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CANONICAL BOUNDARY ELEMENT METHOD
FOR PLANE ELASTICITY PROBLEMS*

Yu DE—HAG (:‘Fﬁ;&-)
(Compiting Center, Academia Sinica, Beijing, China)

.A.ljstraﬂt

In this paper, we apply the canonical boundary reduction, suggested by Feng Kangll, 1o the
plane elasticity problems, find the expressions of canonical integral equations and Poisson integral
formulas in some typical domains. We also give the mumerical method for solving these equations
together with their convergence and error estimates. Gouplmg wﬂ;h classical finite element method,
this methed can be applied to other domains. -

) Introduction

The plane elas'l;{ﬂity problems include the plane siress problem and plane strain
problem. They have an unified mathematical formulation™.

Taking displacements u; (@1, @2) and ug(@;, @) in directions z; and @; as basio
unknown functions, we can give the expressions of strain &y, 4, j=1, 2, and stress
oy, 4, j=1, 2. Consider the equilibrium equations with iraction boundary condition

(A+2w) grad div 4— u rot rot #=0, in Q,
2 1

{jzaﬂ%!'__.gi: ‘E‘=1,I 21 on r} ( )
=]

where Q is a domain with smooth boundary I”, A and wx are Lame coefficients, (n,,ng)
are the outward normal direction cosines on I'. Let

V(Q)=H(Q)%

ﬁ={v6 V(.Q) v=|: o ]J C1, Ca, E’EGR}:
Ca—+C3%1

where H1(Q) is the Sobolev space, then the bounda.ry value problem (1) is equivalent
to the variational problem

{ Find g€V (Q2) such that

D(u, ©)=F(v), VeV (@), 2

where

D@, v) = [[ 3 oy @) su(v)dp

1

-=J‘J 24 i..fél gy (W) sy () + lg 81 (W) 8xx ('v)] dp,

P (v) =_[Pg-v ds.

* Received December 1, 1983,
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D(u, ©) is a somi-positive definite gymmetric bilinear form, and D(p, ©) =0 if and
only if ¢,(v) =0, 4, j=1, 2, and if and only if vEZ.
The sufficient and’ necessary condition for having solution of the variational
problem (2) ig
Fv)=0, yoc4.
Thus we obtain the congistency condition of boundary traction as follows

'L gids=0, i=1, 2

(3)
J’P (B1ga— ot ) ds =0,

From now on we always assume that (3) ig satisfied.
Let V@)=V (Q2)/%,
F@W)=F@w), vcv,
D(uw, v)=D(u, v), ucwu, vEr,
we consider the variational problem (2) in the guotient space V' (Q), i.e.
5 { Find &' €V (Q2) such that
* D', v)=F @), vvo cV Q).
Using the Korn’s inequality™ we have
Proposition 1. D'(v’, v) Zafv'|3., YO EV(Q),
where « is & positive congtant.
Then by Lax-Milgram Lemma we obtain immediately

Proposition 2. The variational problem (4) has one and only one solution,
and the solution depends on given traction continuously.,

(4)

1. Canonical Boundary Reduction

Take the plane Cariesian coordinates. Define a Jiff erential operator I and a
differential boundary operator 8 as follows:

3 82,583

o®
* o o

ox oY
32 e

(a—b)

()

2,
oy

g ——-+ by

0

sy Ty

o

r

»

where a=2A+2u, b=y, then the boundary value problem (1) can be written ag

We have Green’s formula

{

Lu=0,
Bu=g,

in £,
on .

” v Lu dp=jp v-Buds—D(u, v)

&

(6)

(7)
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and second Green’s formula
|| v+ 12— 1) dp=JP (v-Bu—u-Bvyds. 8)
[#)

Because of Lv=0 and Bv=0 for v &€ #, we have

L Vegds=0, YOCEX

when # satisfies (6). If ig just the oonsistency condition (8).
Let G(@, y; 2/, ¥') be the Green matrix for plane elasticity problem in @, from
(8) we can obtain the Poisson integral formula

”J (B@)-uds, 9)

where 8’ ig the corresponding differential boundary operator with respect to yariables
@' and 4. Thus the solution of a plane elasticity problem in Q with displacement
boundary condition is given by (9). Affect (9) by 8, we obfain

g=Bu=| (BB'G)O-uds=oryu. (10)
It iz the canonical 1nt-e§ral equa,tmn The superscript (—0) denotes the limit from

internal side of I". ,}, Hi(@)2->H 3-’(1‘)"" ig the trace operator. The integral operator

Ay —> Bu of [H E(F)]E — [H -3 (I")1? i3 a semi-positive definite self-adjoint
pseudodifferential operator of order 1. Then the plane elastioity problem with trac-
tion boundary condition, i.e. the problem (6), is reduced to the canonical integral
equation (10).

