymptotic convergence rate of this case is at least quadratic^[1], and is often cubic or better than cubic except for special bizarre matrices if they exist^[2]. The RW shift is proposed in [3]. The global convergence and at least cubic aymptotic convergence rate for the case of RW shift are proved in [3].

We apply the shifted QL algorithm to a symmetric tridiagonal matrix $T = T^{(1)}$. Let the k-th iteration matrix be

The global convergence means that $\beta_1^{(k)} \rightarrow 0$. Does $\alpha_1^{(k)}$ converge at the same time? Although we know there is an eigenvalue $\lambda_1^{(k)}$ of $T^{(k)}$ such that

$$|\alpha_1^{(k)} - \lambda_1^{(k)}| < |\beta_1^{(k)}|,$$
 (1)

it seems that no one has proved that for large enough k, $\lambda_1^{(k)}$ is independent of k.

Furthermore, if $\beta_i^{(k)} \rightarrow 0$ $(i=1, 2, \dots, j)$ can we say $\alpha_i^{(k)}$ $(i=1, 2, \dots, j)$ are convergent?

In this paper the following theorem is proved:

Theorem. Let $T = T^{(1)}$ be an irreducible symmetric tridiagonal matrix. The QL algorithm with shift $\{\sigma_k\}$ is applied to $T^{(1)}$. If $\alpha_1^{(k)} - \sigma_k \to 0$ and $\beta_i^{(k)} \to 0$ $(i = 1, 2, \dots, j)$,

^{*} Received September 28, 1984.

then $\alpha_s^{(k)} \rightarrow \lambda_s$ (s=1, 2, ..., j), where $\lambda_1, \lambda_2, \dots, \lambda_j$ are j different eigenvalues of T.

Using the above theorem, we can give an improvement on Theorem 8.11 of [4] as follows:

Theorem. Let the QL algorithm with Wilkinson's shift be applied to an unreduced tridiagonal matrix T. Then as $k\to\infty$, $\beta_1\to 0$. If, in addition, $\beta_2\to 0$, $\beta_3\to 0$, then as $k\to\infty$,

$$|\hat{\beta}_1/\beta_1^3\beta_2^2| \rightarrow |\lambda_2-\lambda_1|^{-8}|\lambda_3-\lambda_1|^{-1} \neq 0$$
,

where λ_1 , λ_2 , λ_3 are the limits of α_1 , α_2 , α_3 .

There is also a dicussion on the asymptotic convergence rate in the case of the Rayleigh quotient shift and the RW shift.

§ 2. Some Basic Theorems

Let

be a real tridiagonal symmetric matrix. Given a scalar σ , called the shift, consider the orthogonal-lower triangular factorization

$$T - \sigma I = QL, \tag{2}$$

where I is the identity matrix, Q is an $n \times n$ orthogonal matrix

$$Q = (q_1, q_2, \dots, q_n),$$

$$q_i = (q_{1i}, q_{2i}, \dots, q_{ni})^T,$$

and L is a lower triangular matrix

$$L = (l_{ij}), l_{ij} = 0 \text{ when } j > i.$$

$$\hat{T} = LQ + \sigma I. \tag{3}$$

Let

Obviously \hat{T} is a symmetric tridiagonal matrix too. Denote

and there is a relationship between T and \hat{T} , namely

$$\hat{T} = Q^T T Q. \tag{4}$$

The transformation from T to \hat{T} is a QL transformation with shift σ .

Given a symmetric tridiagonal matrix T, let $T^{(1)} = T$. We do QL transformation with shift σ_k to $T^{(k)}$ successively and get a matrix-sequence $\{T^{(k)}\}$, such that

$$T^{(k)} - \sigma_k I = Q_k L_k,$$

$$T^{(k+1)} = L_k Q_k + \sigma_k I,$$
 $Q_k = (q_1^{(k)}, q_2^{(k)}, \dots, q_n^{(k)}),$
 $L_k = (l_{ij}^{(k)}).$

From (4), we know $T^{(k)}$ is similar to T. So they have the same eigenvalues. Let

$$T_{i,n}^{(k)} = egin{pmatrix} lpha_i^{(k)} & eta_i^{(k)} & eta_{i+1}^{(k)} & eta_{i+1}^{(k)} & eta_{i+1}^{(k)} & eta_{i+1}^{(k)} & eta_{i-1}^{(k)} & eta_{n-1}^{(k)} & eta_n^{(k)} & eta_n^{(k)} \end{pmatrix}, \quad T_{1,n}^{(k)} = T_{1,n}^{(k)}.$$

For the sake of simplicity, hereafter we will often omit the index k and use \hat{T} for $T^{(k+1)}$ if there is no confusion.

