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Abstract

Perturbation theorems for the spectrum of a regular matrix pendil rA--B are given. As it may
jnclude points near or at infinity the Kuclidean distance is not appropriate. Wa use the chordal metric

o [

and the distances w(A, A) =min{|A—2], |A"1—%-1|} and v{, A) ={|A—h| if |A|<1 and |;~.-1-E-1]
if |A|>1}. For those purpeses we develop here an algebraic treatment of matrix pairs, with special
refercnee to diagonablp and definite pairs, using ideas from the theory of matriz polynomials.

§ 1. Introduction

Throughout this paper (A4, B) will denote a regular pair of nXmn complex
matrices. That is det (A4 — B) %0, where A is a complex parameter. Thus, there is a
discrete set of complex numbers, the eigenvalues of the pair, for which det(AA— B)
—0. Denote this set by o (A4 — B), the spectrum of the pencil A4A— B, and note that
it may inolude the point at infinity.

We are concerned with a perturbation problem: To find bounds for the variation
in the eigenvalues when (4, B) is perturbed to (A+E, B+F) in terms of norms
of B and F. It is well recognized that, when A is gingular, or “nearly” so, the
Fuclidean metric is not appropriate for measuring the eigenvalue variations. This
has led to investigations in terms of a homogeneous problem: Consider the set of
complex pairs A, u for which det (AA— uB)=0 and measure the distance between
pairs in terms of the chordal metrio, p. This is because the chordal metric has the

homogeneity property:
o( (BN, k) (@, B)) =p((h, w), (&, B))-

Thig formulation also has the merit of treating A and B in a symmetrical way. This
line of attack hag been studied by Stewart™, Elsner and Sun™, et al.

The investigations of this paper are based on a rather different idea. The chordal
metric suggests that an eigenvalue A id better viewed as a representative (A, 1) of
o olass of equivalent number pairs for the eigenvalue problem in homogeneous
form. Since the difficulties of perturbation theory arise when |A| is large compared
to 1, we propose that, when |A| >1 we congider the “reversed”’ eigenvalue pair

(1, A7Y). In this way we Tretain the symmetrical ireatment of A and B and avoid

Ly
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some of the complications assoeciated with working with the chordal metrie.

When considering perturbation of an eigenvalue A of (4, B) with [A]l<<1itis
convenient to measure the distance from o (A4 —B) by also writing all eigenvalues
of (4, B) in the direct form (%, 1). Similarly, if [A[>1, 2 is written in the reverse
form (1, A1) for all %2 Eo(Ad—B). Thus, we are led to the measure of distance

A, A)=
aaly {1‘1—1'1| if |a|>1.

Note that v is not a metrio. For example, v(A, %) s=v(A, A), in general. Nevertheless,
it ig a nseful and convenient measure in this context.
We shall also employ the following measures of distance (the latter is the

chordal metrio and will admit comparisons with the analysis of [2] and [7], for
example):

(1.1)

w(d, ¥y =min(|a=%|, [A=37]), ' 1.2

N A—4]
P B = T A -

Note that w(h, &) =w(r3, A1) and p(A, 3) =p(A71, 7). Also, these measures of
distance are relaked as follows:

o<w<y, w@_‘i&; | (1.4)

and, if w<1, then v<w/(1—w). . | '
Tet (A, B) and (4, B) be regular pairs of nXn matrices with (possibly

infinite) eigenvalues Ay, Ag, **, An and R, ***, hn, Tespectively. A. spectral variation
is defined for these pairs in terms of #, w OT p by

S(A,B) (;..[r, g) '=I|:ljﬂ,x min W(ih }"i)} (1-5)
¢

S s (E, B) =mjax min w0 (A;, ?n.{j, | (1.6)
4

SEE{B}(Z, B) =max min o(As, M) (1.7)

i i

The primary objective of this paper i o obtain bounds for these spectral variations
in terms of | A— A} and | B—B|. This is achieved in Theorem 3.8 for diagonable
pairs and in Theorem 5 8 for definite hermitian pairs. In Theorem .2 we have a
regult for a more general class of hermitian pairs. In the case of 8@ gur results
give some improvement on the resulis of Elsner and Sun®. The contributions of
this paper also include improved proofs, and (possibly more _ﬂnnven.ient)
moasures § and S of the speciral variation, and the more general result on
hermitian pairs just cited.

