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AN ALGORITHM FOR REDUCING THE MATRIX NORM"

Wu WEN-DA ( E ik )
(Beijing Center for International Hconomic Information)

Abstract

Baged on the singular decomposition of 22 matrix an algorithm for reducing the mafrix norm ig
presented. Under the optimal choice of the parameters the matrix B after transformation may be
eonsidered as “locally normal”, that is, the four corresponding clements of BBT-BTE are 2610,

1. Introduction

Eberlein [1, 2] proposed a Jacobi-like method to compute the eigenvalues and
eipenvectors of arbitrary matrix A. At each step the similarity transformation B=
T-*AH is needed to reduce the norm of the matrix, and in the roal case only 4 of the
elements Ay of H differ from those of identity mairix and they are

Later, the same problem was considered, but
hﬂﬂzhﬂﬂzlﬂ h’ﬂﬂ":{}: hﬂfﬂzg-

Since the singular decomposition of any 2X2 non-singular matrix 18

[cosﬂ —ain&][f D][msﬁ sin@]
gin & cosf [0 9 —ginf cosf

and the third matrix is useless for the norm reduction, hence in this paper we
consider

by =& 08 6, hpg=—n 8N 0, hgp=§ sin 6, hgg=mcos 8,
In this way, we choose the suitable transformation among all possibilifies, not only
among the particular family depending on one parameter.

In § 3, excluding the easily-verified particular case where we mmay directly
compute one or two eigenvalue, we prove that there exist the values of paramsters @,
¢ and n to minimize the matrix norm. In§ 4 we prove that under optimal choice of
the parameters, the 4 corresponding elements of BBT— BB are zero. In § 5 the
unique problem is discussed. In § § 6—9 we congider how to determine the opiimal
values in different cages. Generally, the system, which the optimal values satisfy, can
be reduced to an algebraic equation of order 8, and the interval including the root
needed is located. In a particular case we may get the exact solution.

The speed of the nmorm reduction and the numerical stability are not to be
discussed. -

For simplicity, we consider the real matrix only, but obviously it can be general-
ized to the complex case. Further information will be presented in another papor.

* Received August 7, 1982,
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2. Notations
Let 4= (a;)be any arbitrary N X N real matrix. Lot the elements of N XN zreal
matrix H = (hy) are defined as follows

hﬂlJ:fmﬁ: hﬂ=—?}'ﬂin_g':

% Z

p<g fized, £>0, >0,
hiy =0y, otherwise.
Obviously, H*= (4;,)exists, and

Koy 1008 2., By =¢~" sin

i 3
& it g
h!;‘ﬂ= -7 18111'%1 h&ﬂ 7 lm _2_':
hi; o ai:.' .
Let H*AH = B= (by). Obviously, by=a,;, when %, j#p, q.
Lot v(B) = ?" b, -{-!2" & +$" bz, —I—‘Z’ by, +b5,+ b3, +b%, 402,
where 2> denotes that 4, § run through 1 to N except p and g¢.
1
Let ”1=§(ﬂm+ﬂap): Eﬂ__"’g‘(ﬂm—ﬂﬂp): ﬂﬂ:‘g‘ (ﬂqq“”ﬂp):
2 JE_’ gy 5 G5 = ?’ ag;, g = 12" Qo) Qg4
&, = zf ﬂ-;ﬂﬂ: g = ?.ﬁ ﬂizq, g = ?I -I'.Tr;ﬂ g, (2 . 1)

fi—@atajcosf+aysind,
f5= —ﬂﬂ+ﬂ1mﬂ9+ﬂ35jﬂﬂj
fa=agcosf—a 8in b,

fai:%(ﬂ‘i + ﬂﬁ) -1——%—({34'—{35)003 9+ g 8n 9:

1

fﬁ=§(a4+aﬁ)— 1

E(ﬂ,i'—ﬂﬁ)(m 9_{35 gin 6‘.

