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Absatract

A comparison by Wang and Xal6! botween 8. Bmale’s cost estimation for Newton’s method and
that of the anmthor’s for Kuhn's algorithm, both aiming at the zero finding of complex polynomials,
showed improments the advantage of the latter in finding zeros and approximatlo 26108. In this paperT,
important on the above work are made. Furthermore, a probabiligtic estimation of the monotonicity

of Kuhn's algorithm is obtained.

)
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§ 1. Introduction

A comparison between S. Smale’s cost sstimation for Newton’s method and thab
of the author’s for Kuhn’s algorithm, both aiming at the zero finding of complex
polynomials, was presented by Wang and Xu™'. It turns out that the latter is much
better both in finding zeros and in finding approximate zeros. The ratios are respec-
tively from n°/p’ o n log (n/8) and from n’/p’ 0 n® log (n/p), where n is the degree
of polynomials, 6>-0 is the accuracy demand for resulted zeros, and g is the prob-
ability allowing the corresponding estimation to fail, 0<<p<<1.

James Renegar obtained similar requlis™. His Lemma 3.1 and Proposition 5.6
in [3].

Here we improve the results of Wang and Xu®. A new ocost estimation for
Kuhn’s algorithm is given by Theorem 5 19 while Theorem 3.8 answers prob-
abilistically the problem of finding the approximate Zeros of polynomials suggested by
§. Smale. This is followed by a discussion in Theorem 4.15 on a probabilistic
estimation of the monotonicity of Kuhn’s algorithm.

§ 2. Cost of Kuhn’s Algorithm

Tn order 1o be congistent, we use the same notatlon as ased by Kuhn™, For
gimplioity, let z=0 and A=1.

The algorithm can be sketched as tollows. The half-space OX[—1, o0) id
gimplicially triangulated such that every vertex is in some plane U;=CX {d}, d=
—1, 0, 2, -+, and each plane G, 18 then subdivided into isosceles right triangles
with right-angle sideg equal 1o s(d), where s(—1) =1 and s(d) =27¢, d=0.

The labelling for vertices in O, d=0, 18 that (the argument of a complex

* Received June 13, 1983.
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number is restricted to (—m, =])
1, if f(2) =0 or —=/8<arg f(2) <=/3,
1(2) =42, if m/8<arg f(z)<m,
8, if —w<arg f(2) <—wu/3,

n—1
where f(z) =2+ > a#, s € C, while the labelling for ('_, uses 2" instead of f(2).
i=0

Lot Q be the square in C_; bounded by &= +-m and y= tm, where z=p+ 4y and
m=[8(1+~/2 )n/4xw]. The symbol [a] is the least integer not less than a.

A triangle is said 1o be completely labelled (o.l. triangle) if its three vertices
aro exactly labelled 1, 2 and 3.

Proposition 2.1. Let Z; be an elementary oube of the triangulation between
C, and Cy,4, and lot B; be a oylinder with axis {0} % [d, d+1]. Let o4 denote the
number of tetrahedra which belong to Z; and are wholly contained in B,;. Then

g{ Brvol(ZsN By), ifd=—1,
TaN\140vol (Ss N By) -2%,  if d=0.

Proof. Let ¥V4=vol(Z;NB;) for convenience. For d= —1, we always have 1>
V4=0. Obvigusly, if V,<<1/2, then g4=0; if V4=1, then Z;CBy. So o4=5. In the
case 1/2« V<1, we have o<1 beoause every vertical edge of 2; fouches four tetra-
hedra contained in =;. In any of the above cases, the proposition is true.