The orux of our analysis is the division of the eigenvalues of (4, B) into those
which are “small” and “large” in an appropriate semse. This I8 suggestive of an
algebraic analysis of mairix polynomials presented by Gohberg, Lancaster and
Rodman in Chapter 7 of [8]. Taking advantage of these ideas we need, and develop
here, an algebraic treatment of matrix pairs, with special reference 10 diagonable

and definite pairs; a treatment thatb seems to be missing in the literature on this
problem area. |
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Y 2. The Algebraic Structure of Regular Pencils

The concepts and results of this section are olosely Telated to the development
of Chapter 7 of [8]. Here, they are tailored to the specifio needs of this paper.

Let A, B& C"* and assume that the pencil A4 — B ig regular, i.e. det (A4 — B)=0.
A pair (X, T') is a decomposable pair for Ad — B (with parameter m) if the
following three conditions are satisfied:

T'e € and for some integer m<n, T =T",@® T, where T € C™*m, (2.1)

XEOCvm  detX %0, (2.2)
If X=[X,, X;], where X ;& C™" then
AI]T;[—BI:[“O, AIE—'BXQTQ'FO. ¥ (2.3)

The integer m is called the parameter of the pair (X, T').
For any matrix M€ C"", let »(M) denote the speotral radius of M. Thus,
r(M) =1:£Eax( |2]), where o =¢ (AT —M).

The pair (X, T') is called striotly decomposable, if it is decomposable and also

’ p1<p3’, (2.4)
where Pi="r(Ti): '!-r=—"1_, 2. |
In our applications m will likely be chosen so that p;=1. To avoid trivialities

we generally assume tacitly that 0<m<n. For the existence of decomposable pairs
we refer to Chapter 7 of [8].

Given a decomposable pair (X, T") we define another matrix pencil by writing

Ma—Ty 0 |

T(A\)= i

o o AR

The following lemma shows that, in particular, Ad—B and T'(A) are strictly

equivalent.

Lemma 2.1. If (X, T) is a decomposable pair for the regular pencil A4 — B,

then the mairiz V = [AX,, BX,] is nonsingular. I f

Y,
Vil : , 2.0
v [Y] (2.6)

(2.6)

where ¥ 1€ C™"®, then for all ACC
Y (AA—B)X =T(A) (2.7)
and, for A¢Eo(AAd~— B) |
(A~ B) 1= Xy (AT — T) "V 3+ X s(AT,— I) 17, (2.8)
Proof. Observe that |

oo T _ |
VT (2) =[4X,, Bxﬂ][u ¢ X L[uxi—,wm, ABX.T.—BX,].

0 Als—1 |
Using (2.8) we find

VI(A)=[(a4d—B)X,, A A-B)X,]=(A-B)X. |
Taking determinants we see det ¥ =0. Multiplying on the left by Y=} gives
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(2.7). Equation (2.8) follows from the rearrangement (MA—-B)1=XT(3)Y .}
The triple (X, T, Y) with ¥ defined as in Lemma 2.1 is called a decomposable

triple for AA— B. There is a dual representation for X in terms of V.

Lemwa 2.83. If (X, T,Y) it a decomposable triple for the regular pair AA—B

Y., A7* .
X— [YQB] . (2.9)

Proof. Comparing the coefficients of A in the first m rows of (2.7) gives
YiAX =[1,, 0],
and in the last n —m rows the constant terms give
Y:BX m= [0, Lo n].

then

Henece
Y4
X=1,.
[ Y,;B:I ' l

Observe that we can just as well start out by defining decomposable friples
(X, 7T,Y) as triples of matrices in C"*" such that (2.1) and (2.7) bold, where
T (A) is defined s in (2.5). Then (2.2), (2.8), (2.6) and (2.9) follow.