Lemma 1. In the QL transformation if the included angle of q_1 and $e_1 = (1, 0, 0, \dots, 0)^T$ is θ , namely $q_{11} = \cos \theta$, then

$$(T-\sigma I)q_1=l_{11}e_1,$$
 (5)

$$|\hat{\beta}_1| = l_{11} |\sin \theta|. \tag{6}$$

Proof. See [4, 8-11-2 and 8-11-3].

Lemma 2. Let

$$d_s = \det(T_{s,n} - \sigma I), \quad s = 1, 2, \dots, n,$$

$$d_{n+1} = 1.$$

If σ is not an eigenvalue of T, then in the QL transformation (2), (3), the i-th component of q_1

$$q_{i1} = (-1)^{i-1}l_{11}\beta_1\beta_2\cdots\beta_{i-1}d_{i+1}/d_1, \quad i=1, 2, \dots, n;$$
 (7)

when i=1,

$$\beta_1\beta_2\cdots$$
, $\beta_{i-1}=1$.

Proof. By Cramer's rule, from (5) we get

$$q_{i1} = \frac{1}{d_1} \begin{vmatrix} \bar{a}_1 & \beta_1 & 0 & \cdots & 0 & l_{11} & 0 & \cdots & 0 \\ \beta_1 & \bar{a}_2 & \beta_2 & \cdots & 0 & 0 & & & \\ \beta_2 & & & & & & & \\ & & & \bar{a}_{i-1} & 0 & & \\ & & & & \beta_{i-1} & 0 & \beta_i & & \\ & & & & 0 & \bar{a}_{i+1} & & \\ & & & & 0 & \bar{a}_{i+1} & & \\ & & & & & \beta_{n-1} & \bar{a}_n \end{vmatrix}$$

$$= (-1)^{i-1} \frac{l_{11}}{d_1} \beta_1 \beta_2 \cdots \beta_{i-1} d_{i+1},$$

where $\bar{\alpha}_i = \alpha_i - \sigma$.

Theorem 1. Let T be an irreducible symmetric tridiagonal matrix. Then in the transformation (2), (3), the following equalities hold

$$l_{11}^2 = d_1^2/(d_2^2 + \beta_1^2 K^2), \tag{8}$$

$$\sin^2\theta = \beta_1^2 K^2 / (d_2^2 + \beta_1^2 K^2), \tag{9}$$

$$\hat{\beta}_1^2 = \beta_1^2 d_1^2 K^2 / (d_2^2 + \beta_1^2 K^2)^2, \tag{10}$$

where

$$K^{2} = d_{3}^{2} + (\beta_{2}d_{4})^{2} + (\beta_{2}\beta_{3}d_{5})^{2} + \dots + (\beta_{2}\beta_{3}\dots\beta_{n-1})^{2}.$$

Proof. If σ is not an eigenvalue of T, then $d_1 \neq 0$. So

$$q_{i1} = (-1)^{i-1}l_{11}\beta_1\beta_2\cdots\beta_{i-1}d_{i+1}/d_1.$$

Because $\sum_{i=1}^{n} q_{i1}^2 = 1$ and by Lemma 2 we get

$$\frac{l_{11}^2}{d_1^2} \sum_{i=1}^n (\beta_1 \beta_2 \cdots \beta_{i-1} d_{i+1})^2 = 1.$$

So

$$l_{11}^2 = d_1^2/(d_2^2 + \beta_1^2 K^2)$$
.