For d=0, 0<V,<<2-%. We disouss eight cases. Since the central point of the
~upper square is touched by all the fourteen tetrahedra of the cube, it is easy to
obtain the corresponding resulis for o by simple volume analysis:

(1) Va=27%, og=14;

(2) .'81 2% 7, <23 T4 <<9;

(3) % 2—ﬂd-<n<::% 9-2¢. 06<8;

@ = 2HUY T2, - o<y

) omcy.<io® oy ¥
® - 2-N{V¢<% 9-28 5e<3;

M + AU <2, Fa<1:

(8) 0<Vs<3 2%, "y

In all the eight cases, cy<14+F 2%, It completes the proof.
Lemma 2.2. Suppose that w, are complex constanis, k=1, 2, 3, and ~u/3<

Wy

arg wy <</ 3; w/3<arg wasm; — w<arg wa<< —mw/3. Then arg — | =——, a*rlarg—lﬁ
5 o WU 3 e
i ﬂf‘ﬂ.rgju_l ;_ﬂ?_
8 ° Ws 3 *-
Proof. Since 5 3
\ﬂ.]:'gﬂ <2—W§=}_0<‘:argwg—'argw1<: E‘E, (2.1)
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Uy 23’5’ 23!?

arg — | <{— & D{argﬁl-—argwgai =, (2.2)
Ws 3
ﬂrg-ﬂ- <-—'?E & argag— arg wy > ﬂ—, i (2.8)
Wa 3 | 3
from (2.1) and (2.3) we obiain |
arg wi—Aarg wy= (Arg ws—Aarg wa) — (8IL Wy —arg wy) > %)EF__ _2@55=%a_r_ |

It contradicts (2.2), and this completes the proof.
- Corollary 2.8. Under the condition of Proposition 2.2, we have

2ot

larg wo—arg wy| = ,-*—-’?—35 OT |argws— argfwal%i or [al'g'wi ﬂ«l‘g‘wal:” 3 .

3 3
Proof, Similar to the proof of Lemma 2.2,

Lemma 2.4, Let 2y, 24, 2€C, |21—2| <8, 0<a<wm, Em{tzl-i—(l—t)zg[te [0, 1]}.
If ’arg ‘}rx then

BNB(, /o) %, (2.4)
where B(z, 8/a) %s an open disc with center z and radius 8/«
Proof. If (2.4) dcses not hold, then it is eagily verified (by calculus) that

‘ I‘g I =< 2 ﬂrﬂtg——/———ﬁﬂ.rﬂﬁg —--"-‘:.2'-2—--(1
contrary to the hypothesm

Proposition 2. 5 Let {21, #3, 23} be a 0.1, triangle labelled by f(z) = H (2—&))
and diam{z;, zg, za} <d. Then

{21, 2, za}EQ B(S. 8(1+ -g’%)) | ' (2.5)

Proof. Suppose (I(z1), I(z3), 1(2)) = (1, 2, 8). According to Lemma 2.2, there
is a pair % and 2, such that |arg( f(z)/f(z)) | >2%/8 is valid.
Let &= {iz;+ (1—¢)z|t€ [0, 1]}. If (2.5) i invalid, then for all %,
ENB (&, 3n8/2x) =,
Set a=2mx/3n; then Lemma 2.4 implies

’ =&y
la,rg ~
i H (zi glﬂ) s
and so arg S (z) arg < > ﬂrg md 3% S
o I @-&| = & &

a contradiction. _ '
Proposition 2.6. The number of tetrahedra in COx [d, d+1], d>0, with

-
completely labelled faces does not exceed 28m(l+ :23;) .
Proof. According to Propositions 2.1 and 2.5, the number does not exceed
2
stnn( ) (142,03 pg(4 22 -

Lemma 2.71. If |z|=max|a|+1, then f(z) «0. That is, max[@lﬁm&ﬂaﬂ-{—l
where §1, -+, &n are all zeros of f(2),
Proof. If max|ae,] =0, then|f(z)|= |z”]2==-1
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If. max |a;| >0, then
| F(2)| = 2" 1““2 ﬁn_a)];ﬁl n[( 2 ]Tn|-:|):>]ﬂ |(1—max|aklg |z|‘)

=1

p e
e

#1123

Therefore, f(2) #0. .
Lemma 2.8. Let {24, 2o, 23t be the wertwes of some c.l. face in CX[—1, Ol.