Two pairs of matrices (X, T') and (X, P) satisfying (2.1) and (2.2) with the
game parameter m are said to be similar if there are nonsingular matrices Rs, Rq
(of sizes m and n—m, respectively), such that

Xy=XsRy, Ty= R'T R,
{ X,=X,R,, Ty=R;'T.R,,
[t is easily verified that if (X, T) is a decomposable pair then every matrix pair
gimilar to (X, T) is also & decomposable pair. A converse statement i true for
strictly decomposable pairs.
Theorem 2.8. Any itwo strictly decomposable pairs with the same parameter
are similar and the transforming matrices defindng this similarity are wnique.
Proof. Let (X, T) and (X, 7) be striotly decomposable pairs for A4 —2 with
the same parameter. Thus, we may write

X=X, X, T=T.®T:,, X=[X; X., F=T:&7T..
Let ¥, ¥ be defined as in Lemma 2.1, Then from (2.7)

Y(LA—B)X-[H—TI ] ] ?‘(M-B):f=[

(2.10)

AL —Ty 0
0 ;\.ﬂ—z]'
' (2.11)
Choose o such that B=B—aA is invertible. Then it follows from (2.11) that

(Ty—al)™? 0 I 0
1 A o= —1 4
Brd=X|" " (I ﬂ)*ijln’ [0 TJK

(Py—al)™ 0
- x| FrmeD ]3:"1 (2.12)
"L 0 (I‘—*ﬂTﬂ)_lTﬂ ;

0 ALy—1I

and similarly
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g (?1—{.':1-)_1 0
B Aﬁf[ 0 (I —alo) 7,

This shows that (7y—al) " @I —aTs) Ty and (F; — a) @I —o') 2T, are
gimilar. We may assume that +(7',) > r(T,), and olaim now that o ((I—aly)1T,)
No((Ty—al)™) =¢. Otherwise there is ;1 € o (7)), ua€ o (T,) such that ta/ (1 —aps)
= (i1 —a)™, which implies p1us—=1. This contradicts () <r(Ty) <r(T;)1,

We may now deduce that (7s—al)? and (I'y—al)™ are similar and so are
(I —aly) Ty and (I —af',)~2F,. Equations (2.12) and (2.18) now tell ug that the
columns of X; and X; are both bages of the invariant subspace of B—14 belonging
to the spectrum of (T'; —aZ)~2. Hence there is a unique Ry€C™™ guch that X 1=
X.R, and similarly there is a unique R, with X,=X ola. From Theorem 2.8 we
infer AX R\ R, =BX,=AX,T,. This implies 7'y =R T, R,, as (by Lemma 2.1)
AX; is of full rank. Similarly To=R;7T,R,.}

The idea of similarity of pairs carries over to triples in a natural way. Two
decomposable triples (X, T, ¥), (X, T, ¥) for the same regular pencil A4 —B are
said t0 be similar if there are nonsingular matrices By, R,y such that

X,=X.R, T=R'TR, Y,=R'Y, i=1, 02,

It is olear from the définition of ¥ in Lemma 2.1 that there is an exact analogue of

Theorem 2.8 for triples.
Corollary 2.4. Any two strictly decomposable triples with the same parameter

are similar and the transforming matrices defining this similarity are unique.

The next corollary follows on making an appropriate choice of parameter m
followed by determination of a decomposable triple (X, 7, Y), and reduction of 7'
and T, t0 Jordan form by choice of B, and R,.

Corollary 2.6. For a given »>>0 there exists 3 striotly decomposable triple for

the regular pencil A4 —B of the form

Ju 0 ! Yi .
[X.‘I: Iﬂ]: l:o Jm :’: [Yﬂ]: (2*14)

where J4 and J_ are Jordan matrices such that
r{Jo) <u<<r(J.)1,

Here, the constant x is chosen to divide the “small” from the “large”
eigenvalues of A4 B, The spectral information concerning the small and large
eigenvalues is summarized in the triples (X3, Jo, ¥4) and (X3, J .., Ya), respectively.
The eigenvalues of J, are, of course, the reciprocals of eigenvalues of 24— B.
In particnlar, J, has a zero eigenvalue if and only if AA—B has an infinite
eigenvalue. ‘

Note that (2.7) implies

VAX =In@®J., YBX=J,@®I. .. (2.15)

and that the parameter m might be equal to 0 or n, so that some of the matrices
in (2.14) do not appear. This can only happen if either B is nonsingular and
r(B74)<«* or A is nonsingular and 7(4~1B) <x.