By

$$\sin^2\theta = q_{21}^2 + q_{31}^2 + \dots + q_{n1}^2$$

$$\begin{split} \sin^2\theta = & \frac{l_{11}^2}{d_1^2} (\beta_1 d_3)^2 + (\beta_1 \beta_2 d_4)^2 + \dots + (\beta_1 \beta_2 \dots \beta_{n-1})^2 \\ = & l_{11}^2 \beta_1^2 K^2 / d_1^2 = \beta_1^2 K^2 / (d_2^2 + \beta_1^2 K^2) \,. \end{split}$$

At last by (6),

$$\hat{\beta}_1^2 = l_{11}^2 \sin^2 \theta = d_1^2 \beta_1^2 K^2 / (d_2^2 + \beta_1^2 K^2)^2.$$

If σ is an eigenvalue of T, then (8) and (10) hold obviously. For equality (9) in this case

$$l_{11}=0, l_{22}\neq 0, l_{33}\neq 0, \cdots, l_{nn}\neq 0.$$

So q_i $(i=2, 3, \dots, n)$ are continuous functions of σ . Since q_1 is the only vector which is orthogonal with q_2, q_3, \dots, q_n , unless a sign, q_1 is a continuous function of σ too. Therefore both sides of (9)

$$\sin^2 \theta = \sum_{i=2}^{n} q_{i1}^2$$
 and $\beta_1^2 K^2 / (d_2^2 + \beta_1^2 K^2)$

are continuous functions of σ . Using the limit we know (9) holds when σ is an eigenvalue of T.

Lemma 3. Let T be unreduced. If the shift σ_k satisfies

$$\alpha_1^{(k)} - \sigma_k \rightarrow 0$$
 and $\beta_1^{(k)} \rightarrow 0$,

then

$$\sin \theta_k \to 0,$$

$$\sin^2 \theta_k = \sum_{i=1}^n (q_{i1}^{(k)})^2.$$

where

Proof. By (9),

$$\sin^2\theta_k = (\beta_1^{(k)})^2 (K^{(k)})^2 / ((d_2^{(k)})^2 + (\beta_1^{(k)})^2 (K^{(k)})^2).$$

Because $||T^{(k)}||_2 = ||T||_2$ is bounded, $\beta_1^{(k)}$, $\beta_2^{(k)}$, ..., $\beta_{n-1}^{(k)}$ are bounded uniformly, and so are $d_1^{(k)}$, $d_2^{(k)}$, ..., $d_n^{(k)}$ and $K^{(k)}$.

On the other hand,

$$d_2^{(k)} = \det (T_{2,n}^{(k)} - \sigma_k I) = \prod_{j=2}^n (\mu_j^{(k)} - \sigma_k),$$

where $\mu_2^{(k)}$, $\mu_3^{(k)}$, ..., $\mu_n^{(k)}$ are eigenvalues of $T_{2,n}^{(k)}$.

By the Wielandt-Hoffman theorem,

$$(\alpha_1^{(k)} - \lambda_1^{(k)})^2 + \sum_{j=2}^n (\mu_j^{(k)} - \lambda_j^{(k)})^2 = 2(\beta_1^{(k)})^2,$$

where $\lambda_1^{(k)}$, $\lambda_2^{(k)}$, ..., $\lambda_n^{(k)}$ are eigenvalues of matrix T.

Since T is unreduced, $\lambda_1^{(k)}$, $\lambda_2^{(k)}$, ..., $\lambda_n^{(k)}$ are different with each other.

For a large enough natural number K_1 , when $k>K_1$, we have

$$|\alpha_1^{(k)} - \sigma_k| < \min_{i \neq j} |\lambda_i^{(k)} - \lambda_j^{(k)}| / 10 = \delta$$

and $\beta_1^{(k)} < \delta/2$. Hence

$$|\mu_{j}^{(k)} - \sigma_{k}| = |\mu_{j}^{(k)} - \lambda_{j}^{(k)} + \lambda_{j}^{(k)} - \lambda_{1}^{(k)} + \lambda_{1}^{(k)} - \alpha_{1}^{(k)} + \alpha_{1}^{(k)} - \sigma_{k}|$$

$$\geq |\lambda_{j}^{(k)} - \lambda_{1}^{(k)}| - 3\delta \geq 7\delta,$$

and there is a constant O independent of k such that

$$|d_2^{(k)}| = \prod_{j=2}^n |\mu_j^{(k)} - \sigma_k| \ge C > 0.$$

By (9) we have

$$\lim_{k\to\infty}\sin^2\theta_k=0.$$

Corollary. If σ_k is the Wilkinson shift or the RW shift, then

$$\sin \theta_k \rightarrow 0.$$

Proof. It is known that in the case of the Wilkinson shift or the RW shift, we have

$$\alpha_1^{(k)} - \sigma_k \rightarrow 0$$
 and $\beta_1^{(k)} \rightarrow 0$.