* fo— g COS 9—-% (@¢3—as)8in 4,

fr==5 (@1 + @g) +5 (ar—a5)o0s §-+ay sin 4,

fo= 5 (@1 + Gg) —--(a1—s) c0s §—ay 6in I,
fo=ay 0080 — 3 (ar—ag)sin 6,

1 1
bl=%<bm+bﬁﬂ): bﬂ:‘g(bw_bqﬂ): ba:ﬁ‘(bw'bw);
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be=27 ba1s by = ?' bis bo =21 bes Out;
b= $" bips bg= 2’ b, by = ?’ bip Oig.
Therefore |
£(B) =& fabm fo 8 o1 fart 5 (app a2+ f+ 60072 13,
(2.2)
We choose 8, £ and 5 to minimize = (B),
3. Existence
At first we exclude the case that the norm reduction is not required. Let
r=asax—ad, S$=ag(ast+as)—a1(as—as) — 2030,
7=y — 02, $1=ag(@r+ag) +a1(87—ag) +2a0s. (8.1)

Lomma 1. If ay+as=0 or a;+as=0, the aigenvalues of l: ';”” gm]c&rﬂ those of A.
a9 a4

If (ao+a5) (@ +ag) +0, but r=5=0or ry=3,=0, then by choosing 8 and pu#ting &=n=

1, we may get one eigenvalue.
Proof. 'The first part of the lemma is obvious. Ag the second part, if r=5=0, then

; ; 2 ~—
we may get fa=fs=0, by taking gin # = %iﬁ%, cosf = ‘z: —l—zz . Consequently b4 =0,

j *=4q, and baﬂ =7 % (ﬂﬂp "Fﬂ'rﬂu) g = GM _mf ﬁ)m;- S 18 an eigenva,lue. If ri=8-= 0’ then,

; ; 2 Gr— @ ; | a7 — Gs) — 201@ .
ta., ing &in f me 008 ey Baq 5 (Bgpt+gq) + s o a
eigenvalue.
In the following we suppose
s+ 0, when r=0; 8 %0, when r;1=0, (3.2)
LQ"}
z=1(A) = a4+ as+a;+ag- 02, -+ azy -+ by g, (8.3)

Theorem 2. When (3.2) holds, the minimum of 7 (B) exists.
Proof. We prove it in 4 different cases.
Case 1. r>0 and r1>0. Let

o=min fys=min f5 = %(m + @5) — (—1—- (w4+£r5)5——»r) >0,

3|

1
. : . 1 1 9 &
1 = IMiNn f7=m1]1fg ——2—(137 = ﬂrg) "‘(E‘ (m"i’"l—ﬂﬂ) = 'TI) }Or

L

Then - v (BY=£- 2 f>E a>w, when &<,
+(B) =& fr>Eay>7, When £>—

: i

+(B) > fs>rPar>7, When 7*>—,

v (B) =y 2 frzn a7, when. 'n’-f:‘.-g—_
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-—I-H-I—-ll——!lll-r W A 0 ormeaa — =i e S L

Therefore we may consider only the finite closed domain 0<<#<< 2, 04:-3- < & P

=, and on this domain 7(B)is sufficiently smooth, so the minimum exista.

* Cass2. r=0, %0 and r;>0,
Choose & sufficient small and 0<e< m‘*;ﬁﬁ in order thai ﬁ=il§f fi>0, ;=40 f,
<&}, and y=i3ff§:>0, Qs={f|fs<<e}. Then for any ¢, when 55}51— or 17> f—, we
& i

have = (B)>7 as case 1. When € (2; U £2,) and £2 < -i—- or 97’*':7':;-, we haver (B)

> also ag case 1, When € 2, if 1*< m*;:zﬁ, wo have

+!I5

(@) =0 fs=n" (et a5 —fo) > 24 5

e

. 7 - {ix a 4 -+ s
=
H“Ild lf 1?2 2 g J g < 2Tﬂ ﬁ ¥

we have 7(B) >£" 19 fiz>7r. When8C Q,, if £2< m”;:"’ﬁ , we have

v(B) > f > T,

: H__.E Q4+ G !34‘1":“35
and if ‘E or ? ”T"< 21:.5 Vs

we have v(B) =& n~? f3>7. Therefore we may consider only the finite closed domain

0<H<2%x, 0<min (-—3 f; 3, -%- y)qfa, ??5":\:;1:‘-
1

Caseé 3. r>>0 and r1=0, ;%0 _
Case 4. r=0, s%0 and r;=0, 8,50,
The theorem can be proved similarly for these two cases.