]E-i. (2.18)
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§ 3. Spectral Variation of Diagonable Pairs

A rogular pair (4, B) is said to be diagonable if the matrices Jo and J, of
Qorollary 2.5 are diagonal. This property is clearly independent of the choice of x.
Equivalent statements are that the pencil A4—B bas only linear elementary
divisors, or that A4 — B has a complete set of eigenvectors. We now use the structure
developed in section 2 in an analysis of the spectral variation for diagonable pairs.
For bounding the speotral variation we need the following lemma. Here, and
throughout this paper we use the euclidean vector morm and the corresponding
induced, {oT operator) norm on matrices. We also uge corresponding lower bounds
for a matrix as developed in [6], for example.

Lemma 8.1. ZLet (A4, B) be diagonable, and Y, X be any nonsingular mairices
suoch that

YAX = A =diag[ay, **, &],

{P’BX-Q-diag[ﬁi, v, Bl
If X is an eigenvalue of the pair A, B, where A=A+ E, B=B+F then
» min |- <I XTI LE, F1] 0+ R, (3.2)

Pmaf Let (i\.ﬂ BYn=0 with || =1. Then

(3.1)

gt

o s Az
(M—B)mﬂ(A—A)?um— (B-——-E)m= — B, F] I:_m],

‘whenoe
[(RA—B)z|<][E, F1| 1+ |A[%)*".
From (3.1) AA—B=Y"1(AA— Q)X and =0
| V[t (RA— Q) [ X< [E, F1]| 1+ |A]%)*3,
which implies (3.2).1
Now we may use Corollary 2.5 to be more specific about the diagonal matrices

A and Q. Choose # =1 in that corollary and we find that there is a strictly
decomposable triple (X, J, ¥) with the form (2, 14) and for which

| r{Joy<1l<r(J.)™?, (3-3)
FAR T, BT, FEE =TIl fem (3.4)

Thus in (3.1) we may take A=1,® J.., @3=J¢ @ I, and observe that, in view of
(3.8),

| 4] = 2] =1. (3.5)

In our estimation of spectral variations we shall also need the following bound
for the size of the left eigenvectors.

Lemma 8.2. Let (4, B) be a diagonable pair and let X, J, Y b8 a sirioctly
decomposable triple for AA— B where J =J@J .., as in Corollary 2. B, with x=1. Then
Yi<~2 XK, (3.6)
where K = AA"+ BB, “'
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Proof. Observe first that, since (4, B) is regular, the matrix [ A, B] hasrank
n, and hence K is nonsingular. From equations (3.4)

YKY'"=(Y AT A"+ B B),=(AXH(UAX)Y'+(QX ) (LX)
Hence, for any y& C®,
y'YKY'y=| X" A% |+ | X 2%,

and
gl (K) [Py < | X ]2(| A°y[*+ [Q@°%|*).
Using (8.58) and the fact that (glb(K)) = | K] we find that if y+0,
<2l X PRy

and (3.6) follows.} |
Theorem 8.8. Let (A, B) be o diagonable pair and let X, J be & strictly
decomposable pair for AMA—B where J = Jo@J .., as in Oorollary 2.5, with x=1.
Let A=A+ E, B=B+F, and assume that
na2| X || x| K2 LE, F1]<1, (8.7)

where K — AA*+BB.. Then
S, By<cls, 88, BY<—yoms  SAn(E, B)y<n/2. (3.8)

Recall that the speotral variations are defined in (1.4), (1.5) and (1.68).

Proof. Let (X, J) be the strictly decomposable pair which determines the
triple of Lemma 3.2. Let A be an eigenvalue of AA—B with |A|<1. Combine
equations (8.2) and (8.6) to get

min |Aoy— Bi] <7, (3.9)

where 9 is defined in (3.7) and
djﬂg [ovg, v+, Gip)] =T o @ Js; diag[Bi: oo, Bal =J o @ Iy (3-10)
Hence thers ig a § for which
[A—2s|<n or |Aw,—1|<7

depending on whether the minimum of (8.9) is attained for ¢<m or 2>>m. Here,
o, Ams Mmit, ***, int are, of course, the eigenvalues of AA—B. If j>m then
-Imllllﬁn Hence

g P
IJu'J‘ = |i|'q =1—n,

and

-

| 5] '-'?
Thus, wherever the minimum is attained, the inequality [A— Al 4—1’_—?? holds for

gome eigenvalue A; of AA— B.
If |X]>1 we view u=A"7 ag an eigenvalue of the pencil A —uB: with |u|<1.
Since the right-hand side of (3.2) is symmetric in 4 and B, we have, agin (3.9),
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min |a,—uBi| <. (3.11)
Then continue the argument as above and it is found that