Let D(yu, yv)= L YU« yU ds,

Fo(yv) =Lg-7'v ds,

then the canonical integral equation (10) is equivalent to the following variational
problem

1
{ Find #, € HZ(I')? such that

;i (11)
D(uo, v,) =Fo(y), VO, € HZ(I)2

(an easily prove
Proposition 3. If u satisfies Lez=0, then

D(yu, y0) =D(u, v).
We also consider the variational problem (11) in the quotient space
1
Vi) =H*()/v4%,
{Find u,cV'(I") such that
D' (85, 0o) =Fo(Us), YOEV (),
where D (u,, ) =D, ), UCH;, VyCVy,
Fo(0y) =Fo(Vy), UoEW;.
From Proposition 3 we can easily obtain the V' (I')-ellipticity of the bilinear form

(12)
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D’(s, +) and then we have
Proposition 4. The varistional problem (12) has one and only one seluiion,

and the solution depends on given-traction continuously.
Now we sre going to find the expressions of Poisson integral formulas and

canonical integral equations of plane elastioity problems in some {ypical domains.
(1) £ is the upper half—plane. |
Let U(s, o) -——*—r e~y (p o) do=.F (u) is the Fourier transform of «,

U= (U, U)?, = (uy, ug)”*. Affect Iat =0 by Fourier fransformation, We obtain

P ¥ il L D=0,

(:Q:JL'S'I:) EEEU;L-FZ? 3@}2 ay
. & ; o
(25175"1::' ﬂbUg‘I“ﬂ- Bgﬂ Ug + 2mws? (EI = b) _52_] U1=O-
Then
s i ﬂf"‘b . m—*b v - |2xe Y
Uy L(1_ =7 |2m|y>Um T mﬁsrsyUm]e : -
_[ a—b G—0b .o e
Ua=[(1+275 |2 9)Un— 5= 2msylUso |62,
Because of n=(0,#—1)" on I,
. f Ouy |, OUg 7
[ g ] o G+
Taking its Fourier transform and substituting (18) for U, we obfain
- 2ab 208 sx O
[ﬁ'(s‘ﬁ)]_ = il R [Um]
Z (93) 257 ioms 260 o i8] Uso
L a+b a-+b -
Then taking its inverse Fourier transform, we have
B 2ab 257 ;i
5’ (@)
- (a+b)ma’ a-+b - (14)
262 ar (m) 2ab
L a+b (a+b)ma® -

It is just the desired canonical integral equations. Here * denotes the convolution.
The Poisson infegral formulas can be obtained from (18) by using the inverse

Fourier transformation:

u=[P11 e ]mo >0 (15)
Pﬂ ng > y 3
- Y -~ {a—-b)y(&®—y")
WhEI‘e -P:LI :m(co”—l—gﬂ) ! (ﬂ__l__b)ﬂ(wﬂ_l_yﬂ)ﬂ?
- _ 2(a—b) vy’
Pis P""i_ (a+b)m{(a®+y*)*°
Poi (a—b)y(a®—y")
or (@ +4°) (a+b)m(a®+y*)*

(14) and (1B) also can be obtained from the Green matrix with respect to the upper
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half—plane

Gi1 Gha :l
G= 5
[ Ga: Gas

where

_a+b . (v—a)+ (y—y)*
G = 8wab o (w—a) T+ (y+4 )3
o a-Bf o Gl e ]
dmab L (a—2 )Y+ (y—y')* (e—2 )Y+ (y+9)°
. e—8)° - (y+y)?— (x—a')®
' Swab(a+b) [(z—2)*+ (y+4' ) 1%
Gﬂﬂm——b[ (y—y)(@—2) __ (y—y)(@—a) ]
dmab L (@—a") 7+ (w+y)? (o—o)+@w—y)*
N Clanl.) i, (y+9) (z—a')
" wab(a+b) [(o—a )+ (y+y)7]*’
Gﬂ:m-—b[ (y—1) (2—2a) (y—9) (w—a') :|
dgab L{z—a )+ (y+¢)2 (z—a )+ Ww—y¢)?
(@—b)° . (y+y) (z—2')
. wdb (a-+b) [(@—2)*+(y+¢)7]1?"
_a+b ¢ (z—a2)+ (y—y)?
N Sl GO LEN (TERTAL
} ﬂ—-b[- (y+y)” (=g} ]
dmad L (o —a")?+ (y+9)? (o—a)*+ (y—¢)?
,_ (a—b)* y (y+y)2— (z—a')°
" Omabla+b) 70 [(a—a )+ (y+y)
(ii) @ is the interior domain to the circle with radius £.
Let ## —u,e,+u€,, the plane elasticity equations can be written as

