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ON THE STABILITY OF INTERPOLATION®

HuarNe HoNc—or (4 % & )
(Computing Center, Acadenia Sinica)

Abstract

Some definitions on stability of interpolating process are given and then the guffcient and necessary
sonditions are obtained. On this basis, wWe conclude that the Lagrange interpolation is unstable, whereas
several types of piecewise low order polynomial interpolation are gtable. For high order approzimation
with data on isometric nodes, we recommend the Bernstein approzimation owing to iis high stability.
Qome ideag on the relatiomship between stability and comnvergence of interpolating process are also

presented.

Ag indicated in practice, the high order polynomial interpolation 18 unstable,
whereas the piecewise low order polynomial interpolation behaves very well. Some
of the reasons have been given in [1, . 12]. This paper will make & theoretical

analysis of this problem in detail.

1. The Concept of Stability

By interpolation we mean: On an interval [, 5], given the following infinite
node triangle

Lo
To O
x5 o @3 (1.1)

mfut m’lt'l--lllm:

whers a<<a?<b and 2} #o}(4+%4), there oxists a function set S,corresponding to each
row of nodes o7 (0<<i<<n) such that for the given data of a funotion f(x) on nodes &y
(function values f{(«}) and possibly its derivatives f™(x})), there exists a unique P&
S, satisfying
f (@) =plar),
and possibly, |
™ (@) =™ (@), mu=1,

Then ¢ is called the interpolating funetion of f, denoted by

p (@) =Ia[f;].
In general, S, is a linear spaco and

1€ 8,, Vn. (1.2)

# The English version of this paper was recoived August 9, 1982, The Chinese vergion of this paper was
published in (%3 B %) (Mathemabica Numerica Sinica) , 4: 2(1982), 193—203,

A
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Obviously, if g€ §,, then

p(@) =1,[p; z]. (1.3)

When the given data include f(a}) only and &, is a polynomial set with degree
<m, this ig the well-known Lagrange interpolation. When ths given data include
f(a}) and f'(2}), and 8, is a polynomial sot with degree < 2n-+1, this is Hermite
interpolation. When the given data include function values (or also derivative values)
and S, is a set of piecewise polynomials with some smooth conditions on nodes, this is
known as piecewise polynomial interpolation.

We now begin with the case that the given data include function values only.
Due to the linearity of the interpolation operator, we give

Definition 1. The interpolating process is said to be stable respect to the funciion,
of Ve>-0, 30 such that

max | f (o) | <3,

Oiwn

implies | L. f; 2] [-<<e, Vn.
In Definition 1 and henceforward, the symbol [f|. stands for sup|f(a) |.
xr<h
Leot{& (%) }o<scn Do the base of interpolation satisfying

{3;" (:v) ESn 1 'Er'"j (1 )
() =8 ={ =% 4

¢ (@) =8y 0 iwj.

The expression of the basis functions may be simple (for example the Lagrangse
interpolation) or complex (for example the Hermite interpolation involving data of
high order derivatives), or even may not have explicit form (for example the spline
interpolation). From (1.4) each interpolating fanction can be written as

L[f; 2] = 31 f (@) (@), (1.5)
Because of (1.2), (1.3) and (1.5),
.gzz‘(m)al. (1.6)

Denote
. (1.7)

Ap=sUp Eﬂllii‘(m)

dwge<h 1=0

Then we have

Lemma 1. A necessary and sufficient condition for the stabilily of inierpolation 43
that A, 48 bounded for all n. |
Proof. From (1.5) and (1.7) we have

| Za[f; 2] | <A max |f (&) |, (1.8)

Thus the sufficient part is obtained.
From (1.7), for any » and arbitrary small s>>0 there exists &, such that

Bl |>ras. (1.9)
Take f (@) =8.signl} (£,), (1.10)
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where 8 is a small positive number. Then max|f (2:) | =8, From (1.5), (1.10) and
$
(1.9) we obtain

L,Lf; 0] |3 | T 0fs € | = 2381 6w |3 ().