4. “Local Normality”

Since the minimum of v(B)exists and 7(B)is a sufficiently smooth function of 8,
&€ and 7, the optimal values must satisfy

o . 7, 7,
—3-07 T'(B) =0, 3? T(B) =0_, -3_‘7)_21:(-3) ma ()
or
. A=y D (fe— 8 1 fo+207 f1fs— 28 fafa) =0, (4.1)
=& fatfr— &0 fi+ 2 f3 =0, (4.2)
=0 fot+fa+E 2 fI—E 4 f3=0, (4.8)

0 T 11 Tis Tig
Let the Hessian matrix of v(B) be| 71a 7as 793 |, where

_ Tia Taz Tag |

v~ =) (— 5 Famfo) + 1 E7(Fr—F)
+292 fi— 28 fi+ (fa+fa) EFa=F0) )
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Tf &2 =12, then 711 =0, and the Hessian matrix is not positive definite. Therefore &, &

and 7 satisfy (4.2), (4.3)and
Fo— &2 fot+20" f1fa— 26" fafa=0,
Let BBT — B*™B= M = (my). Obviously
gl Gt =G 5,
Meg=n"2fo— 2 fs—E 212 fi+E7 777 f3,

Mg = Mgy =& ‘??_ifﬂ— é:?’z‘fg +2&1 nf1fa— gfﬂ-ifsfa.

By comparing (4.2)—(4.5) , we get

Theorem 8. To minimize v (B)is equivalont 10 My = Mgq=Migg=Mgp =10,

Lot us then call the matrix B “locally normal”,

5. Uniqueness

(4.2), (4.3)and(4.4)can be written as
Gt fr+E fi—n* fi—7"Fa=0,
Entfatnt fi—§ fi—EF:=0,
EP fo+ 28 fafa—27" F1fs—Ffe=0.
Let AAT— ATA=N = (n;), Obviously

Npp= s — @y 401 g, Tgg=G5— Gz — 401 A3,

Ngg = Tlgp = g — by T+ 403 %3,

Theorem 4. If ny,,=ng =ng=0, then the minimum of v(B)is 7,

Proof. Obviously

s ﬂ;r,:ﬂﬁf‘!'ﬂrg,
f*!:_'f'i': %‘(ﬂ-l_“ﬂﬁ—ﬂT‘l'ﬂrg)GDﬂ 6+ (ﬁﬁ“ﬂg)ﬂjﬂ g

= “4@1{35{503&—4@5@35:1]]3:]‘%— 13

fs—fs=fi—f3, fe—fo=2fafa—2f1fs.

(4.4)

(4.5)

(5.1)
(5.2)
(5.8)

(5.4)

Therefore for any 8, &*=2"=1 is always the solution of (6.1)—(5.3). On the other

hand, for any fixed @, from(b.1)we get

262 282 _ fafs 27 fift+ntfaft ~.0
dr? (P f+S3)7 ’

L e 1 fa +’??4ﬁ & I (f4+??ﬂf7) (1—4") =0, if 1251

1 frtf2 L 7 fr+1z
and from(5.2)

I I ity it g i
2~ Ehi

?}4_54:&54‘54363 £t fﬂ(fﬁ'?‘fﬂfs)(l_g_ﬂ)__%{h it &=t

Efs+fi & fs+ 11

Therefore for any 8, (5.1)and(b.2)have no solution other than &'=»*=1,

is impossible to reduce the norm.

ence it

Theorem b. Suppose ——= <<=, then system (5.1)—(B.3)has unique solution.

2 2
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Proof. If there exist H, and Hgsuch that both By=Hi' A Hiand By=H st A Hy
are “local mnormal”, then By= H;'H,B; Hi'H, From theorem 4, Hi' Hsis
unitary, and consequently Hi*H HIHI =1, H HTi=HsH » Denote the 8, & and 5
of H, by 8,, & and 7; respectively. Then

’m-é-el —sin%m“ﬁ ol ms—l—ﬁj_ m%a{
_sin-}j-ﬁi 005-1—91 ] 0 rxﬁ_ _—-s:in%ﬁi 308%91_
. {3{]5165 —E]H%Hg —fg 0 1r 005-%'—95 ﬂiﬂ%—ggh
nloy  csley )] 0w || —enp O el
Consequently
-Cﬂﬂ—éﬂ(gl*gﬂ) “—Ei]l%(f?i'—gﬂ)_ -& 0 )
sin LBy cosg@u-0)]| O
3 g 'am%(m—eﬂ) —sin%(al-aﬂ)"
= ) i 1 1 .
3 0 T2 . _E]I'l-i-(&i—ﬁsj EOS——(H:[_—QQ)
SiﬂCE—%{&g"QE, then —ar{lgl——-ﬂg{:w, —~(91—'95) ?‘50 hE]lGEiéz— 2, ?}%=ﬂ§.