Then,
[2‘1: %3, 53};_8(0_, mﬂ'xlm?ﬂl +1+4/ 2 (1—]__3;;1))- (26)

Proof. Lemma 9.7 shows that the zeros &4, -+, £, Of f lie within B(0, max |ay}

+1). j
By Corollary 2.8, there is a pair of vertices, say 2; and z;, the arguments of

whose images under ithe piecewise linear map induced on O X [~1, co)by fand zi—>2*

differ by at least 2sx/3,
Suppose that (2. 6) is not satisfied. If 73 lies in Cp and 2, liesin C_;, since

diam{zy, 2a, 2s}<<a/ 2, then |
. ElnB(gi, f3“)=¢ and EiNB(z, v 2 ff’)w,
where K= {1z2:-}+ (1-tjzg}t€ [0, 1]}, Ha={t&;1¢€ {0, 11}, Then Lemma 2,4 implies

H(ﬁn £:)
_f(zn) _ i=1 L 22— &4 }
ATg ! = axg 7 ﬂ‘éigl arg — -
S — & Ei—12 | “(:?F , ﬂF)_QﬂF
QE( “’rg =5 | PR O <2t/ 3
If both 24 a,:ud zq lie in O, the-n
_j(zﬂ) 4 29— 4 AR .]
. . S(z1) QE e 21— &4 {i=1 n 3°
1f both z; and 2,3 lie in C_ 1‘,- then
Lo L __
| 1 ‘QE E.Ig 31'—0 |{i=21 3‘7: 3 ¥

Thig contradicts with “at least 2m/8",
Lemma 2.9. 7The compuiation is entirely processed inside the cylinder with raduus

M = max{3~f (2+a::)n/4ar " _ max|a +1}+v 2 and cenlered at the ur-ziy-in of

~1

the plane. =
Proof. Because the maximal diameter of triangles ig i 2 2 if any point of a fri-
angle is outside the oylinder of radius M, then every edge of the triangle should be
outside the oylinder with same axig and radiug =M — ~ 2. With Lemma 2.2, it
sufficeg to show that for any edge (2/, z'") of the triangulation outside the eylinder of
radius r, [arg (F()/F (")) | <2n/8, where F(z)=2" for z€0_4 and -F(2) =f(z)
otherwige. Since then any o.l. tmang]e must be wholly contained in the cylinder
with radiuns M, ' 2

Rewrite f(z) a,s f(z) =z2" (1-

n—1

S :‘ )—z (14+g(2)). If both 2’ and 2" are not in

=0
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0_1, then i
196 | <S55 L% <max| @] /r—1< (v=1)/m,
9@) 9@ | <lanal + |- S
< max z’—z”|-(-—l—-+%—l-—---l s )'i\/_-mﬂ.x[mﬂ/(*r 1)2
oI T il 1 8+ 2 (2+m)
< 'nn S \/—/( ( ) 1)

n—-l 3\/_(2—1-3::) (n—1) dov
\/_/ - — 3Q24a@)n’

| (;198’*"('2)”) !{:3(2—%%)%/( & 1 3(24-T—m) <t
a.rg(:t - gE) =g ) )\

X

larg F () /F(2") | = |arg F (z) /f (Z") | <n|arg = | T+ a(2')
: v 2 Y=g}
- BN 2 (2+m) on/dw | 2 ~ 1+g9(") ,
; 4 L% 4w 4 _ 2m
{3(2—#@) 2 8(2+4-m) 3(2—[—:::) (1+ 8

The proofs for cases 2’ € C_; and/or 2" &€ C_; are similar. -
Corollary 2.10. Agsume that {25, 21, 25} i3 ag illustrated in Lemma 2.8. Then

121, 23, %}EB(O min {M, max|a| +1 ﬁ(1+§-n+)).