So $\sin \theta_k \rightarrow 0$.

Theorem 2. Let T be an irreducible symmetric tridiagonal matrix. From $T^{(1)} = T$, successively do QL transformation with shift σ_k . If $\alpha_1^{(k)} - \sigma_k \rightarrow 0$ and there is an integer j $(1 \le j < n)$, such that

then

 $\beta_i^{(k)} \rightarrow 0, \quad i=1, 2, \dots, j,$

Proof.

$$q_{i,i+1}^{(k)} \to 0, \quad i=1, 2, \dots, j.$$

 $\hat{T} = LQ + \sigma I$,

 $\hat{\beta}_1 = q_{12} l_{11}$.

By Lemma 1.

$$|\hat{\beta}_1| = l_{11} |\sin \theta|;$$

SO

$$|q_{12}| = |\sin \theta|.$$

In the case j=1, the conditions of this theorem are

$$\alpha_1^{(k)} - \sigma_k \rightarrow 0 \quad \text{and} \quad \beta_1^{(k)} \rightarrow 0.$$

By Lemma 3, we have $\sin \theta \rightarrow 0$. Hence $q_{12} \rightarrow 0$. It shows that Theorem 2 holds when j=1.

Now let us use the Principle of Finite Induction. Suppose the proposition is true when j=m-1. From

 $(T-\sigma I)Q=L^T$

we have

$$(T-\sigma I)q_m = l_{m1}e_1 + l_{m2}e_2 + \cdots + l_{mm}e_m$$
.

Let

$$\tilde{q}_{m} = (q_{m,m}, q_{m-1,m}, \dots, q_{n,m})^{T}$$

and
$$e_1 = (1, 0, \dots, 0)^T \in \mathbb{R}^{n-m+1}$$
. So
$$(T_{m,n} - \sigma I) \widetilde{q}_m = (I_{mm} - \beta_{m-1} q_{m-1,m}) e_1.$$

By Lemma 2,

$$q_{i,m} = (-1)^{i-m} (l_{mm} - \beta_{m-1}q_{m-1,m}) \beta_m \beta_{m+1} \cdots \beta_{i-1} d_{i+1}/d_m, \quad i=m, m+1, \cdots, n.$$

Since

$$q_m = (0, 0, \dots, 0, q_{m-1,m}, \tilde{q}_m^T)^T$$

and

$$q_{m-1,m}^2 + \sum_{i=m}^n q_{i,m}^2 = 1$$
,

90

$$\sum_{i=m}^{n}q_{i,m}^{2} = \frac{(l_{m,m} - \beta_{m-1}q_{m-1,m})^{2}}{d_{m}^{2}}(d_{m+1}^{2} + \beta_{m}^{2}G_{m}^{2}) = 1 - q_{m-1,m,m}^{2}$$

where $G_m^2 = d_{m+2}^2 + (\beta_{m+1}d_{m+3})^2 + \cdots + (\beta_{m+1}\beta_{m+2}\cdots\beta_{m-1})^2$. Therefore

$$(l_{m,m}-\beta_{m-1}q_{m-1,m})^2 = \frac{(1-q_{m-1,m}^2)d_m^2}{d_{m+1}^2+\beta_m^2G_m^2},$$

$$(l_{m,m} - \beta_{m-1}q_{m-1,m}) = \pm (1 - q_{m-1,m}^2)^{1/2} d_m / (d_{m+1}^2 + \beta_m^2 G_m^2)^{1/2}$$

and

$$l_{mm} = \beta_{m-1}q_{m-1,m} \pm (1 - q_{m-1,m}^2)^{1/2} d_m / (d_{m+1}^2 + \beta_m^2 G_m^2)^{1/2}.$$

Since $\beta_i \rightarrow 0$ $(i=1, 2, \dots, m)$, it is easy to know

$$|d_m| \geqslant C > 0,$$

$$|d_{m+1}| \geqslant C > 0$$

for large enough k. So by the hypothesis of the induction $q_{m-1,m} \rightarrow 0$

$$|l_{mm}| \geqslant C' > 0$$

for large enough k, where C' is independent of k.