On the other hand, from &% 31’11-%-(91-—95) = mz §in E(Ei—ﬂa)wﬂ got &isin —2— (01— bs) =

risin 1 (9~ 6s). As pointed out in § 4 that &f % 72, We obtain ain% (B By = U,
and &1 =03 follows.

6. The Analysis of System(5.1)—(5.3)

From (5.1)and (5.2)we get
o fr -2t fa=E"fs+1" fa

therefore
Ot £ _ fa=EnTs
. é 9? é:'af'r ‘T?ﬂ g’ 7?2 ‘fﬂ??ﬂf?—fﬁ ) (6'1)
Eliminating £3fs— %2f1 we obtain from(5.2)and (5.3)
£ o _¢gaar _ o560 & o
2fﬂ(?}‘g s—& 'ﬂﬂfs) (&% o fﬁ)(wﬂ fs+f1). (6.2)
Eliminating % from (6.1) and (6.2) we geb
L&A MEHF4+N =0, (6.3)
whers L=f1f:fo—Fafsfot2fsfrfa=s1fo+2rifs,

M =f3f4f9 ‘I‘fﬂfﬂfﬂ _flfﬁfﬂ _flf‘i"fﬁ;
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N=f1f5fn—fafafﬂ—gfaf';fﬁ*_“Sfﬁ“gﬂ”fs.
Eliminating &%* from(6.1)and (6.2)we get

P& 1L +R=0, (6.4)
7 /a
where P=Ffafrfe—Fafsfo +2fafsfr,

Q= Fifrfet+fafsfe—Fafsfo—TFafafe,
R=Fffsfo—fifafo—2fsfaSs.

Suppoge
&y (47 +ag) Gg — @1 (@1 +as) G+ g (Asr = @atts) =0 (6.5)

then (6.4) can be factored into
(%-1)(13 —'i:—-R ) ~0,

4 2
Since the solution —é——=1 ig useless, then we get & B Under the assumption
B

7 Ul
(6.5), (6.4)can be factored into

((ar+as )& — (as+as)) ((@s+as) LE ' — (@1 +ag) V) =0,

Suppose
G4 G5 = Q7+ g, | (6.6)
If £28=1, then (6.1) yields —% =71 . Therefore E%ﬂ=% . From f’nﬂ=%, «f: - IR;
and (5.3) we obtain K
F= (fﬂL—ng)ﬂPR-4f§(ng—f1P)ﬂLN=O_ (6.7)

Thig is an equation of #. Generally, we can determine @ from it. (6.7) is homogenous
:1 gin @ and cos @ of order 8, or algebraic equation of tand 8th order.

In the following we will discuss how to determine g in the different cases
mentioned above.

T Case 1. T>0, r1>0

At first we try to find 8, £ and 7 in order that
b4=bh bf.:b;g; bﬁ=bg

or §4=£ ??*'—‘-'E’- §5ﬂ3=ﬁ-

f1’ g o
Therefore ) fafsfs=Sif sf4.
Since f-.tfﬁ—'fg"_—ﬁéﬁﬁ—ﬁ%:ﬂ

f'rfs—f§='r1, -%‘=§57?2}0

1 1
wo got | rife= 17 fo.
IL@‘!‘- J
1 1 1 1 1 1 3
A= (12 ag—riag)? - (2 ri(ﬂz—ﬂs)--ﬁ-ﬁ”?(%—ﬁa)) : (7.1)

If 40, then
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1

1
tan f =— 2 (7% ag— 77 ag) (7.2)

r? (ar — ag) —fr% (@s — ws)'

If 4=0, then # may be arbitrary, and we take 6 =0,
Carrying out the similarity transformation by H with 8, & and » defined above,
desgpite of norm reduction, we may assume, without loss of generality,

Gy4=q7, Us=0g, Qg =0y,

Hence assumptions(6.5)and (6.6)hold, and the analysis in § 6 can be applied.

