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The key to the. quasi-Newton methods for solving nonlinea¥ equations in several
variables or optimization problems lies in how the approximation:fo the :Jacobian or
Hessian matrix (oi' ite inverse) is determined. |

We denote by R and B"™* the real n—dimensional linear space of all column
veators and ihat of all real square matrices of order n, réspeciively. The mapping
with domain D in R" and range in R" is denoted by #: D R*—>R", which is the left
of the system of equations or the gradient of the objective funckion. |

T.et & and z be two distinot points in D and denote

 *P=F(@2), F=F&), B=F(z), (1.1)
where F’(a) is the Jacobian matrix of F at «, and |
| d=z—=0, y=F-F, (1.2)

It is our purpose 10 epproximate -the Jacobian matrix of ¥ af .
Evidently, the linear mapping

_ L(z)=F+B(s—z), (1.8)
where B € R*® and
| 3 By ey (1.4)
satisfies g g
- Lz)=F, L(z)=F (1.5)

So, if |8] is small enough, L(z) can be regarded as a reasonable approximation 1o
F(z) at z and B as an approximate Jacobian matrix of F at the same point. AS a
matter of fact, we have ' |

Theorem 1. Suppose that F:DCR"— R" is Fréchei—differentiable af z€ int (D)
and that L(w) s determined by (1.8) and (1.4). Then, for any t € B, which is non—zero

n L(z+13) — F(z+18) =tE(t, 3), (1.6)
where lim H(#, 3)/]3] =0, lim E(, 8)—E(3) and lim E(3)/8}=0- |
e FEd)=Fe P @@ -B@®), 1.7
where Y T T LmEGR)/I8l=0. y
i L P=F—F(2)3-E(@3), (1.8)
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whee o L E@®/3]=0.

By (1.8), (1 7) (1.4) and (1 8) we have
L(z+18) — F(a:+t6)=t§a tF’(a:)a+E1(ta)

Al —t(F—ﬁf_E’(m)5)~+E1(ta)==t[E(a)+E1(t6)/t], ' |  (1.9)
If we lot _ | |
H(i, ;_6)=F(§)47E1(t3)/-‘=, " _(1-10)
T umE(Q, /181 =lim B(3)/]3] +lim By(#8)/ (4|81 =0
and lim B, 8) = E(8) +}im Ey(t8)/t=E (3)-

The theorem is then proved
In view of the above,we regard (1.8) as the first order approximation to ¥ at .

Lot B be nonsingular and H be its inverse. Then (1. 4) is eqmvalent o
3=Hy, C@d.11)

Equa.'hwn (1. 4) or (1 11) has been ﬂentral to the developmant of quasi-Newton
methods; and therefore it is often ‘Iaermed ‘the quasi-Newfon equation. But in view of
Theorema 1, we call it first order ‘quasi-Newton eguation, and all of the kmown
apdates, which can be derived from it and used in quam-ﬂewton methods are called,
correspondingly, the first orderi. |

Since there i8 no B or H in (1 4) or. (1 11), ﬁ or ﬁ relates only to y and &
rather than $0.B or H. Thus Ba=yqT/¢"s, where ¢ € B® and ¢78 0, satisfies (1.4) and
is independent of B. In fact, B or H in the first order updates can be, theoretmally,
replaced by any other positive definite matrices (for optimization problems).

" In this paper, many new updates are derived by means of new approximations
to ¥ and shown 10 be of geoond order in a certain sense. They have not only higher
precision than the old ones but also the same simplioity; moreover, B or H there
cannot be replaced by other matrices, and therefore the approximate Jacobian (or
Hessian) matrix or its inverse at the initial point must be used as the initial mairix,

or theoretically so to say the least. In addition, if is much more significant that the
so—-calléd seoond order quasi-Newton equation deﬁved later must become the new
‘starfting point ‘of quasi-Newton methods; “ an gl % . BEF ~

. 2. One-Reduction Matrimfaf 5

Let us introduoce the new aonuept needed in the ensuing ﬂeﬂmﬁm
;Deﬂmtlon Let SGR" AER""‘ is a one—reduction matriz of 8 ¢f

o EET RS L RV,
i P ) : =

o 3"A§=1 o (2.1)
'I‘wo examples | A .
L R 1+6 Sa X8 T IR
i if:"!(l) U(P, S) B’EP& P S VP SER“ and d PB-#O (2.2)
@ v g) 1§,}§ g p+99_ gg , VPG B - 8TPS#0,
"r*:ﬁfﬁ i"w" ced TR T %, M i‘ﬂi g . C
P Gt géR and TgA0, 2.8)