Proof. Aoccording to Lemmas 2.8 and 2.9, the corollary is obvious.
Proposition 2.11. The number of steps between almplmes in Ox[—1, d],
d=>0, taken by the algorithm does not exceed -

873(1+~ 2 )n/4w] (1+3 (1++/ 2 )n/4w])
+ B » min {M max | a,| +1+ \/—(l—l-——-)} + 28 ndw (1+ gz 2

Proof. By Corollary 2.10, Propositions 2.1 and 2.6, the number of steps
between simplices in ¢'x [—1, d] does not exceed | |

( * of edges ) i ( * of gimplices ) & # of tetrahedra in OX [—1, O]
\  in 8@ in @ | with a a.l. faﬁe
+( # of tetrahedra in O [0, d]

with a ¢.]. face

)gsrz (1+/2 jn/m (1+ [8 (1-+ \/" T Yyn/4])

+5m:-min{M max |ay| +14++ 2 14——)]> +23MW<1+"2‘£) .

Theorem 2.12. Gwen >0, f(2) =2"+- 2 as. Some zeros of f com be appros-

§=0

imated within a distance & by Kuhn’s algorithm in sieps not greater than
8781+ v/ 2)n/4a] 1+ [8(1+V 2)n/4nT)
+ b mm{M max|a;| +1++ 2 (1+—m)} + 28n a’rar<1+ ﬂ",
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silicre ° ~{1ogan/2 (1+ y 8.

Proof. When d= [log v 2 (1+—§;F-) / s-l, we obfain

v 2 PR
_2%(“_23%)% ﬁ(1+2j23%)/3 (+2)-

Proposition 2.5 shows that each vertex of a 0.]. face in O, lies within a distance
g of some zero of f,

§ 3. Approximate Zeros and Complexity Theory

Definition 3.1. Let 20€ O and define inductively 2y =21—f (Z-1) /T (Bh-1). %o 18
said to be an approzimate zero provided the sequence 2, is well defined for all k=1 and
converges to z* as k -» oo with f(2*) =0, and |f(z) /f (m-1) | <1/2 for all k=1,

Lemma 8.3. et g(z) = = by, a complew polynomial with by#0. Then there isa

=1

eritical point 960 (4.e. g’ (#) =0) such that for every k=2, 3,
| b/ By | *2| £(8) /01| <K,
where K is a constant and 1<K <4,
Proof. See [B], Theorem 1, Section 1, Part 11.
Lemma 3.3. Let c=1 and ps= min | £(6)| for a polynomial f. If 0<C| f(2)|

6, 1/(6)
<py/ (€K +K+1), then |f(2)/f(2)|<1/e, wiwre 2 =z2—F(2)/f (2).

Proof. See [b], Corollary A, Section 2, Part 11.

Proposition 8.4. Let¢>1 and |f(%)| < ps/(cK + K 41). Then Newton's
method starting at z, converges to 2*, a solution of f(z) =0,

Proof. Let 2y =2_1~—f (#-1)/f (%-1). By Lemma 3.3 and the definition of py, it
is eagy to show that z; i3 well defined for all =1,

Now if for some I, f(z)#0, -+, f(z_1)7#0 but f(%) =0, then inductively we
have f'(z;) 0 and 2y =2; for k=1, I+1, ---. Thus we have }if 2, =2" with f (2°) =0
and 2" =g, |

If f(2;) #0 for any k, sinoce

f (o) | = | f Cwd [ (2emn) [+
we obtain E f(z) =0,

Let L= min | f/(z)|. Then both the compaotness of set {z f | f2) | <<

|1{2) | sps/(c E+E+1)

os/ (cK+K+1)} and| f(2) | <ps/ (cK +K +1) <p; imply L}[} Now for any natural
numbers k£, m,

lﬁmm"ﬂkl €§|ﬁk+f“2u+f¥11 = :21|f (Zpy-1) /f (B g-1) ]“Q'f; E‘ S (Zys-1) |

L = (‘_) lf(zu) | <] f () I/L-c"(l-—%—)_'
Thus the sequence {2z} converges to some 2", and f(z") = E-E f(z)=0 by the

continuity of f. The theorem is then proved.
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R,

Corollary 3.6. If | f(2) | <p;/3K +1, then 2 is an approximate zero of f.