If ag=0 or ay=a3=0, then mn,,=n,g="n,=0, the norm reduction has been
completed.

Suppose ag+#0 and t=al+a5+0,

If % —as(@s— 5) — 2010 = g (@7 — @s) —2a1.G45 =0, then, fo=fo=1

4— s
when
2{31 fﬂ-!‘ wi

#=0, and fo= fg=;ﬂ fs, when as#0. Therefore we may choose ¢ to satisfy fi=0.
3

Now, (5.8)holds, and we may determine & and 7 from (5.1) and (5.2). Eliminating
1 we geot

G(&) = &5+ (B fi+fs) (& D& (& fi—fDf5=0. (7.3)
Choose the root £€ (0, 1), when f>>f2, and otherwise the root £&>1. As for », we

determine it by

B
T & ) @—Dfs * W)

If u=ay(a,—as) 2030 =1 (a7 —ag) +2a3a, = O; then,

%(ﬂ;*ﬂﬁ)ﬁﬂﬂ 9‘!"&351‘[]]& z:fﬂ.: when [Illiéﬂ
and _ %(&4—55)005 0+ as sin § = :342;:55 fa, when a.+%0,
3

Therefore we may choose # to satisfy f3=0 again and £&27°=1, Now(5.3)holds, and
(6.1)and (b.2) are the same eguation

GED) =3+ 5 (a + ) E'— 2 (au+as) €= f1=0, (7.5)

It has only one positive roof.
If %0, u#0, then we consider (6.7).
If a3>%, when 8 satisfies fa=0, we gei

- Pl i1 (a2—1)>0.
16 -
If ai<i, then, let @ satisfy sin ¢=%; CO8 @ = ﬁ']:‘- , we get, by the identity
' t i

K 4-u?= (as+as) 2 — 4rt
that faRR—f1.P =0 is equivalent to
ku(t—a2) tan?(0+p) — (dri*4-iu® — aZu®+aih?) tan (6 +¢) +aibu=0,
For the root
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tan (0+¢) = {4ri®+ (¢ —a3) v+ ﬂ%ki + [1642%¢* + 8512 (0’ — adu® +azk”)
+ (udt — a2u® — a3k 2}/ Chu(l —a3) )

(7.6)

2

a
2 bence

its magnitude is greater than other’s. Since the product of them equals z

we got "

tan® (0+9) >, @i<tisin’(f+p).
T
Therefore f1 fa= (a1 cos 0 +aq gin §)*—ag =1 sin” (0 +¢) —a3>>0,
It ig easy to see that for the & defined by (7.6)

P£0, R+£0, fﬂL_fﬂN#Oj
3
F=(feL—fsN)?’PR= (fﬂL“fﬂN)ﬂ%flfﬂ}D-

If a2 =t, then one of fiand fsis zero, when & satisfies f3=0, subsequently, or
P=0, or R=0, hence F=0, On the other hand, from (6.7)we got

d d 2 d 2 g
- (PR) + PR — (fi(L—N)") —445 (fi(faB—f1P) LN),
R%(PR) =%((m4+c35)9f3—*k(f4—f5)) ((Bst+a5)*(f14f2) +Efe)

_ﬁ%(f&"fﬁ)fﬁ((fi—fﬁ)ﬂ_"ifg).
Therefore, if a3 =1 and & satisfies f3=0, then

dF _ 1 .3 378079
5 ~ w3kt (k2 +4rt) |

Lot 84 satisfy L— N =0, that is ufe-+2rfs=0, then

dF _ rac7,_ N2

- — L AACfR—f:P) LA <0,
Now we get the conclusion that F =0 has a root betwoeen §; and § defined by fa=
0, if aZ>>#; and a oot between 6y and 6 defined by (7.6), if a3<(¢; and finally if az =¥,

2W3+4’F{33 =_mi ] . _
as—ag)ut+4ra, ’ and tan & a1 for 4 satisfying f3=0, we geot

since tan G1= (

tan (¢1— ) = — 3 ﬁw?’

and there is a root between &y and & solving f3=0.
We may locate this root by any method and determine & and 7 from

s, a2V ‘BB
&3 - and g,
It can be proved that the values of 8, £ and n thus determined solve the system(5.1)
—(5.3), but we omit it here.