. & | a 0 a , b & a—b & a+b 0O &
or: ' r or r2  r* 9§? r oFor N [%}=D
a—b & , a+bd © ba”,ba_i_i_maﬂ Ug '

r dfor o6 ar?  r or 1?2 r? 96* -

Using the separation of variables, we can obtain the canonical integral equation

[Qr(ﬁ)“ =[Krr Krﬂi|*['ur(R: g):l

gs(8) K.ﬂr' Ko Us (R, 8)
where
_ ab 252 , a?
e (6+b)2wRsin*4/2 R(a+bd) ok xR (a-+b)’
o _ ab _g_ 252 ;
Koo~ Ku= o B T R ° D) (16)
. ab 2567 , b
g™ (a+b)2xRsin?8/2 R(a+b) BLs S mwR(a+b)’
and the Poisson integral formula
[ur(*r, ?) jl=|:Prr Pm]*[%(R; 9)]} Y
ug (1, 6) P, Pupi (R, 8)

where
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[2¢Rcosf— (@a—b)r] (RI—rD)

s (ﬁ+b)2ﬂrR(r“+R-" 2Rroos9)
408 b) (B2 (R 008 0 —2Rr+1r2cos )
(a+b)2x(R°+r —2Rrcosd)*
Po= b(R*—r?)gin 0 L (@) (B—rDsinf s
@+ 8yw(B+r—2Rrcosd) = 2(a+b)w(R +r"—2Rr cosd)?
P,=— a(R— 9’2)5“19 1 (b—a) (R?—r?)?sin @
= (a+b)m (RI+r?—2Rr cosf) " 2(a+b)mw (R +1? —9Rroos6)?’
j - robReosf— (b—a)r] (R3—r2) , (b—a) (B2—r?) (R?cosf— SRy 112 GGEE?)

(6+0)2nR(R*+1r*—2Rrcosd) (a+5)2m (B ++*—2Rr cosfl)®
(iii) Q is the exterior domain to the circle with radius R.
By using the same method, we also can obtain the canonical integral equation

[gr(g)]_l:ﬁrr Krﬂ}*[%(R: 8)i|
g&(ﬂ) B K, Kg ue (2, ) "

where .
. ab . 2b? : @
el s '(a+b)2auRsin”9/2 "(a+b)R Bl aR(a+b)’
ab 257
- — — r 1
E’:ﬂ 7 Kor (a+b)nR ctg 2 (e+b)RB 5 (), 15)

and the Poisson integral formula |
(1, 6) [Pﬂ- Pm} [ (R 9)]
. R,
[%(-‘I", 9) ] Poe  Pog 'ua(R 9) a

(a—~b) (r>— R?) (R*cos § —2Rr+r° cos )
2(ﬂ+b)m(R’+rﬂ—ZR¢m€)” g

where

P - [2br cos B4 (6 —b) R] (r®* — R)
" (a+b)2mr (RI+1r7— 2erﬂ9)

=

——m”(”“ﬂ"ﬂ")ma ' _(a—=b)(+*—R?)?sin{
a-{- W( +’!” 2R¢M§j 2(ﬂ+b)w(R“+a~”—2era9)ﬂ’
P g ST Jrin o (a=b)(r'—B?)?sing (9

@+ B)n(R+r—2Rr cosf) = 2(a+b)mw(R¥+r*—2Rrcos §)*’
P, = [2ar cos 6+ (b—a)R] (r*—R?) (a—b)(r*—R*) (R*co8f#—2Rr+rco8g)
(+0)2mr (R*+r7—2Rrcosf) 2(a+b)n(R3+r*—2Rr cos )
The canonical integral equations (14), (16) and (18) also have been found by
using the method of complex analysis, the defail will appear in another paper.