Progf. In Proposition 3.4, we take c=2,

Let P, be the space of the monic complex polynomials of degree n. Hence, P,
can be identified with complex Cartesian Space C*={{(ay, @1, ***, @u-1) =a|aEC}, or

n—1

we oan write f € C" whenever f(z) =z"+ 2 a2,

We denote P,(R)={f€P, ]Im;|~<:R =0, 1, «+, n—1}. Then the volume of
P,(R), or volP,(R), is (wR*)*", where “vol” is the Lebesque measure on O"=R* for
Pn- | E | o | |

Let P,= U P,(R),

¥ (el

Wa={f€P,|f(F)=0 for some & with f'(#) =0},
Un(fo) ={f € Pu| | f(0) —fo(0) | <A and f*(0) =f((0), Vk>0},
Us(Wa) = U U.(fo).
Vol (T,(W,) N Pa(B)) _ (=D
vol P,(R) R
Proof. Bee [6], Theorem 4A, Section 4, Part 1. (Note that Smale wrote ng?/ R“

in the theorem by a negleot.)

Lemma 3.9. * fcU,.(W,) if and only if p;<<p.

Proof. See [b], Lemma 2, Section 5, Part II.

Theorem 3.8. Suppose 0<u<<1, and n are given. Let o= (w/n)Y2. Then for
any f EP,(R), using Kuhn’'s algorithm, with probability at least 1—u, we can find
n approvimate zeros for zeros of f wn at most s steps, where

s=|8[3(1-+V2)n/dw] (1+[8 (A+~/2)n/4n1)

Proposition 3.6.

2 4
_+5b;-min{M, B+1+4 2(1-}-%)} +28 ruﬂw(1+—23% -l:

R+1}—l— N2,

M= m&X{S N 2 (24m)n/dx,. . oL

=
i3+ ),
s=a(1—N)2/18[1— (nL 1) N+ nN**1]
= w2 (1~ N)?/18n"/? [1— (n+ 1) N* 4 nN"*1],
N=min{1ﬁ, R+1+vF (143,

Proof. If o R<p, and z (a veriex of a c.1. trla.ngle) satisfies |z—&| < s for some
zero & of f, then

L

—¢h| < la—¢] 0 e S ]

-
-—

<s 3N+ = oB(30) ~sR (222

Jem]

1— (n+1) NP +nN** ol < Pr_ Pt

p—

dA—N)* 13 13 8K +1°

By Oorollary 3.5, z is an approximate zero of f,
From Theorem 2.12, we know that, for any polynomial with p;>=>cR, we can

=R
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find n approximate zeros of f in al most s steps.. o
Finally, according fo Proposition 3.6 and Lemma 8.7, we obtain

vol{f EP,(B) |p;<cR} volU,x(w) NP, (R) _ (n—1)(cR)® , _
B xeo e RIEE . e Dg<n,

§ 4. Probabilistic Estimation of Monotonicity of Kuhn’s Alg_orithm

We proved in [7] the following results.
Assumption 4.1. Let &; be a gimple zero of f(z), 1<j<n, and both ﬂ}n?a;x | £;—
1 3

&:| and 0<C<\:I?i? | §,—&. | are given. Suppose ry= (9" 1+{"/18)*T —y. By the
e

assumption, er:‘JO. Mﬂrﬁﬂvﬁr, let 0= {ﬁl Iﬂ_"' g!l {‘rj}.
Lemma ¢.2. For any 2/, 2"’ € o;, we hove

f=) 2 —§
|25y / v | <
and 4 |
' f(ﬁ') T
‘H'rg (2 —é‘;)ﬂ(f.-r ARREYL

Lemma 4.8. There ts no negative completely labelled isosceles right triongle in
5, _
Proposition 4.4. Lei D= [log,(2+/ 2 /r;)]. Then for any integer d==D, there
is one and only one o.l. triangle in ¢,CCy triangulated, and it is a positive c. i
triangle.