26  JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 2

The one-reduction matrix has the following simple properties:
(1) There is not any one-reduction matrix for a zero veotor.
(ii) All one—reduoction matrices are nonrnegative definite. -

(i) If &€ R* and 4, i8'a one-roduction matrix of §, é¢=1, 2, ---, m, then
S A/ 20 18 also a one-reduction matrix of & when. gaﬁﬁﬁ. QOtherwise 8" ($ o, d)8
L 4 !

=0.
(iv) If Aisa one-rednotion matrix of o, so is AT,
(v) If a real gymmetrio matrix 4 is a one-reduoction matrix of & and its greatest

and smallest eigenvalues are A; and A, respectively, then - RS

o ML/ L

For the quadratio mapping -
Q@ =P+Be-D+ (-8 A-D-BY, @D
ivi;er_e Ais a.xi aé_rbﬁifraryl q]::;é—ijgduﬂfioﬁ matrlx pf 3, we have, olaal?ly, o |
T @) =b, @@ =F, ¢@=B. - o, (3D
Comparing (8.2) with (1.5), we can reason that if |8] is small E]lﬂtl.gil, Q(z) is a
better approximation t6 F at « than (1.32, and s0 the Jacobian matrix of Q(x) at z
is a better approximation to that of # at 2. (3.1) may be reduced to i g
 Q(z)=F+[B+ (y—B8)d"(4+4")] (o—z) + (p=—z)TA(w—1z) (v~ B3), (3.8
from ﬁhiﬂ_h we obtain at onoe the general rank-one npdate s REeR
JIEE T W B=B+(y—BOO(A+AT), S (8.4)
where A is an arbitrary one-reduction matnx of 5. | . " '_ |
- By the Sherman-Morrison formula the corresponding update for the inverse
Jacobian matrix can also be obtained: 2 = o B
: | : ” s s ;
oL EmSREREEST. . 09
Using various one-reduoction matrices of & a8 used in (3.4) or (3.D), we will obtain
oorrespondingly various new updates. For example, let A=U(P, §);(3-4)and (3.5)
are, Tespectively, rednced 1o "

, TR . -
B o= B+ (y—B3) af[lgi%aﬁi- (P+PT)— (S+87) | (3.6)
| and i o ( H rGH : o .
- '.-_5— 7)3- e AENEE o8
o H-H+ SGHy—1 _ (3.7
where - G = (1+8788) (P+P)—8TP3(8+87)..

If we lot A#V(P, g), they are rednoed 10

R . : X o Lie w | : A
Eﬁ B+ Ba)ai‘[—-ias,.}_:,_3 (P+P") +-—f—_ = (3.8)
H.Ild r 11’ 'fr:_.ilff gets ;I | s ..::.‘, G ; 'f; : _
; . fege Q@-Hy)&GH _ |
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where G=38"¢(1— 5""9) (P+PT) +2(5"P3)gg

Furthermore, we put forward some updates as a special case:
(i) In (3.6) and (3 7), letting P=B and P=H respectwely and §=0, we

have PR |
- — B (7—33)5"(3-*3?) LTI

. . B=B- 5B (34.10).
_ Fg 8= Hy)3"(HL+HNE SR ¢ 3 b &

OT(H+HT)Hy—d"H) .
(11) In (8. 6) and (3 7Y, let’ang :S'm{} and P==gg \ VgGR‘f with g""&-;éﬂ wo

ha.ve
oon-espondlng t0 Broyden s rank—one update and b |
2(3 —~Hy) q"H
- H=H+-= TRy —8) L B

whioch can be, evidently, furl;her 3pe-01ﬁad when mnum'be vaﬁtarﬂ are used a8 g; thus
if gw}f — BS, then we obtfain the symmetrio rank-one npdate -
I o 2(y—B3)(y—B3)" o 4
. 4 E B eIy T . | o (314)
Of eourse, (3 10—38.14) may also be regarded as specifio forms of (3. 8) or (3.9);
and in passing, it should. be noted that only when the same. 4 is nsed and B is
nongingular, are (3 4) a.nd (3 5) mvartlblﬂ to aa.ch OthBI‘ a.nd thus (8.10)and (8.11)
are not so. .