The m-th row and m+1-th column of the equality

$$\hat{T} = LQ + \sigma I$$

is

$$\hat{\beta}_{m} = l_{m1}q_{1, m+1} + \dots + l_{m, m-1}q_{m-1, m+1} + l_{mm}q_{m, m+1} = l_{mm}q_{m, m+1}.$$

Thus

$$q_{m,m+1} = \hat{\beta}_m/l_{mm} \rightarrow 0.$$

Corollary. The asymptotic convergence rate of $q_{m,m+1}$ is the same as that of $\hat{\beta}_m$.

Theorem 3. Let the QL algorithm with shift $\{\sigma_k\}$ be applied to an irreducible symmetric tridiagonal matrix $T = T^{(1)}$. If there is an index j $(1 \le j < n)$ such that

$$a_i^{(k)} - \sigma_k \rightarrow 0$$
 and $\beta_i^{(k)} \rightarrow 0$, $i = 1, 2, \dots, j$,

then

$$q_s \rightarrow \pm e_s$$
 and $\alpha_s \rightarrow \lambda_s$, $s = 1, 2, \dots, j$,

where $\lambda_1, \lambda_2, \dots, \lambda_j$ are j different eigenvalues of T.

Proof. For j=1, by $\sin\theta\to 0$, we have $q_1\to\pm e_1$. Now we prove

$$q_m \rightarrow \pm e_m$$
, $m=2, 3, \dots, j$.

 $\mathbf{B}\mathbf{y}$

$$(T-\sigma I)q_m = l_{m1}e_1 + l_{m2}e_2 + \cdots + l_{mm}e_m,$$

$$q_{mm}^2 = (l_{mm} - \beta_{m+1}q_{m+1,m})^2 d_{m+1}^2/d_m^2.$$

In the proof of Theorem 2, we know

So

$$(l_{mm} - \beta_{m-1}q_{m-1,m})^2 = (1 - q_{m-1,m}^2) d_m^2 / (d_{m+1}^2 + \beta_m^2 G_m^2).$$

$$q_{mm}^2 = (1 - q_{m-1,m}^2) d_{m+1}^2 / (d_{m+1}^2 + \beta_m^2 G_m^2) \rightarrow 1,$$

namely

$$q_m \rightarrow \pm e_m$$

Now we come to prove $\alpha_s \rightarrow \lambda_s$:

where

$$B_{j+1} = egin{pmatrix} 0 & oldsymbol{eta_1^{(k)}} & oldsymbol{eta_1^{(k)}} & oldsymbol{eta_2^{(k)}} & oldsymbol{eta_2^{(k)}} & oldsymbol{eta_j^{(k)}} & oldsymbol{eta_j$$

Obviously $||B_{j+1}||_{F} \to 0$ under the hypotheses of Theorem 3. By the Wielandt-Hoffman theorem, we know there is a natural number K_1 , such that when $k > K_1$,

 $|\alpha_s^{(k)} - \lambda_s| \leqslant \delta_1, \quad s = 1, 2, \cdots, j, \tag{11}$

where

$$\delta_1 < \min_{i \neq j} |\lambda_i - \lambda_j|/10$$
,

 $\lambda_j(j=1, 2, \dots, n)$ are eigenvalues of T, which are different since T is an irreducible matrix.

On the z-plane, there are n circles

$$|z-\lambda_j| \leqslant \delta_1, \quad j=1, 2, \cdots, n \tag{12}$$

disjointed with each other.

We will prove that for large enough k, the eigenvalue λ_s in (11), $s=1, 2, \dots, j$, are independent of k. For this aim, we will show that if $\alpha_s^{(k)}$ falls in the circle

$$|z-\lambda_s| \leqslant \delta_1 \tag{13}$$

then $\alpha_s^{(k+1)}$ falls in the same circle (13).