8. Case2. r>0, r,=0, 5,0

In this case we try to find 8, &€ and » in order that
b4=bq} bﬁ.:bg, b1=0
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Or &t ="‘f4—, ’1?4--—- E¥fa+17f1=0,
: f'? el

Therefore fifofr=F32f4fs.

Let

h=fifsf1—f5fsfs= (a5 (@1 co8 @ +a; gin #)®) ({aza7; ~ asas) cos 6)
+ ((@s+as) as — (@7 +as) @ 8in H) +2aa (@ cos 6 +a sin 6)

% [(—%— (astas) (a; + ag) — 2%@9)51'119 G+ (@sag+asor) cos” 0
— ( (@ as) @+ (@s—a5) 4s) 8in 0 cos 9]=0‘ (8.1)

It is 2 homogeneous equation in sinf and cosf! of order 8. Therefors there exists at
least a real root 6. Obviously, only those ¢ which satisfy f1fa<<0 or fi=fa=0 are
needed. When as = 0, choose & satisfying aic088 4 agsin §=0, Now, fi= fa=0,
f1fsf1fs5%0, and we can determine £ and 7.

When as%0, if @3>, we have

f1fa= (ay cos f4ag8in §)*F—a3<<t—a3<0,
If a3<t, sinoe h may be written as :
h= (a3+1 Eiﬂﬂ(fg"l'@)) (foSr—Fafs) ¥ 2ast® 6in(0+9) (fofr+Safs),

a1

where singv=\/T COS p = *\/t then,

=4a;fsf:>>0, when gin(f+ @) = or fa=0,

«./t
h= —4a3f4fs<<0, when sin (¢ + p) = \/— or f1=0,

g

Therefore there exists a root of A=0 between sin™ e @ and m’n“l( jiﬁ.) o,

2

‘f , that is £ fa<0.

Carrying out the similarity transformation with #, & and % thus determined, as
in § 7, we may assume without loss of generality that

Obviously this root safisfies sin?(@+¢) <

Gy =a7, G5=0a;3, @3=0,
Henoe assumptions(6.5)and (6.6)hold.

If a4 =as, we choose §~—, then(5.8)is satisfled, When ay=a,, 2dding(5.1) and

(5.2), we gef *
P = (04— 0g) £
2048 — (@atag) °

Substitnting it into(5.2), we obfain
& (f E) =4dai(ag— L’l’fs) 4 sﬂ ‘4o (554 =t ﬂﬁ) f " —4a, (ﬂ-i +ﬁﬁ) (a3 — ﬂﬂ) EEE —4a, (ﬂé = ﬂ?ﬂ) e
+ [(ag—as)? (as+ag)? — (aa+a2) (@ —ag) T+ (@1 —ag) (@s+a6)? =0,

(8.2)

1 1

% ; 3
Bince & ((G*Qj; aﬂ) ) = — (@4—ag)? (a3 —I—:mg)ﬂ(ﬁ"‘zzﬁﬂ) <0, henece there exists a root of
4 4
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1
b3
G (£?) =0 whioh ig greater than (E‘*z:%-)  Determine this root and %. Similarly,
when a,= —ap, We have "

£9_ (a4+as)

- 2a.m*— (@s—ag)
and
G (1) = a2 (@g+a2) 2720 +4a3 (a4 +ae) 7P — 44 (@ — G6) (@2 +a3) ™" —da (af—ag)7’*
+ [(@3+aa)? (@s—as)™ — (a5 — aa) * (as+ae) 7177+ (Gu+as) (@s—ae)? =0,
(8.3)

1 1

o z - o s 3
Since G(( ol ﬂ“) )= — (ag—aq) (a5 +as) ’( %2;1; mﬂ) <0, hence there exists a root of
4

1

- z
Q(n®) =0 which is greater than (ﬁ42m ﬂ“) :
4

If @y =0, then (6.7) is an identity. But (5.3) becomed Fol2P=Fy. From it, (5.1)
and (5.2), eliminating & and 7, we get
F=r*(fsfo—fafe) (Fsfo—Fafo) fi—atfofo(aatas)*(fo—Fo)®
X ((fa—Ffo)fot (fr—Fs)fe)?=0 (8.4)

which is equivalent t6(6.7)in many cases. Obviously,

Pe ke r(a—a)*(as+a)*>0, when 6=
When 8 satisfies fo=0, then
F=0 and -%g;==-—%— G%(Gﬂ—ﬂﬂ)ﬁ(ﬂd.—ﬂﬁ)ﬁ.