 Optimization ofien requires that the upda.tes used aTo symmetrm but B in
(3.6) and (8.8), except in (3.14), are penerally non-symmetrio even if B is. We
next derive a symmetrio one by Powell’s symmeirization fechnique.

In (3.6) lot B be a symmetrio matrix, P=W, where W is an arbitrary matrix in.

R*** with BTWS#O and § -=0 and lot W(“’-=W At each iteration & we have

" © 4 T — .
and | ¥ | e T o
WD = (E9 4 B®T) /2, " (3.16)

Under certain oond:dﬂons straightforward algebraic operation gives that the limit of
‘l'.he sequence {W“"} is 'lihe symmetrio matrix | - |
" BB+ (2yyT — 76"3-—337")/5"’}'. | B (3 17);

Tt is somewhat surpnsing and mterestmg that (8.17) is independent of W® and
satisfies

o e

I )
Which bl awktind by the parts Of Huang 8 f&mllj’ for J acnbmn matrmea nmel?
gop_BAEeTYT yEEREHT T g 19)

Gy (uB3+7)78 .. (pBTo+7)T8 *
p—2 STBE;’S"?, p and @ are arbitra.ry paramem with ¥ — -y-"' 6,’6".3& and
. ?‘E"}‘YrafarBﬁ Eh NIt O e LD op LoD BHTYOR J;Lﬁﬂi'f
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4 Rank—-Two Updates .

For 'hhe quadratm mapplng .
.. Qa)=F+B(e—2)+(2—2)TA(s— )y~ (¢ ~2)" A (2—2) BS, (4.1)
where A and A are any one-reduction mairices of 5, we have the same (3.2), and
when }8] 18 small enough the J acobizn matrix B of (4 1) at z can be regarded &8 a
better mpproximation to that Gf F at the same pomt c |

4 1) oan t be I‘Edﬂ{}Ed 0

(m) ~F+ [B + 7'5'*" (A+A") BS@T(A + AT)] (m_. m)

s 8 o+ (z— a:)"A(a:-—m)y (z—2)" A (s—2z) B3, (4.2)
from which we obtain at once the general rank—two upda.te o 3
B=DB+4v3T(A+ A7) — BSST(A—I—AT) (4.8)

ft | q. ¥
Where A and A4 are arbifrary one-reduction matrices of §.

- +%0Of ocourse, the corresponding update for the inverse Jacobian matrix could be
derived by using the Sherman-Morrison formnula twice in snocession. However we do
not do.so because the update would be quite complicated and inapplicable, and in
praatme (#ill and Murfay’s implementation of quasi-Newton methods hag a,lready
madﬂ known that Jacobian maitrix is a befier choice than ils inverse. ,

. Similarly, by choosing speocific matncas as A and 4, diverse updatea ‘cah be
derived. Here we cite one example. ¥ s s g g v

Let A=U(P, S) and A=V (K, ¢). Frnm (4. 3) it fullowa thaii

§ B+ ai"[ 1;2,5% (P+ P")-—-(S+S’")]

Lo BST [-]ér—-g—(ﬂr—]- KT+ 29"? ] o (4.9)
W}iiﬂh_ is still qui'ﬁa generﬂ And in (;1 4), if B is symmetriﬁ and .

N h . P=yy*, S=¢B, E=B, q=gy, (4.5)
wham ge R* and ¢+0, then

l‘:r_; .

 Benn[ G ]GRO ], h

which is a ﬂytnmatriu rank-two upda_,te_ and sorrésponds to Broydan 3 famlly
Furthar, lot o I E

v O So Smboseisel o o &
o ' R p=1/vT0 and @=0,;
ﬁ'om éé 6) it fallowa respactwaly that . ',
el ML .— .1 - "; T f'l'E’n ?4—2(”? _BBYThTBTB)/yra IR PR T R (47)
Whﬁl‘ﬁ p=1+ar.33f7’3,z*f@ld ﬂ*ﬁ‘gwﬁ R R aw o |
. “'ﬁ(“f“”ﬁ’“‘{ﬂ Gyt 2333!'3 o ' '
LA TG ey MW &""f}.:ﬂm "'f'*ff Tﬁ 31‘ Bd _-’ A B B g (48‘)

whiuh correspond to DFP and BFGS updates Bl i o
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5. Second Order Quasi-Newton Equation