Then the boundlessness of | Z.[f; 2] |~ can be deduced from that of A,. Sothe necessary
part is completed,

Lemma 2. Assums that there exists a sequence @, € Sa satisfying
lim | —f |« =0 (1.11)

i — a3

and lim A, |@e—f|«=0. (1.12)

Then the interpolating sequence I,[f; «] converges uniformly to f, namsly
lim| Z,[ f; 4] —f | ==0. (1.13)

[ i

Proof. From I.[g. ] =@, and (1.8) we have

[aLf; 2] —f<|LsLf; 2] — L[ @] |+ “‘Pn—f“ﬂ‘&: (An+1) u@’n"f““:
and then (1.13) follows.

The above lemma connects the concept of convergence with the concept of stability
of interpolation: For a funetion f, if there existd a uniformly convergent sequence @,
stability implies convergence of interpolation. (From Lemma 1 A, is bounded and then

(1.12) follows from (1.11))For the Lagrange interpolation, by the Weierstrass
theorem, if the interpolation is stable, the inferpolating sequence I,[f;#] must be
uniformly convergent for any f& 0°[e, b]. On account of this, one can conclude the
ingtability by constructing an inconvergent interpolating soquence for a continuous
sonotion. As there is some available resulis about the A, of the Lagrange interpolation,
we ocan prove the conolusion directly from Lemma 1,

When A, is unbounded, (1.12) is still possibly true. (An example will be given
in the next section) So, the concept of stability is sironger than that of conver-
gence for interpolation. -

For some problems, not only the function but also the derivatives of the function
of interpolation are required to be stable. It is known that in differential caloulus
derivatives are unstable in response to the perturbation of funotion values. In other
words, for differentiable functions there doss not exist a & such that | f(x)]-<0
implies | (@) |=<<e(we can gee this simply from the function set fa,s(x) =98 sin(nz)).
So it is unreasonable to require the derivatives of an interpolating funotion fo be
stable in response to the perturbation of function values. We should give

Definition 2. The interpolating process 48 satd o be stable respect to the kik
derivative,if Ve>>0, 30 such that

max If[m'?; mr-l-l; % m:{-k] | Qa
O<isn—k

it
2 LIf; 4]

.. @) denotes the difference quotient of funetion f,

~ gmplies

<sg, Vn,

The above fl[#;, Tiw1, °°
namely
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f I:mir] "_".f (ﬂ};),
_ Jflzwad—f [] .

R, B! 7

Flz, @asa

_f[mi+1'"mi+k] —f [mi'”ﬂ?iﬂ:—ﬂ 3

2y Typy, *t, X
f[ £ i+1, 3 'i‘f'k] $i+k_mi

Now consider the case that the given data also include derivatives. Ior
simplicity, we merely disouss the situation involving only the first derivaiive, the
most general case in practice. Denote A,—max (af —27).

Ousfzn—1

Definition 8. T'he interpolating process s said to be stable respsct o the funciion,
of Ve>0, 30 such that

m{ax{if(m?) » Pl f(a0) {350
vmplies | L. [f; @] |<<s, Vn.

Definition 4. The inferpolating process is said to be stable respect to the first
derivative, +f Ve>>0, 30 such that

max {|f[af, @i, |f (@) |} <O
implies | L wl <8, Vo

In the case of data including F(2}) and f' (&), the base of interpolation, denoted
by ¥ (z) and I} (), can be defined as follows:

@ k@), L) €S,

(i) B} =3y, —= =0,

i (@}) =0, % I (@}) =8y,

(1.14)

For the base defined as (1.14), the interpolating function can be written in the
following form

LIf 2] =31 @)l @) + 37 @0 @), (1.15)
Let Y= sup { 5@ [+ 3 k@ |, (1.16)

Then, by analysis similar to that in Lemma 1 we can prove

Lemma 38, A necessary and suffictent condition of Hermdile type inferpolation, which
merely involves data f (@) and f'(zy), is that the A defined in (1.16) 4s bounded.