Tl  5—1 7]
| A"t —A; I-al_n

for some eigenvalue A; of A4 — B,

The first conclusion of (3.8) now follows from the definitions (1.1) and (1.5).
We torn now to the chordal metric. Referring to (8.1), define

D= (AA*+0Q*) 32, ¥ =DY, A=DA=diag[a,, «, Gal,

O =DQ=diag[B:, +, B
s80 that

AR+ =1, (3.12)

Going through the proof of Lemma 8.2, we obtain gib(K) PPy < X2 (| A yl?
+ | @*y|®) = | X | *jy[* by (3.12) and hence

| 7o <] X2 | K2
From (3.2) we gel
‘o |Ra— B -1 -1)|1/2 —
min AL <Lx (LXK 8, £ =2

As ||+ | B:|?=1, we find that the lefi~hand side is equal to p (X, & /B) for a
guitable ¢, hence

S n (4, By<n/2. (3.18)

To obtain the inequality concerning the distance function w, we use the relation
w<2p/(1—p) of (1.4) which, together with (8.18), implies

L4 L i
SEJ..BJ(AI E)Q 1__.,7“/2 gm- I (3'14)
We remark that (8.18) can also be obtained from Theorem 2.1 and (1.18) of

[2], but our approach is more elementary and direct. Eq. (3.14) can also be proved
starting out from (3.9). |

§ 4. Hermitian Pencils; Algebraic Structure

The first results of this section are familiar in the context of more general
hermitian matrix—valued functions. See Chapters II. 2 and 11.8 of [4], for example.
Nevertheless, a careful discussion in this context is worthwhile. We start with:

Theorem 4.1. Let the regular pencil AA—B have a strictly decomposable iriple
' T;[ 0 Y 9

X :

. [ 0 Tﬂ]’ [Y]

Then the pencil AA*— B* has the stricily decomposable triple
' o m) =]

[YilY;]l [0 T; _.X-E
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Proof. The properties (2.1), (2.2), (2.4) are immediate. From (2.7) we
obtain
YiA 7.¥Y,A-¥,B
Y:;B]“[?«(FHA—TEYEBJ'

Thus 7Y, A=Y B and Y. A=T.Y.,B. Taking adjoints in these equations
establishes property (2.8) for the pencil A4*— B*".}
Lemma 4.2. Let AA— B be o regular pencil with A=A", B=B", and let

7. 0 ¥
[ X, Xa],[(; . ] [Y] (4.1)

be o stricily decomposable triple for AA—B. Then there are unigue nonsingular
hermition matrices Hi, Ha such that
X.=¥Yi1H,, T.=HiTMH, Y,=HilX;,
X,=Y:H,, T\=H;'T:H, Y =H;'X>.
Proof. Since A*= A4, B*—B we have A4— B=21A4"—B" for A€R. By Theorem
4.1 we have a second strictly decomposable triple for A4 — B:

=GR 6N ey O iy
, * MRt L g PP LR

Now use Corollary 2.4 to assert the existence of nonsingular matrices H,, H, such
that equaations (4.2) hold. But taking adjoints in the system (4.2) it is found that
the similarity can also be achieved with the transforming matrices H; and Hs.
Hence Hy=H3, Hy= H;.|]
Equations (4.2) show that, for j=1, 2, T';is H ;selfadjoint. Hence, by Theorem
3.8 of [4] there are nonsingular matrices S, sach that
10381 =Jo, SiH181=P,,
'SEITQIS':;“'J“, S;HgngPﬂ,
where (Jy, Pp) is a canonical pair for (I;, H;) and includes a sign-characteristic
associated with the part of the finite real spectrum of AA—B belonging to J,, i.e.
real eigenvalues A with |A| < ps = »(T4). Also, (J., P.) is a canonical pair for
(T, Hs) and includes a sign—charaoteristic associated with the real eigenvalues of
ad— B which exceed ps=1r(T,) in absolute value. Note, in particular, that if AA— B
is diagonable, then P, and P, are disgonal mairices with only +1 or—1 in the
main diagonal positions.
Theorem 4.8. Let AA— B be a regular pencil with A=A, B"=B, and having a
strictly decomposable triple of parameter m. Then there is a strictly decomposable iriple

for AA— B of the form
Jo O Py X7
Koy X 4.4
[ 1s ﬂ]_l [ 0 Jm][PmX;]: ( )

where (Jo, Po) and (J ., P.) are canonical pairs of sizes m and n—m.