2. Numerical Solution and Its Convergence

Lot £ is the interior domain 1o the circle with radius B, the variational problem
corresponding to the canonical in'begra.l equation (16) is

4' Find (to, o) eﬂf(r)ﬂ such that
(D (2ro, Upo; Vro, 'Uﬂﬂ) =F (9,0, Voo), V(’Urn; Voo) G Hf(l" e
where 7 (00, Ve0) I=RL [0+ (8) 010 (6) -+ 95 (8) a0 (8)1 6,

g 2% K.n- K -] Yo
D(u,.o, Upo; Vro, Veo) =_L (ro, Vgo) {R l:K K_w}*[mﬂdﬁ.
| & 99 -

(20)
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It is easily seen that the integral kernel is independent of R in faot,
Now divide the boundary into & and taking the piecewise linear basis funotions

{ILy(8)ycd 3 (I"), where

S(0-6,2), 6,2<6<0,

L) =1 X 4,.—0), 6,<6<b,,,
2
0

)

il sl s
95 N?ﬂ" _? 1_, ,N.

otherwise,

Let o (8) SV (0) = ULy (6),

too () 2 Uso (0) = 2V L4 (6).

From (20) we obtain a linear algebraic equations |
[Qn Q19:|[U]=|:B“’ (21)
’ Qa1 Gaa LV C.
U= [Ui: el UN:]T: V= [Vi: g VN]T:

B=[by, =+, ba]", O=I[es, *», exl",

QIH= [qif}m}] fyJ=1y s N2 Z: m=1: 21
=R E’ 4,(8) L (8)db, cimﬂj:’ 0 (O) Li()dh, i=1, o, N,
¢iP=D(ILy, 0; L, 0), ¢3¥=D(0, Ly L, 0),

QE?1}=I_}('L;, 0; 0, Li): qgm=ﬁ(0’ L.‘.'; 0, Li): ‘:": .?=1: el N. (22)
Using the formulas in the sense of distributions

1 i
R ool

where

and
—%—ctg g—= gsinnﬁ, |
we can obtain
Qu=—2 (a0, @1, ++, By1) =~ 3 Ni"ﬁ 774 1,0, 0, 1)
2
SR
Qua=—Qu=22(0, &, +++, dy1) — =20, 1,0, -, 0, =),
Qo= jj—bb (a0, a1, " ﬂy_i? 5 Ngg:;bj- 5 (4, 1,0, »=, 0, 1}
e TCHEE VN (23)

where (ay, *+-, axy) denotes the ciroulant matrix 'produﬂed by ay, -, ay,
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m-.."“ 1 -.4 W . jk . . |

It i3 cagily seon that Q@ and Q. are symmetrio ciroulant matrices, @, and (), are
antisymmetrio ciroulanf maitrices, and

Qu Qu]
. [Q—ﬂi Qs

ig a semi-pogitive definite symmetric matrix.
From Propogition 4 we obtain

Proposition 8. The system of linear equations (21) hag an unigune solution up
10 & veotor in the space |

{m (ZuL®, X V,L,(a))e'y@}.

Therefore, if we want get an unique solution, we muss add some other conditions.
We can solve (21) by direct or iterative method., |
When Q is the exterior domain to the circle with radiug R, we also oan obfain a

gystem of linedr equations in the form of (21) from the variational problem
ocorresponding to (18), but where :

o 2ab , L . 2=b? . N
QJJ-—QEH ﬂ-'-b (GO: @y, p’ EN—i) ' -3N(ﬂ.'«+b) (4: 1: 0; J 0.: 1)
4 . 4mab _
s e D, @

ﬁ"{"b 2 ..'r £l -'-.- ﬂ+b 2 J..J 3 ¥ 3

Here ay, dy, k -, 1, see, N ") are giveﬁ by (24).

1 b |
Let #,(6) €H?*(I")* be the solution of canonical integral equation (18) and
UsY’ (§) € 8% be the corresponding approximatoe solution found by canonical boundary

element method. Let IT: H 7 (L')*— 8% be the interpolation operator and |«l5 be the
energy norm on V'(I') derived from D(-, -). By the methods used in olassioal
theory on finite element method and in canonical boundary element method for
harmonic and biharmonic boundary value problems™ and by using some known

resulis aboni solutions of plane elasticity problems™, we can eagily obtain following
resulia.