By

$$\hat{T} = Q^T T Q$$

80

$$\hat{\alpha}_s = q_s^T T q_s.$$

By $q_s \rightarrow \pm e_s$, we can write $q_s = \pm e_s + s_s$, where $s_s \rightarrow 0$ $(k \rightarrow \infty)$,

$$\hat{\alpha}_s = (\pm e_s^T + e_s^T)T(\pm e_s + e_s) = e_s^TTe_s \pm 2s_s^TTe_s + e_s^TTe_s = \alpha_s + 2s_s^TTe_s + \epsilon_s^TTe_s + \epsilon_s^TTe_s$$

We can find $K_2 > K_1$. When $k \ge K_2$ there holds

$$|\alpha_s^{(k+1)} - \alpha_s^{(k)}| \leq \delta_1.$$

Therefore

$$\left|\alpha_s^{(k+1)} - \lambda_s\right| = \left|\alpha_s^{(k+1)} - \alpha_s^{(k)} + \alpha_s^{(k)} - \lambda_s\right| \leqslant \left|\alpha_s^{(k+1)} - \alpha_s^{(k)}\right| + \left|\alpha_s^{(k)} - \lambda_s\right| \leqslant 2\delta_1.$$

It says that $\alpha_*^{(k+1)}$ falls in no other circle of (12) than the circle (13). It shows that when $k \ge K_2$, λ_* in (11) is independent of k. Since δ_1 can be arbitrarily small, hence

...

$$\lim_{k\to\infty}\alpha_s^{(k)}=\lambda_s.$$

§ 3. Asymptotic Convergence Rates for Some Kinds of Shift

Lemma 4. If $\alpha_1^{(k)} - \sigma_k \rightarrow 0$ and $\beta_i \rightarrow 0$ $(i=1, 2, \dots, j)$, then

$$d_{j+1} \rightarrow \prod_{m=j+1}^{n} (\lambda_m - \lambda_1).$$

Proof. By Theorem 3,

$$\alpha_s^{(k)} \rightarrow \lambda_s$$
, $s=1, 2, \dots, j$.

Let the n eigenvalues of T be $\lambda_1, \lambda_2, \dots, \lambda_s, \lambda_{s+1}, \dots, \lambda_n$. Denote n-j eigenvalues of $T_{j+1,n}$ as $\mu_{j+1}, \mu_{j+2}, \dots, \mu_n$. By the Wielandt-Hoffman theorem,

$$(\mu_{j+1}-\lambda_{j+1})^2+(\mu_{j+2}-\lambda_{j+2})^2+\cdots+(\mu_n-\lambda_n)^2\leqslant \|B_{j-1}\|_F^2.$$

$$d_{j+1}=\prod_{m=j+1}^n(\mu_m-\sigma)=\prod_{m=j+1}^n(\lambda_m-\lambda_1)+\varepsilon,$$

where $s\to 0$ while $||B_{j+1}||_F^2\to 0$. Since $\prod_{m=j+1}^n (\lambda_m-\lambda_1)$ is independent k, when k is large enough,

$$d_{j+1} \to \prod_{m=j+1}^n (\lambda_m - \lambda_1).$$

Corollary. When $j \ge 2$, $K^2 \to \prod_{m=3}^{n} (\lambda_m - \lambda_1)^2$.

Now we turn to the asymptotic convergence rates for some kinds of shift.

(1) Rayleigh quotient shift. In this case

$$\sigma_k = \alpha_1^{(k)}$$
.

It satisfies the condition $\alpha_1^{(k)} - \sigma_k \rightarrow 0$ obviously. By (10),

$$\hat{\beta}_1^2 = \beta_1^2 d_1^2 K^2 / (d_2^2 + \beta_1^2 K^2)^2.$$

Since

$$d_1 = (\alpha_1 - \sigma)d_2 - \beta_1^2 d_3 = -\beta_1^2 d_3,$$

therefore

$$\hat{\beta}_1^2 = \beta_1^6 d_3^2 K^2 / (d_2^2 + \beta_1^2 K^2)^2$$
.