Proof. 'Take the triple in (4.1) and transform it to the similar triple (X8,
STY.8,, 87y, =1, 2 where 81, 8; are chosen to satisfy (4.8).Replacing X ;8; by
X; yields (4.4).}

0=Y (QA—B)—T (W)X =Y (h4—B) —T(h)[

(4.2)

(4.3)
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Corollary 4.4. The triple described én (4.4) has the properiges
X' AX =Py @D P.J,., X"'BX=PyJs@ P.. (4.5)
Proof. In (2.15) we may now put
¥, Py, 0] X3
Y= o= o P Pm X.
[‘n] [ 0 Pm][ X;] N—

end the result follows on noting that Pi=1, P2=1. |}
Note also that, using the triple (4.4), the resolvent form of equation (2.8)
becomes

(AA—B) lme X (AT — Jg) 1P X1+ X (AJ . — I)1P_X3. (4.6)
The hermitian pair (4, B) is said to be definite if
c(4, B) =i1%f1{fm‘(ﬁ+£3)m|}>0. (4.7)
Izl=

Clearly, this is equivalent to stating that " ds=2"Bz =0 if and only if #=0. This
conoept was first introduced by Crawford™. It is well known that a definite pair
has only real eigenvalues and is diagonable. Thege properties are usually egtablished
by showing that there exists a positive definite linear combination of 4 and B (see
the review ofs Uhlig'® for example). The structure developed here allows a purely
algebraic proof,

Proposition 4.5. If the pair (4,B) is definite then

(i) all eigenvalues of A4~ B are teal;

(ii) all elementary divisors are linear, i.e. all partial multiplicities are equal
to one:

(iii) there is a nonsingular X such that

X*.A.X“Pu@.Pme, X*B.XEPQJQ®PW, (4.8)

where Py, P, Jo, J. are diagonal.

Proof. Let (X, J,Y) be a decomposable triple with the properties (4.4) and
(4.5). If there is a nonreal eigenvalue A€ o(Jy) then as the pair is hermitian, A
is also an eigenvalue of A4— B and, due to the strict decomposability, is in o (J,).

0
Hence there i3 a principal submatrix of J, of the form [M x ], the corresponding
0

0 1 0 A
submatrix of P, is [ £ B ], and hence of PyJ, isl: 2o }:})} . Thus for a sunitable unit

vector ¢; we have ¢;Poe; = ¢;PoJ oe;—0. For o;=Xe¢; we get from (4.5) «]Az;—a;Ba;
=0, 2;%0. A similar argument holds if A€ o(J..) and is nonreal. This establishes
(i). Also, a similar argument applies if A, is real with a partial multiplicity larger
than one. |

Thus, J, and J.. are real diagonal matrices and it follows that P,, P, are also
diagonal. Equnation (4.8) is just (4.5). )

It is apparent from the definition 4.7 that the property of being definite is
stable under small hermitian perturbations of 4 and B. We remark that thig
implies a further property of the canonical matrices P, and P.. In the terminology
of [B] or [4], a definite pair may be said to be “stably real-diagonable” and
it follows from Theorem III.1.8 of [4], for example, that when a2 multiple



272 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

s

eigenvalue appears in J, or J_ the corresponding submatrix of P, or P,
respectively, is just I or — 1.

To see that the real spectrum of more general hermitian pencils is not stable
under hermitian perturbations consider the example

10 0 0
Alo b [ o]
0 -1 0 0

[1 0:'?‘* 0 =z
0 -1 g 01}
where g is real,

Earlier analyses of speotral variations for hermitian pairs have been confined
to definite pairs, but with the preparations made so0 far we can apply our analysis
t0 a hermitian pair (4, B) which is merely diagonable and has only real
eigenvalues. Such a pair will be called (hermitian) r~diagonable. It should be
emphasized that the perturbed system need not be hermitian.

and the perturbed pencil

§ 5. Spectral Variation for Hermitian Pairs

Note first of all that if A.4— B is a hermitian pencil and (4, B) is r—diagonable
then Theorem 3.8 applies with X and J chosen ag in Theorem 4.8, We firsgt
note that, in this case, X can be estimated in a potentially useful way.