2. High Order Interpolation

For notational convenienoe, the superseript n of «f and If(z) will be dropped
afterwards.
Woe first discuss the Lagrange interpolation. In this case the basis functions are

_ wya(o) |
I (w) T g (0<<i<m) (2.1a)
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w12 (@) = IT (2=, (2.1b)

No matter how the interpolating nodes @; (0<% <n)are selected, there ig an estimation
(see [2], p. B12)

Ay, = Max i |3:(2) | > In (n+1) .

a<e<h =0 S/ ?
Thus, by Lemma 1 we obtain
Theorem 1. Whatever the selection of the infinite node triangle (1.1) may bs, the
Lagrange interpolation 5 never stable,
Actually, for usual isometric nodes, the increase of A, is much greater than the
inorease of the lower bound given by (2.2).
Denoto @, =a-+ih and lot z=a+1th; then §;(z) can be transformed t0

(2.2)

pi(t) =Ui(a-+1h) = __?;;,Ei - (0<i<m),

Ty () =E[ﬂ(t——£) (0<i <n),
It can be found that

| _ (n+1)1
max |gu(8) | <lps (2D =77 =5,

(n+1) 1/[(’-%;-1)1]2 n is odd,
(n+1) 1/(?-}-;;2—)7(-?—;—)1 n i3 even.

By the Stirling formula, we can obtain
@i (n+1) <O (n=/22%)

<

and then
A= max 3gi(®) | <o), (2.3)

Dtan =0

| 7Fner (1/2) | / (%1)[(%) ! ]ﬂ n is even,

1y -
2 (2) {lmat/)] /5571 (557)r nisodd,

In view of

weo obtain the lower bound

1

Mo = I*F[_-r%l_] (‘%) | =0(n"72%), (2.4)

Form (2.8) and (2.4) we can soee that A, is nearly an exponential growth. So the
Lagrange inferpolation with isometric nodes is extremely unstable.
Although Theorem 1 asserts that the Lagrange interpolation is unstable, the
following case may still be considered. Select the interpolating nodes to be roots of
the Ohebyshev polynomial, namely

_b+a _b—a 2¢+1
L TR T T

In this case, we have (see [2], p. 540)

r  (0<i<sn), (2.6)
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ol el T TP T R el L = i S PN i =

l..ﬁ-—j? In(n41)+8, (2.6)

Comparing it with (2.2), we see that the increasing order of A, attains the minimum.
Further, if a weaker L2-norm is used ingtead of L*, we have a stability result:
Theorem 2. Assume that the interpolating nodes are selected according fo (2.5).

Then Ve, 30 such that ¢f

max |f(z;) ] <8, Vn,

then 1,07 alls,=] | p @) TiLfi alda] <,
where o(z) = (w—a) V2 (b —az) V2,

Proof. In our case the w,.1(2) defined in (2.1b) is the Chebyshev polynomial of
degree (n+1) on the interval [a, &]. From orthogonality, if Q(s) is a polynomial

with degree <n, pr(m) Wes1 (@) Q(2)dw=0 holds. By (2.1a) we have
&

1.(a)1 _ Wi (@) . W11 () _
(@)1 (2) Wyt (@)  (@— ) (@ — o) Wasa (@)
Because the second factor on the right side is a polynomial of degree (n—1),

f’ o @ L@ (@) do=0 %], 2.7)
From (2.7) and (1.6), we obtain

J: p(z) (gf(ﬂ’i)zi(ﬂ?)) de<< max |f () |? I:P(m)ng () da

Oisn

~ max lfca:ol’j o@) (34 (@) ) da

=

~ max |f(2)|* || p(a)do=a max| f (@) |2,

O<i<n O<éne
and then the proof is completed.
When interpolating nodes are selected according to (2.5), we can easily prove, by
virtue of Theorem 2 and a similar analysis t0 that in Lemma 2, the IZ-convergenoe
of interpolation for f € C°[a, &], namely

EIE ”In Lf; =] —f"ﬂ_,,mﬂ_

For uniform convergenoce, the smoothness of funciion f has to be stronger. For

example, f should be Holder continmous, namely, there exist constants M >0 and
O0<<a<<1 such that

L

|f (@) —f (wa) | <M |w1—aa|* Yy, zo€ [a, b].