Lemmal. D(u,—U®, Vy)=0, vV, c58%:

|tho— U™ | 5= inf [er,— Vy 5.
VoeERS

Lemma 8.  The energy norm [+ |5 and the quotient norm | | vocrm @re equivalent.
Theorem 1(Convergence). If IT satisfies Ilv:lm |Co— I | vry =0, YOLEV (I =

1 .
[H'E(I')]’_', then ]Niﬂ[luo—wmm |z =0. |
Proof. Sinoe Lemms 2, there exists a constant K , such that

Nvelp<K| o] v, Voo &V (1),
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and from the trace theorem, we have a constant 7', such that
[0]riny<T[o|va, VOEV(2).
Because of #, CV (1), there exists ¥ €V ({2), such that yit =#,.
For arbitrary &3>0, we have w€0~(3)? such that [#—Wlrw< - ES’T . Let

YW =Wy, then

e
“lln—wu"n‘iKTHu—w||ﬁﬂ}<§._

Moreover, for fixed w,, there exists No, such that [ewe— 1] v, {-% when N >>N,.

Then |we—1IT wuun-fi—g—. Using Lemma 1, we obtain

[

|tto— US" | 5= inf |tto— Vo| 5= | tho— o+ | wo— It s <&.
wmEEY .

Then lim |tgo— U§¥’| 5=0. The proof is complete.

Theorem 2. If u,C H*1(IM2, k=1, I satisfies
uv.“__Hv{:‘“!rrgchk.ﬂ_l”vﬂ"h-id": vvﬂEHk-H(F)ﬂ: 3=-D.r 1: -

| 1
then | . | 220 — Ug» "1'5“Q{:""IT’]E-I-T“jr |0} x41,r,
where h= %ﬂi

Proof. From Lemma 1, Lemma 2 and the interpolation inequality™®, we have
| 1 % 1
itto— UP || p<C|tto— Itho | Ly <O |uo— Ity E pltto— 1|2 r <Ch SN T7N

where we denote every constant by C.

Thig numerical method is also suitable for the exterior domain fo a circle, If 2 is
the inferior or exterior to an arbitrary smooth closed curve I', we can use the
canonical boundary element method coupled with the finite element method'™. For
example, Q is a bounded domain. Draw in & a cirole /" with radius B, dividing £
into @, and Q,, where Qy is a oircular domain. Then the variational problem (2) is
equivalent to

{ Pind ucV (2,) such that
Dy(u, ©)+Di(yu, yv) =Fo(v), YOEV (2s),

where V (Qy) =H*(2.)?, vV (23)—>H ¥ (I'")?2 ig a trace operator,
2
Dy(n, v) = ” {%1 oy (8) e (V) dp,

fy

Di(y'u, v'v) ==L,7"v - Ayt ds,

(26)

" ig the canoniocal integral operator for the plane elasticity problem in £, its
expression is given by (16). __ |
Now divide oirele IV into N; and take a triangrlation of £; such that its nodes
on I’ coincide with the dividing points of I”. Let the conforming condition
yHOv=1yy'v, YOEV (22)
is satisgfied, where IT and II, are the interpolation operators corresponding to finite



olements and canonical houndary elements respeotively. Take the piscewise linear
bagis funoctions {IL,},-1,..5 in 2;, where N=N,+ N, and the gubsoripts j=1, +--, N,

correspond to the nodes on 1. Let
%

W
'ZL,.T-.':—‘U,-=2 UfL_;, uﬂﬁUﬂglejL:h
f=

j=1

from (26) we obtain following system of linear algebraioc equations

Gu Qu [T B ‘
[Qh QﬂuJ[V]z[G]’ (27)

where b, ﬁJ'r g lnds, ¢ =L_gﬁ.L,; ds, 2=1, ---, N,

Qim =L 15521, 0n, 1, m=1, 2,
qi; " =Dy (Ly, 0; L, 0) + D, (v Ly, 0: v L, 0),
¢;¥ =D (0, Ly; Iy, 0) + Dy (0, v Ly vy, 0), (28)
¢;’ =Dy(Ly, 0; 0, L)+ D (y'L;, 0; 0, y'Ly),
g7 =Do(0, Ly;; 0, L) +D:(0, v'L;; 0, v'L,).
In all formulas of (28), the first part can be obtained by olassical finite element

method, and the sefond part is given by (23)—(24), of course we must substitute N,
for N.

- The convergenoe and error esiimates of the coupling approximate solution can be
obtained by using the same method as in [7].

The author wishes f0 express his most sincere thanks to his adviser Prof. Feng
Kang, for all his help, advice and comments.
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