Proposition 4.5. Suppose that &, is a sm::tple zoro of f(z), 1<<j<n. Lot n=

max|§,—§;|,0{€€m1n]§,—§i| ri=(n""1+{*2/18) %1 =, —n, and D= [loga (24/ 2 /r))1.

Then above the pla.ne O p, the compufation approximating £; is monoftonously rising.

Proposition 4.6. Let D—=[log: (24/2 /r;)]. Then since Cp, with every five
pivots the computation approximating &; arrives at a higher level.

Proof. Suppose that the computation ap-
proximating £, has arrived at a (positive) c.l.
triangle in C;, d>.D. Supposs, without losg of
generality, that the c.l. triangle is {4i, B, O}
as shown in Fig. 4.1. Therefore, the pomt We are
going to caloulate is .D.

If i(D) =2, we shonld GD]lﬂldEI‘ £ next. Wmh
Lemma 3.3, Z(E) %2, By the symmeiry, suppose
I(E£)=1. Then {H;, Dy, O3} determines ¥, Fig. 4.1

If I(F) =1, then {Fy, Dy, Cs} determines H. However, since I(H) =3, the
computation gets into Cg,1 by {F1, Ly, Hg}. From C; to C4,4, there are four pivots.

If I(#) =8, the computation gets into Cy;4 by {1, D, Fy;. From Cy to Cgy,
there are still four pivots.

IfI(F) =2, then {E,, F., 03} determines ¢. With Lemma 3 8, (@) +#2; ot
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right triangle. If (@) =1, we have

wise {I., Ha, G} is a negaiive 0.]l. isosceles
G5} —C4.1. In both oases there are

{Gi, Fﬂ, Hg}cca.[.i; if Z(G)=3, we have {11, Fﬂ,

five PiVﬂ'hS from Od t0 Od-l-l‘
Therefore, if 1(D) =2, with at most five pivots,

¢. must get at a higher level.
—~1 and (D) =8 are similar and thus omitted.

The proofs for the cases 1(D)
Proposition 4.7. (Bierberbach—-Koebe Theorem) Let g:D—> O be an analytio

fanotion on the unit diso, 1—1 for |z| <1, and g(0) =0, ¢’(0) =1. Then
{fw[ w| {%}EQ(D)_

the computation approximating

Proof. See [1].
Proposition 4.8. Let ¢:B (2, r) —> 0 be analytio,
{w|lw—g() | <rlg (@ |/41Sg(BG, 7).

Proof. For z€ D, Tet g{z) __'gl(z-{—:;)(;g(z) . Obviously, g(0)=0, ¢'(0) =1.

Applying the Rierberbach—Koebe Theorem to g, We ochtain the proposition.
Lemma 4.9. Suppose f EP.(R), FEU.(wa), f(&) =0, |&;| <1. Then there 18 &
branch fitof f defified on B(0, A) with fi 1(0) = &;. Furthermore, for 0<a<],
B(E,, ab/2n(2+ (n+ 1) B))CF (B0, ab)).
Proof. Note that FEU,(w,) implies | F(8) |>A if f(8)=0. Thug there is a
branch fi* of f defined on B(0, a), 0<a<<l, with f77(0) =§£;. Applying Proposition

4.8 to fi', we obtain

s

1—1, and ¢'(z) # 0. Then

B(e,, ah/4lf (€D )T (BO, ab)).
Since fE Py(R), |&:| <1, we have

| n—1 |

1f €01 = \"H' g}jﬂfgg"l <nt+h gj——-n(l-%—_(n-l—l)—g—)

and

B(Z,, on/2n(2+ (n+1)R))SB(&, ab/4]f () NEF(BO, ar)).