Therefore if (as—as) (@e —ag) >0, then % — 0 haga root @ whioch is less than tan™ ﬂza“ﬁ 3
4 Wh

and if (aq — a5) (Ge — a@3) <0, then there is a root greater than tan~! mgﬂ'gé—.
4= W5

N & _R

Compute this ¢ and determine & and 7 from £ = 7 and AP
In tho case K —ag(as—ag) %0, if 6 satisfies fo=0, then
) L=31f9=0, F=0,

‘;{; ~2f%(foaR—f1P) 1 (as—as) (@6 — o),
If a2>1¢, when 0§ satisfies f3=0, i. e. cos#=0, then

F=1i6 t(@y—a5) 8 (@ +as)? (a3 —1) >0,

Therefore when (@, — as) (@ —ap) > 0(or<0), there exists a root of F=0 which is less

(or greater resp.)than tan™ EQQL-—, If a2—t, when 6 satisfies f3=0, F=0, but by
47 Wjh

comparing the signs of Efgg at this & and at the 0 satisfying fs=0, we may get the

same conclusion as above. If a<¢, when 0 satisfies faR—f1F =0, 1. .
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(t— a3) (@ — a5) (a+a9) tan? 6 — [a3 ((@4—as)® — 4aets)
— 2as05 (a4 +as) (G — o) +4a3a4as] tan 0 +ai (@a—as) (ag+as) =0 (8.5)
we may prove
@2 ((as— as) 3 — daeto) — 2asas (a4 +as) (G5 — ao) +4a50405 = 831+ 4ay (ag+-ay) (—a3) >0
for the root

s ) — 881 +4ay (@g+ay) (t—a3) +~/ s5(8*+4r(t—a3)) _
- 203 —cﬁ) (as—as) (aa+as) (8.6)
its magnitude ig greater than other’s, then tan® §>- 7 ﬂiﬂ . Now
- Wwp
2
F=(fols — fol)* 2z f1fa= 7:}%—(ﬁrn — FoI) 2P (a3 sin® 0 — a3) >0,

Denote the § satisfying fo=0 by 1. Since

s+~ 8 (0 +4r(i—ai))
2 (t—ﬂ%) (ﬂ4—ﬂ5)ﬂﬂ'

tan & —tan 91 = (ﬂ4 . Gﬁ) (ﬂg ""CEE)

we got there is a root between g and 6.
We may treat the case 3 similarly.

9, Cased. r=r,=0, s5=0+Fs;

Let
A= (5@ — a4th7) *+ ( (a4 +az)ag+ (a7 +a5) @6)®
— (@u@7+ Gt +2a0te) 2+ ((@a—a5) a9 — (@1—a8) %), (9.1)
When 40, we try to #, £ and 7 in order that

Oor

Therefore | fafri=Fsfs
and from it we got

fan G = G5ty — G4l ) 9 9
(@atas)as+ (ar+ag) g ( )
1
Take gin § = (agag—asa:) 4 2,

1 1 _1
then by=bs=bs= hy=bg=bg= —é— (as + as) Z (a7 + ag)? 4 % (asas+a.ar + 25 .

Carry out the similarity transformation with the g, ¢ and n so defined, as above we
may assume without loss of generality

84 =05~ Gg =0y =0z =0y,
So
L=2a%(as+as)cosf, N =2aj(as—as)cosb,

9.3
P=2a2 cosf(az—asein ), R=—2ajcosf(a;+aasinb), (9.8)

If gg=0, then the norm reduction has been completed. Suppose aa#0,
If a3<aZ, then the only possibility is cos §=0. Take sind=1. From(6.2)we get
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§ﬂ L ﬂg"l‘ﬂrg