According to the Jackson theorem (ses {3], p.61), there exists a polynomial
gequenoe {P,} satisfying

| f— Pyl <On7%, (2.8)
where C is a constant independent of n. Thus, from (2.8) and (2.6) we get
lim Ay | f = Pyl =0,

n—roo

- lim| L [f; @] = f o=

=0
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follows from Lemiaa 2,

When data are given on isomefrio nodes and a high order polynomial
approximation is required, it is appropriate to approach the problem with the Bernstein
polynomial if it is not necessary for the approximating polynomial t0 coincide exactly
with the data on the nodes. The Bernstein polynomial on the interval [0, 1] can be
written as

[ B.Lfi ol =2 () P @),
4 ; | (2.9)
7t~ OO oy

This approximation i extremely stable,
Theorem 3. For all nonnegative integer &, there exisis a constant Oy, dependent only
on k such that

< {; max
o3 O<dcn—k

f[% H"k]) Vnz=k, (2.10)

2 7 )

“T’ikf B,.Lf; ﬂﬂl

This states that the Bernstein approximation is gtable for all orders of derivatives.
Proof. Because P} (z)>0 and

g Pr(z) =1, (2.11)
it ig obvious from (2.9) that
| BoLf; 2 Hmém‘a‘x ‘if(i‘-’;) ' ; (2.12)

After calculation we oblain
d Coactrd o d+1 ) e
| d_p, (fia1- S5 [P @
and then by induction we can prove
d* . . nan—1)(n—k+1) nk 4 itk pes
4 B.[f;a] - n'S AL, - e, @19)

From (2.11) and taking O ~ k!, we obtain (2.10) from (2.13),

3. Piecewise Low Order Interpolation

Tn this seotion, three types of interpolation will be discussed,

A. Piscewsse Second Order |

Assume that there are interpolating nodes of odd number: @ =&o< 1<+ < %2 = b,
and function values are given. Now in each subinterval [z, Zeir9] We Seb up & second
order interpolation with the data f(wg), f (@as2) a0A f (waira). With respeot to this
kind of interpolation, the interpolation base consists of

(im_ij{:,:; E:;_ m';;:;:)i) mm_gﬁmémm (dBlB’tﬂd when 2= U) 5
Q= +3ai s =

I(@) = (&= ®si42) (#— @ais2) Toy < w<Tara (deleted when ¢=n),
(mﬂi_mﬂiﬂ.) (ﬁl’ﬂi“ ﬂ?ﬂi+ﬂ)

O elsewhere;
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o T, ALY

(@ —@a) (& — Taira)
35;.1.1 (ﬂ}) T (mﬂi+1_ mﬂl) (mﬂi+1 B mﬂi+ﬂ)
LO elsewhere,

Doy T Laisq,

Lot h;==.1—; and assume that there is a constant M for all n salisfying

max (hg, fg41)/min (hg, haiyr) <M, (31)
Through caleulation we obtain
M
120: () n,,gmax(zt, ), (8.2a)
[2si+1(®) [ < - i M. (3.2b)

4 4
For any 2€ [wa, ®a:a] all (@) but lgy(z), lgyii(z)and ly.s (#) are identically

equal t0 zero. So we get from (3.2a) and(3.2b) that

M) 38 M

2/ 4 4°

A max(ﬁ.”