Proposition 410. Let £(z) =11 (z—&) € Pa(B), f(2) = E (c—8,). If fE

=1
UL(W!I).I lgil Qij then.
min £i— & >0/2n(2+ (nt+1)R),
mzn &—8 >A/2n(2+ (n+1)R).

Proof. This follows immeodiately from Lemme 4.9 by seiting a=1, since the

image of fi* contains only the zero &; of f and no critical point of f'.
Temma &11. et f € PA(B), n>2, f(E0) =0, f(2) =0, |&]>1, |[£a]| =1, §a%
n-—-1
=g"+ ‘;‘}b;z‘ with g(&1) =0,

m—1
&0 IF f(2) =2+ Eﬂmz‘, then there is a polynomial g(z)
=

g (é1)=0 and
b <|E1—Eal (RO=D) (v—2)*+R+D) if d=n—2 n—1,

a=b, ¢f i¥n—2,n—1, |
Proof. Lt £(2)=(a—£2) (z—£2) h(2) whereh(s) =#""+ g:*’* 4, B=(§1—£) X

h(£)/&r? and g(z) =f (2) —B—§)7" = (2—£) [(2—E)h(z) — B ) = £ + 2 be -

n
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Factorizing (z—¢&:) from g yields (z— .fg)h(x) —B72 which has ¢, 8 a zero.
Thus ¢(£1) =0, ¢’ (£1) =0. Note that |Dp_s—@nal =B, |bs-a—8m-s|=[BE1l, a:="0:

if i n—2, n—1. Since [&1]| =1, | Bi=<|BE1|, it suffices to show that |B§1|€
|§1— &3] (B(n—1) (n— 2)ﬂ+R+1)

Lot (z—&a) h(2) =27+ Za;z Then 2"+ Z a2 -—(z £1) (z—&3) h{(z) =2"+
(ona—E)2" 7+ 2 (ai_i—fm)z -—é'iao, = —-fiao, Iaol = !wo/fil, and gy=ay_1— 16,
1<i<n—Lans=1), Jouf = [ B0 < || | B | <o B gt
In exaotly the same manner, ]c;[s\i % | t;/ €541~ | . Thus,
|BEs| = | (a—Eh(E1) /177

<lEfl(ja+ ol Flale Blal G

<l &—&|[16l+ B(E F e Z (g )]

n—2

<iéi—

_uM- TFM"‘

ANEER D

¢=

' Si]-la-al[lal+ RE 3 G+D)]
SEEANTARS 55 (”1)2("’*2) AL AR BTy

<|&—&f (&l +Bn—1) (n—2)%)

(Note {£11321, |&i=l, j— (G+1)<0, i+k—(j+1)— (n—8)<0). We have noted

that the zeros of polynomials in P,(R) lie in B(0, R+1). Hence || <R-+1, and we
.gonolude the proof.

Lot Ly(Wa) = || Lu(fo), where Ls(fo) = {feP

k—n—2, n—1 and f®(0) = f¥(0) if k<n~2}_
Throughout the rest of thig section let
=p(2r(2+ (n+1)R),
pa=p(R(n—1) (n—2)"+R+1),

Proposition 4.12. If f(z)=ﬂ(z—g,)epn(ﬂ), FEU, (W UL, (W.). Then

&= &) >p for ij.

Proof. If |&]<1, this follows from Proposition 4.10. If |£[>1, |&;1 =1, the
result follows from Lemma 4.11 and the definifion of LF,(Wg) In fact, if [&—& | <
p, then there is g & W, such that

=] = [0 0 | g Rn—D) (0—2)*+ B+1)

<p (R(n—1)(n—2)24+-R+1) =pq

if I=n—2, n—1; m;—b; if I#n—2, n—1. So, f&€L, (W,). This confradicts the
hypothesdis.