Now we introduce the second order quasi-Newton equation.
1t is easy to venfy 't.hat the B in the general rank-—two update (4.3) Eatlsﬁes

. | Bd=2y—Bs, (5.1)
and a0 does the E in the rank-one update (3 4). (In fact, (3.4) can ba regarded as
a.8peoific case of (4.8) with A=4.) We have the following result in this respeot.
" Theorem 2. Suppose that F: DCR*>R" is twice continuously Frmhst—d@ﬁeranm—
aﬂﬂmﬂﬂ=1nt (D) and thmtm 2 & Dy and |

- Qe)y=F+B(s—z)+(a—2z)"A(a~2)y— (—7)"4(z—7)BS, (5.2)

where. B satisfies (6.1), A and A are arbitrary m—rstiuctm matrices of 8. Then, for
iy t € Rt which is non—ero and sufficiently small,

Q(z+18) — F(z+18) =tR(4, d), S -~ (b.8)
w?wﬂ hBJR(t 3)/[|5||’=0 ]JIBR@ 3)==R(3) and 111331‘?«@)/"5"’"9
Pruaf | | | |
. _' F(E-i—tﬁ)%f‘f—l—tﬁ”@)a—l—}— F"(E)(ta) (£8) —R.(t3),  (5.4)

where F'(a) and F"(#x) denote the firsi and second Fréchet-derivatives at o€ Dy
respectively (the samse below), and ]_u:n B{(t8)/ (2[8]*) =0.

A F’<x>3+%F”(w>36—Ra<a>, IR
where lun Rg(ﬁ)/ﬂﬁﬂ s |
Fe F+Ba+lzr”(m)aa+ﬂa(a)  (5.6)

where ]:u:n Ra(ﬁ)/ﬂall" =0.

By (5 9), (5.4), (6.1), (5.5) and (5 6) we have
Q(z-18) — F(Z+15)
1,

~1B5— tF'(2)5 +'ﬁ[5{-4 85— = F"(%)83 | + R, (t5)
~1(2y— B8) —tF’ (E)a'%i" ] -?‘-Ba—l-ﬁ'"(E)aa] +R(8)

B __:--t(y Bﬁ)+t[‘r’ .F""(a:)ﬁ]+t’(y—BB)—-F”(m)BS-%—Ri(tS)

e _.-.-=<z:+t=>(r Ba)+t[—lf"(x)aa+ﬂa(a>] ”’F"(@aamicta)
Rl B3 e (t+t’)['y-- a—lF”(w)aa]+tRa(6)+Ri(t8) -

i -(Eﬂ)au(a)ww) LI (5)85 - F"tﬁaal/%m@?+Ri(‘3) (5.'7j

e ?Htrﬂfid T

".ﬂhﬁﬁ%iﬁfgiq ."-!J E..L.E T T

| @80 B 8B = | LBy = B @) 1B <AF" 8) — E" ol B8
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By the assumption that F”(z) is continuous on D, it is known that
L P(8)88—F (@)38=Ru(®), . L (5.9
where lim R,(8)/131*=0. ' 2wy
By (B.7); (5.9) and letting

R(, S)ﬁBl(tﬁ)/HRa(&H(1H)Ra(6)+ 1'2” R.(3), (5.10):
we have i - P ._ en . wme
| eeeeE e b SR Pl iR 3), 8 (6.11)
And from (5.10), L e
._ H:R(t: a)/ﬂalﬂm{}" B, (5.12}
and . oo e | | R A |
AT S ljlfR(t: 3) = Rs(8) +Rs(®)+Ru(®)/2, - - (B.13)
Hehoe Theoren 2 is proved. o

In view of Theorem 2, (5.2) can be regarded a5 the second order spproximation
0 F":a.t E,"'and (5.1) is called the second order quasi-Newion equation. Finding the
% that satisfies (B.1), we can obfain a lot of new updates which are, correspondingly,

called second order, a.né those derived in the previous sections may serve as examples.