Thus from Lemma 1 we have

Theorem 4. Assume that condition (3.1) is satisfied. Then the piecewiss sscond
order interpolation is stable respect to the funciion.

B. Piecewise Hermits Interpolaiion

Assume that the data f(z;) and f’ (¢;) are given on each node z, In each
subinterval [@;, @:s1] We set up a third order interpolation with the given data on the
end points. In this cage, according to (1.14), the interpolation base eonsdists of

» 2 =
i (m :1:;_1) (1—!—2 mm ol ) @ yssa<<a; (deleted when ¢=0),

Li — i1 i-17 &

() =+ (m_mﬂl)ﬂ (1 g, B ) Te<<o<miyy (deleted when ¢=n),

g — Liq Tir1— &

0 elsewhere;

i 2
- (; ii—l) (ﬂ:-——:ﬂ;) m{—i‘-"’:‘;‘mgﬁi (dEl]_Etﬁd when '£=0):
i “i-1 .

Li(z) = ( @ m¢+1)5 (x—m) oy<a<z.y (deleted when é=n),

8 elsewhere,

For any #€ [&;, #:1], all §(z) and 1,(z) except L;(@), L1(®), Li(x) and [, ()
are identically equal to zero. So the interpolating funotion can be written as

LA o] =Ff @) (@) +f (@n)biae) +F (@) L(@) +f (@) lisa (@) (3.3)
Through calculation, we get the following estimation for € [&;, ®.1];

O<<hi(a)<<l, U ()4l (e) =1, (3.42)
|Z¢(:£B) | -4~ "L_ﬂ(ﬂ?) |‘§ %'hh (3..4]3)
Y ()] -«a% jd, i1, (3.4¢)

[L(@) [ + |l () | <1, (8.4d)
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Let h=m‘a.x ki, we obtain from (8.8), (8.4a) and (3.4h)

(3.5)
or 2,08 2]} <o max {17 (@)1, AIF @)1}, (3.50)

From (8.4a), I () = —l;,+ (¢) holds on [#;, #i+1], 50 we have

I, [fiz]l=— l; (m) hif (2, Braad +F f (ﬂ’i) Z: (ﬂ-’) +f "(@is1) er—l (ﬂ’) .
On acoount of (3.4¢) and (3.4d), we obtain

|Z,1; 2] o max {1 [, il |, 1@ ). (3.6)

Then, from Lemma 8, Definition 4, (3.5) and (3.6) we have proved
Theorem 5. T'he piscewise Hermite inierpolation are unconditionally stable respect
to the funetion and the first derivaiive.

C. Spline Inferpolation
Here we only consider the problem with periodicity condition, for other kinds of
boundary conditions can be discussed in a same manner.

Assume that the data f(2) are given on nodes a=ay<<z1<<@,=b, and f(wo)
=f(z,). we seek a periodic function @€ O (—oco, +oc) which is a third order
polynomial within each subinterval [a;, #.+:] and coincides with the data on nodes
and has a oyols of T—=b—a, As well known, in this case a cubic spline is uniquely
determined, which we denote by I,[f;«].

Let

my=I1,[ f; ¢], O<e<<n—1, (3.7)

On aocount of the continuity of I’ [f; #] at nodes o, (1<<i<<m—1) and the periodicity,
wo can gef a linear system for m= [my, m1, *=*, Mu-1]";

Am=g, (3.8)
where
- 2 Ho Mo -
Ay 2.
A= % | . (3.8a)
Au—a * 2 Hn—g

T Hp—a Bt o =
; e hi—f:*hi ” S h-fiih; . (3.8b)
¢i=380f [mi—1, @ +3usf [, 4] (3.8¢)

and f(ib_j_) =f (:Eﬂ_;[) 3 h_:[ — hn—i b}’ permdlmty_
If matrix A satisfies the following condition