Al OB HIONPER

_ 5.3 _
With P, as O" under the mapping 2"+ > @5 ~> (@, @1, ***, Gn_1), W, i8 the zero

{=0)

sot of R(f, /), the resultant of ', R(f, f) is a polynomial of degree n+1. in (@n-3,
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@n-1), Similar to S. Smale’s Theorsm 40, Section 4, Part I1*, we obtain

Proposition 4.13, Yo [L”; Slylgi 8;; o(B)] <32( 2 ) (n+1),

Instead of having the fa,c:-tor 32, S. Smale had 4. Thig is because his Lemmas 4
and 5 should read
N.(» N P.,(R) Vo, U Ta. (NP, (B+~2p))U {set of meagure ZOr O}

and
a2

vol T,(y) %W[—%—— areay - 12J K ;
' i 4

Proposition 4.14. Let 0<u<1, Y. (BY=P,(R) N U,.(W,) U L,(Wy)),
where py = p(ﬂﬂ(2+ (n+1)R), pa=p(Rn—1)(n—2)2+R+1), p=p*?/F (R, n), and

F{R, n) ——[32(n.+2) (R(n—1)(n—2)2+ R4+1)? + (n—1) (2n(2+ (n+1)R))7]*2,

'T'hus we have

volY, .(R)
vol P,(R) ‘“_F’

guch that if f(2) =£[1(z—§}) EP,(R), f(z) EY 4,4(R), then .
- * min|£&—&] >p.

Proof. According tﬂ:Prnpasitfim. 3 .ﬂ'c:.;n_d 4 .13, we oblain

vol Y . (R) VLW, (Wa) N Py (R)] | vOL[Ly (W) Pu(R)]
vol P, (R) vol P,(R) | vol P, (R) a

5 P Rf.';)?f’l +32( )(n.+1)

[32(%+1)(R(n 1) (v 2)ﬂ+R+1)ﬂ+(n 1)(2n(2+(n+1)3))ﬂ]

- (,wl””fF(R ﬂ))”-F”(R n) =
Finally, if fEP,(R), fEY 4, o (R), 'bhen PrOpos;ltmn 412 1mpl1es mm |§; — &
> p. o |
Theorem 4.15. Supposa F(2) —-H(z ED € P, (R) O< <1,

FVo
Ay [lﬂg“ [@GR+2)"1+p /18]7* T — (2R +2) !

~818(1+ v Z)n/dm] (1+ 13 (1+ N 2)n/4xl)

Byt {.EI"Z R+1 ﬁ(u-ﬁ‘z } +ggﬂpﬂ(1+ ) ]

- '__ 1 \D—1/3 :

e (E‘) (1 'R..) )
with probability of fmhwe no greater than w. There exist positive’ integers Ky, -,
K., where ZK < K. Such that of k=K, then 2y are monotonic and

i=1

D) |zt l-<:(§-)
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@) 1f (2 | {(-;—)TL@R L 42) 1

Proof. Using the result of Proposition 4.14, for f€ P,(R) and fEY .. (B),
vol ¥ .. (R) /vol P,(R) < is valid. Moreover, in Proposition 4.5, take n=2EK+4-2,
{ =p. Then ??*—*QR'FQPIEIE;X,E;—&[, 0<C=p<mi?|§;—_§,|. Thus, we obfain

- fon

242 g 3
D= [hg" (2R+2)" 14 p*1/18Y "D~ (2R+2) 1

By Proposition 2.11, there are positive integers K4, -+, K,, whare i K<K, such

i=1
that if k> K, then 2, are monotonic. Propogition 4.6 shows that, for the sequence

{(zw, d)}, £~ K. <B(dyx—D), i.e. d,,?k "})K‘ D. Therefore, according to Proposi-

tion 2.H we obtain

i

(1) |ﬁﬂa—§i |

oy Y0E) oy

2
@) Lot f@) = (2=E)I1G—4).
If k1=K, then we ha.ve

| f(za) | = | 20— Eclﬂ[ﬂik—& IQ(—) L‘.H(lﬁm““hfil + (& 1€

‘é(g) - LII(L+2R+2) = ) - L(2R+L+2)“*1

-4
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