Proposition 5.1. Let (4, B) be an r-diagonable pair. Then the matrix X of
Theorem 4.8 (and Corollary 4.4) has the property

| X <) X|]4*+ B | X | () 4]+ B]). (5.1)
Proof. Equations (4.5) imply that |
| (X*AX)*+(X*BX)=I+D,
where I} =J3®JZ2>>0. Henoce, for any o+ 0
e X" 1 X W<’ XTI+ D)X P2=0"(AXX"A+BX X"B)z

= | X" 4o+ | X*Bal|*< | X |*(] Ao} + | Ba}?)

=~ X |%° (4 -+ BYyo< | X 3] 43+ B2 [ o]
and the first inequality of (5.1) follows. The second is elementary. |

Before gtating a perturbation theorem for r—diagonable pairs it is convenient
%o introduoce the condition number of (A3 +B%)1/2_ Thus, let

x=[(4%+B")12] | (42+ B*)-1],
Combining Proposition 5.1 with Theorem 3.8 yieldas:
Theorem 5.2. Lot (A, B) e hermitéan r—diagonable pair, and let a sirictly
decomposable iriple for AA— B be Jormed as in Bq. (4.4), Assume that
A X [E,F]<1.

Then the tnequalities (3.8) hold with n replaced by mn,.
. The spectral variation for definite pairs is usually estimated in terms of the
constant ¢(4, B) of Equation (4.7) and we conclude with the derivation of
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estimates of this kind. Combining the notations of Proposition 4.5 and Lemma 3.1
we have for a definite pair (4, B):

X'AX=P0@PNJM=A=diag[“1; Ry “H]l
X 'BX =PoJ @DP,=Q=diag[B, *+, Bal.

Lemma 3.1 implies that, for any eigenvalue X of the perturbed pair A=A+ E,
B=B+F,

m—}ﬂliﬂr—ﬁf“<"3"9” [B, F]| (1+[1]|2)%s, (5.2)

We estimate | X |? following an argument of [2]. Thus, for any #+0,
g g
¢(4, B)< 2" X*(A+iB) Xo| ,..[ |2" (4 +4Q) o] ]/[m*X*Xm].

o' X" Xo @ &'
Hence

Xa|? <. 1 |&" (A+iQ) x|

lz|* “e(4, B) z"x '

With the decomposable pair (X, J) chosen to satisfy (3.8) and using the faet that
the eigenvalues are real we have f

» ) 2 |
| X] <A B | (5.8)
If [5:[-%1 then (5.2) and (5.8) yield

If |A|>1 we write =X 50 that || <1. Asin (8.2),
miﬂlar—ﬁﬁsf'@ﬂﬂﬂﬂ [E, FI[(1+|u|®)1

and so

min lay— ;| <7 v | 1B, F1I. (5.5)
Proceeding as in Theorem 3.8 we find from (5.4) and (6.6) that the first
inequality of (5.6) below iz obtained.
Theorem b6.8. Let (A, B) be a hermitian definite pair and A=A+ E, B=B+ F
where

2

ﬂié G(A, BJ " [E: FJ ”<1'
Then
S{A-B)(z,l g)ﬁ le' 2 SEE-B) (j: E) < (1 __?:;1)1;5' 2 SET.B)(E: E)"@m/z'

(5.6)
For the proof of the remaining inequalities we change the reasoning slightly,
We got
i 1
: | X< ¢c(A, B)’
where X satisfies X" AX =diagla,, <, &.], X*BX-=dia.g[§1, ees, B,] and &f+§f=1,
=1, +-+, n. (0.2) now gives
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Iﬂill p(R, & B <m/2

or the last inequality of (5.6). The second inequality is obtained as in the proof of

Theorem 3.3.J |
We remark that the last inequality in (5.6) improves considerably a bound

which is derived from Theorem 2.8 and (1.18) in [2]. This result should be
compared with a bound in [7]. There it is shown that if (4, B) is also a definite
pair, then its eigenvalues A can be ordered so that p(M, M) <ny/2 holds for

g=1, <o, nm.
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