Moreover if $\beta_1 \rightarrow 0$, then

$$\hat{\beta}_1^2/(\beta_1^6 d_3^2 K^2) \to \prod_{m=2}^n (\lambda_m - \lambda_1)^{-4} \neq 0.$$

If in addition $\beta_2 \rightarrow 0$, then

$$d_3^2 \rightarrow \prod_{m=3}^n (\lambda_m - \lambda_1)^2$$
,

$$K^2 \to \prod_{m=3}^n (\lambda_m - \lambda_1)^2$$
,

and

$$\hat{\beta}_1^2/\beta_1^6 \rightarrow (\lambda_2 - \lambda_1)^{-4} \neq 0.$$

Therefore we have

Theorem 4. Suppose the symmetric tridiagonal matrix T is irreducible. We do the QL transformation with Rayleigh quotient shift successively. If $\beta_1 \rightarrow 0$, then

$$\hat{\beta}_1^2/(\beta_1^6 d_3^2 K^2) \rightarrow \prod_{m=2}^n (\lambda_m - \lambda_1)^{-4} \neq 0.$$

If in addition $\beta_2 \rightarrow 0$, then

$$\hat{\beta}_{1}^{2}/\beta_{1}^{6} \rightarrow ((\lambda_{2}-\lambda_{1})^{4})^{-1} \neq 0.$$

Wilkinson's shift. In this case σ is the root of the equation

$$(\alpha_1-\sigma)(\alpha_2-\sigma)-\beta_1^2=0,$$

which is the one nearer to α_1 , namely

$$\sigma = \alpha_1 - \operatorname{sign}(\delta)\beta_1^2/(|\delta| + \sqrt{\delta^2 + \beta_1^2}),$$

where $\delta = (\alpha_2 - \alpha_1)/2$. We have $|\alpha_1 - \sigma| \leq \beta_1$. By [1], [2], we know $\beta_1 \rightarrow 0$ in this case. So it satisfies the conditions of Theorem 3 when j=1, namely

$$\alpha_1 - \sigma \rightarrow 0$$
 and $\beta_1 \rightarrow 0$.

By Theorem 3, $\alpha_1 \rightarrow \lambda_1$. On the other hand

and

$$\hat{\beta}_1^2 - \beta_1^2 d_1^2 K^2 / (d_2^2 + \beta_1^2 K^2)^2$$

$$d_1 = (\alpha_1 - \sigma)d_2 - \beta_1^2 d_3,$$

$$d_2 = (\alpha_2 - \sigma)d_3 - \beta_2^2 d_4.$$

So

$$d_1 = ((\alpha_1 - \sigma)(\alpha_2 - \sigma) - \beta_1^2)d_3 - (\alpha_1 - \sigma)\beta_2^2d_4 = -(\alpha_1 - \sigma)\beta_2^2d_4$$

$$\hat{\beta}_1^2 = \beta_1^2(\alpha_1 - \sigma)^2\beta_2^4d_4^2K^2/(d_2^2 + \beta_1^2K^2)^2.$$

and

$$\hat{\beta}_1^2 = \beta_1^2 (\alpha_1 - \sigma)^2 \beta_2^4 d_4^2 K^2 / (d_2^2 + \beta_1^2 K^2)^2.$$

Therefore

$$\hat{\beta}_1^2/(\beta_1^2(\alpha_1-\sigma)^2\beta_2^4d_4^2K^2) \to \prod_{m=2}^n (\lambda_m-\lambda_1)^{-4} \neq 0.$$

Moreover

$$\alpha_1 - \sigma = \beta_1^2/(\alpha_2 - \sigma).$$

So

$$\hat{\beta}_1^2 = \beta_1^8 \beta_2^4 d_4^2 K^2 / ((\alpha_2 - \sigma)^2 (d_2^2 + \beta_1^2 K^2)^2),$$

and

$$\hat{\beta}_{1}^{2}(\alpha_{2}-\sigma)^{2}/(\beta_{1}^{6}\beta_{2}^{4}d_{4}^{2}K^{2}) \rightarrow \prod_{m=2}^{n}(\lambda_{m}-\lambda_{1})^{-4} \neq 0.$$

If in addition $\beta_2 \rightarrow 0$, then

$$\alpha_2 - \sigma \rightarrow \lambda_2 - \lambda_1 \neq 0$$

and

$$K^2 \to \prod_{m=3}^n (\lambda_m - \lambda_1)^2$$
.