6. Numerical Results

. Limited trials in unconstrained optimization have been carried out o compare
our methods with the conventional quasi-Newion methods. We nse double preocision
FORTRAN program based upon Gill and Murrays’ implementation of quasi-Newton
methods with Himmelblan’s convergenoce oriterion and the procedure QUAD for ihe
line search. B is factorized by using Algorithm 6.7.2 twice in succession with @
defined by (6.7.26) (See [11]). ES-1022b computer is nsed. . I

Tables 1—86, where NI, NF, NG, NC and F are the samse as in [11], give resulis
for Problems 1—6 of Appendix B of [11] respectively. ‘We emphasize that Algorithms:
1—6 use the same FORTRAN program,; the differences lie only in that the first three
slgorithms (i. e. 1, 2 and 8) use BFGS update (6.7.17) of [11] and the rest use our
update (4.8), i. e. | Fon 3% e 0 s T

_'2'}*5"'-% . | ..r
B-B+2X +_?96£_ IR T¢

 In Algorithms 1, 2, 4 and b the unit mairix I is chosen as the initial matrix Bo;
bosides, in Algorithris 2 and & the initial matrix is transformed into Bo=(83v0/8%580)L
~ before it is updated. In Algorithms 3 and 6 & numaerical approximation of the Hesslam

matrix of the objective function at the initial point i5 chosen as the initial matrix.

By comparing the sums.of the entries under NO in Tables 1—8 we see that for

each of Prohlems 1—6, Algomhm4 15 better $han Algorithm 1, Algorithm B is better
than Algorithm 2 exqept for Problem 6, and Algorithm 6 is guperior to the others:

5

exoopt for Problems 2 and 6. We conolude thas, at least for Problems 1-—8, our update

-

-

ig .preferable to the conventional one: Of course, s larger sample of problems’ or
differenced.of details n-prograkiming mnight’yleld a different regpltl. - L0{x,
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Table 1
‘A comparison in problem 1
Algorithm NI NF - NG NO | F
1 27 - l 177 28 233 0.44D-15
2 31 193 32 257 0.21D-13
3 32 196 35 266 0.13D-15
4 24 1658 - 25 208 0.12D-14
5 a7 177 28 233 0.27D-16
6 0.47D-13

B

51 | T 503 0.14D-10

1 52
2 43 % S 247 - . 44 423 "~ 0.38D-13
8 82 1 427 87 : 775 - 0.35D-12
4 41 236 49 403 T 0.,209D-12
b 34 . 211 35 351 @ 0.13D-12
i} 63 327 68 589 0.15D-12
= | Table 3
» A eomparison in problem 3

Algorithm I NI NG NC - F
1 62 00 | e 552 0.41D-12
> 85 405 86 749 0.74D-13
3 50 235 55 455 0.66D-12
4 49 259 50 459 | 0.85D-15
5 74 355 75 655 0,26D-19
6 - 0.61D-14

- Table 4
A comparison in problem 4

Algorithm NI NF NG NO F
1. g1 352 - 82 680 0.37D-19
2 97 408 98 800 0.28D-20
8 49 228 54 444 0.14D-19
4 50 249 51 446 0.52D--20
5 50 246 51 450 0.31D-20
6 26 142 31 266 0.37D-20

m

Table 5
A comparison in problem 5
Algorithm NI NF NG NO F
= | 27 159 - - 28 | 243 0.15D-11
2 o8 - 173 29 260 0.41D-12
8 23 131 27 912 0.76D-12 .-
4 21 197 0.14D-12
-8 . 24 231 0.54D-15 ..
0 0.70D-16
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Yol. 2

Table @
A comparison in problem ©
Algorithm NI NF NG | “NO .
1 45 221 46 - 681 0.16D-10
2- 38 195 ag - 585 0.92D-12
- 66 308 7 1078 0.80D-11
A 45 217 46 677 0.11D-12
B 4 42 213 43 643 0.19D-11
P '- 53 254 64 894 0.18D-10

7 Conclusion -

Even though we have paid partionlar aitention %o the _updatea- corresponding o
the existing first order ones, 1% does not mean that

others must be. bad. In order to

judge what is good and what is bad, further theoretical analyses and numerical tests
are necesssry. At all events, +he use of the second order quasi-Newlon equation as the
new starting point seems to have inspiring prospects.
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