2 :}E lay], 1<i<n, (3.9)
it can be proved that (cf. e. g. [4], p. 184)
| | A7« << [min (|au] — 2 @)1, (3.10)

where | Al stands for the norm max ‘H{f—uh with |@[« = max |2;]. The inverse of
o 4

pa=()
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matrix A defined by (3.8a), (8.8b) satisfies condition (3.9). So [A™1].<1 follows
from (3.10) and then we obtain

[m)e=]47g]-<[g (8.11)
From (3.8c) and(3.8b) we have
lgl-<8 max |, 2l | < 2 max|f (@) . (3.12)

4
For sach subinterval [z, @411, the cubie spline can be expressed in a Hermite
interpolating form (3.3), namely

Ly U; ] = f (mi) s (m) T (mi+1) li+1(ﬂ?) T My Zi (ﬂ’) Moy41 Z1i+1('-'1’).\
From (8.5a), (3.11) and (38.12) we get

|LLf; dl oo max {If@)], hlml}<i22 max |f@)], (3.18)

O<cdcn—1 2 A Dd<n—1

where h-—-ma.x Fua, A-—-1:n1n hi. From (3.6), (3.11), (3.12) we get

PR TN ‘é%‘ max {[f (%, %i:1) |, |mi|}=g_5_ max [f[@, zd|. (3.14)

O j<n—1 2 O<ésin—1

We now discuss the second and third order derivatives. Let M;=I1I. [f: «]. On

account Of the continnity of I,[ f; ] at nodes #; and periodicity of the end points, we
~ geot a system for M =My, My, o, M,_4]7.

BM=d, (3.15)
where
-2 Ao o )
i 2 Mg
B= ; (8.15a)
for—2 T2 Apes

= g1 M1 2 -

di=06f [wi_1, &, Tis1]. (3.15Db)

Here A, and u, are the same as defined in (3.8b),
Because | B7*||.=<1, we obtain from (8.15), (8.15b) that

“M““’gﬁ max If[ﬂ?i—l, &, Tisi] | . (8.16)

O dcn—1

I.[ f; z] is a linear funotion within each [, @1], 80 it has the form

I::[f,ﬂ?:|= M;(!U.;.;_i—m) | Mi+1(m“mi)

A | % Ty RO KTy, (3.17)
Y | f
From (3.17), (3.16) we get

|15 Lf5 2] |~ =8 max |f[zia, &, @il - (3.18)

Let -
Mi=2f[mi-1: mi_: mi'f'l:l- (3‘19)

Then N

| BM=d, (3.20)
where §;=#;H¢-1+2ﬁ4+;\1 ﬂﬁﬂ.

Substracting (3.15) from (3.20), we got
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B(M—-M)=d~—d,

where
Ei—'di= — 20 (m¢+1"‘mi-ﬂ)f [ﬁii—s; Ti-1, Ty, 2] 20 (mHﬂ"'mi—l)f (&1, T, Ty, Tipal,

Then "
Hﬂ—M"m‘Q "d—d”m"Qﬁh max |f[ﬂ?h Ty+1, Tiea, Zy3a) | ; (3-21)

O éson—1

The right side of (3.21) involves f(@u+1), f (,,9); Wo take them as f(zy) and f (@q)
acoording to the periodic condition.
From (3.17), we have on [#;, @41

Iy [f; @) =—%{—(M¢+1—-M¢) = -—1:-[(M;+1-E+1) - (Mypa— M) + (M — M),

and from (3.19), (3.21) we get
HIT Lf; =] ”"ng—h- mﬂxi |f [ms, @isa, Tisa, 23] |, (3.22)

d Dadsn—

Now wo conolude from (3.13), (8.14), (3.18) and (3.22) the following
Theorem 8. Assume that there ewists @ constant M for all n satisfying |

max h/min <M,
# 3

Then the periodic spline interpolation is stable respect o the function and the derivatives
up to the third order. |

The same result can be generalized to other kinds of boundaries.

The author would like o express many thanks o Li Jia-kai and Duan Qi for

their careful reading this paper and giving some corrections.
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