OOTT—

7 Gz— O3

Substituting it into(5.1), we get
Fe—1 = g — g

a3+ as’
As for(B.3), it obviously holds. Furthermore we have

7(4) =7 (B) +4a3,

If a2>a3, then (6.7)becomes
F=a2ad cos? 0 (a sin® § —a3) —4(ak—a?) (ay cos § — @1 8N g)*?
w ((ai—a?)sin § — a0z cos )7 =0,
If ;= 0, then cos §=0. Taking sin =1, we get

£32 Ga—4az  .nd & astas

(9.4)

Ga-T 3 7]2 g — Qi
subsequenily |
&=1 and fn"*mﬂ_a’a,
a+ Q3

[

If @5 =0, then sin #=0. Taking cos /=1, we got £297=1, (5.3) obviously holds, and
(5.1)and (B.2)are the same equation

G (&%) = (a1 —as) *&° +@f® - @y — (@1 +aa)* =0, (9.5)
It has only one positive root.
In the case @@s+0, F =0 can be writien as
£ (tan §) =ajai (e tan® & — o2 tan? § —al) —4 (a3 —a3) (a1 tan f—-as)®
% ( (a3 —a3) tan 6 — ayas) " =0, (9.6)

If a2 =a?+aj, then
f (tan 6) = alaj (4} tan® & — a2) —4ai(a, tan 6 —ag)*,

a &
fl—— ) =0, J (-——3 = 20,0503,
1 1

Therefore if a.as>0, then f =0 has a root tanf > %—3-. And if @,a25<0, then there is a
1

root less tha;n_ii, If a2>alsa3, then
3

2 4
@ a3
f (——-3 — 25 (af —ai—a1) >0.
#5 a1
2

And in order to gaurantee ?}O , when a,a4>>0, we take the root tanf of f (tan &) =0

@3 otherwise less than —2, If af<ef +aj, then

whioh is greater than —=,
@1 a4

aas \_ osai(aitai—as) g
f(ﬂ%—ﬂ%) a2 (a5 — a3) g
oo Therefore, if a12;>>0, we take the root tand of f(tan &) =0

. And f<0, as tanf—>-

which is greater than .1231@3 -, and otherwise less than it.

@y — Uy

When A=0, as in § 8, we iry 10 find #, & and % in order that
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ba=aq, bs=0bs, 6:=0,
Subsequently, & is defined by A=f3% fsf1—f2fefs =0. Let =w+-p, where

. 2Cg Q4 — U
gin ¢ = CoS =
¢ ﬁ4+£35" v {y + @5 )
Using Q5ls = G4y = — Qelly, Galg—+Asle = U5y + Artg =10
1
we geb f4=-%—(a4+m5) (1+4cos w), fﬁ=-§-{m4+mﬁ) (1— cos w),

f-; =*%' (ﬂ’f"]‘ﬁg) (1—{}{}5 Cﬂ), f3='%-(ﬂ57+ﬂ3) (1"|— COs m),,

Therefore
h=——1—-(w4+a:ﬁ) (a:+as) (fi(l—cos w)?—fE(1+cos w)?) =0, (9.7)
From f;(1—cos w) 4+ fs(1+cos w) =0, we get
Sin w= 3 —, CO8 w= k —.
(B2+s1)2 (B8t

Furthermore, it is easy 10 see that by= —bg= by,
Carrying out the similarity transformation with @, £ and 7 so defined, we may

agsuIme
{hf=55=:—1%==@7=1@==ﬂ&|Eh;:ﬂi

S0 $=83 =2a,(ag—as), L= —sa,0086, N =sasc0sf,
Therefore the only possibility is cos #=0. Taking sin § =1, (5.1)and(5.2)becomse
E(as—ag)E— 1 (as+ag)?— 2am* =0,
280 ay+-7* (agt+aa)? — £ (az—ag)?=0
respectively, and (5.3)obviously holds. Therefors £*7=1 and
' (g — @s) 38 — 20,89 — (@gt+ag)?==0,

24 )%
| (@5 —ag)?

In conclusion, in some particular cases we find the optimal values of the
parameters £, & and #, and in the general case we find the interval within which the
optimal value lies.

Since there is a 1—1. correspondence between &% and tan @, we may transform the

equation of 8 into that of £*?, and the latter is simpler, but we omit it here.

It has one and only one positive root &* }(
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