Therefore

$$\hat{\beta}_{1}^{2}/(\beta_{1}^{6}\beta_{2}^{4}d_{4}^{2}) \rightarrow (\lambda_{2}-\lambda_{1})^{-6} \prod_{m=3}^{n} (\lambda_{m}-\lambda_{1})^{-9} \neq 0.$$

If in addition $\beta_2 \rightarrow 0$, $\beta_3 \rightarrow 0$, then

$$d_4^2 \rightarrow \prod_{m=4}^n (\lambda_m - \lambda_1)^2$$

and

$$\hat{\beta}_{1}^{2}/(\beta_{1}^{6}\beta_{2}^{4}) \rightarrow (\lambda_{2}-\lambda_{1})^{-6}(\lambda_{3}-\lambda_{1})^{-2} \neq 0.$$

We write these conclusions as follows.

Let the symmetric tridiagonal matrix T be irreducible, and make QL transformation with Wilkinson's shift successively. Then

$$\hat{\beta}_1^2(\alpha_2-\sigma)^2/(\beta_1^6\beta_2^4d_4^2K^2) \to \prod_{m=2}^n (\lambda_m-\lambda_1)^{-4} \neq 0.$$

If in addition $\beta_2 \rightarrow 0$, then

$$\hat{\beta}_1^2/(\beta_1^6\beta_2^4d_4^2) \rightarrow (\lambda_2-\lambda_1)^{-6} \prod_{m=3}^n (\lambda_m-\lambda_1)^{-2} \neq 0.$$

If in addition $\beta_2 \rightarrow 0$, $\beta_3 \rightarrow 0$, then

$$\hat{\beta}_1^2/(\beta_1^6\beta_2^4) \rightarrow (\lambda_2-\lambda_1)^{-6}(\lambda_3-\lambda_1)^{-2} \neq 0.$$

Theorem 5 is an improvement on Theorem 8.11 of [4], where $\alpha \mapsto \lambda_i (i=1, 2, 3)$ are considered as conditions.

(3) RW shift (see [3]). In this case the shift σ is Wilkinson's shift, namely $\sigma = \alpha_1 - \operatorname{sign}(\delta) \beta_1^2 / (|\delta| + \sqrt{\delta^2 + \beta_1^2}), \quad \delta = (\alpha_2 - \alpha_1)/2$

if $\beta_2^2 < 2\beta_1^2$. And the shift is the Rayleigh quotient shift, namely

$$\sigma = \alpha_1$$

if $\beta_2^2 \geqslant 2\beta_1^2$.

By [3] we have $\beta_1 \rightarrow 0$ in this case. From the definition of the RW shift, it is easy to know $\alpha_1 - \sigma \rightarrow 0$. So the conditions of Theorem 3 hold in this case. We have

$$\alpha_1 \rightarrow \lambda_1$$
, $d_2 \rightarrow \prod_{m=2}^n (\lambda_m - \lambda_1)^2$.

Theorem 6. Let the symmetric tridiagonal matrix T be irreducible, and make the QL transformation with RW shift successively. Then

$$\hat{\beta}_{1}^{2}/(G\beta_{1}^{6}) \rightarrow \prod_{m=2}^{n} (\lambda_{m} - \lambda_{1})^{-4} \neq 0,$$

where

$$G = \begin{cases} d_3^2 K^2, & \beta_2^2 \ge 2\beta_1^2, \\ \beta_2^4 d_4^2 K^2/(\alpha_2 - \sigma)^2, & \beta_2^2 < 2\beta_1^2 \end{cases}$$

and in the case $\beta_2^2 < 2\beta_1^2$, we have $(\alpha_2 - \sigma)^2 \ge C > 0$, C being a constant independent of k, for large enough $k^{[8]}$.

References

- [1] J. H. Wilkinson, Global convergence of tridiagonal QR with origin shifts, Linear Algebra and Its Applications, 1 (1968), 409—420.
- [2] W. Hoffmann, B. N. Parlett, A new proof of global convergence for the tridiagonal QL algorithm, SIAM Numer. Anal., 15 (1978), 929—937.
- [3] Jiang Er-xiong, Zhang Zhen-yue, A new shift of the QL algorithm for irreducible symmetric tridiagonal matrices, to appear in Linear Algebra and Its Applications.
- [4] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., 1980.