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A bstract

This note presents 2 splitting extrapolation process, which uses successively one-dimensional
extrapolation procedure along only one variable with other variables kept fixed. This splitting technique
is applied to the numerical cubature of muliiple integrals, multidimensional integral equations and the
difference method for solving the Poisson equation. For each case, the corresponding error estimates are
given. They show the advantage of this method over theisotropic extrapolation along all the variables.

1. Introduction

The extrapolation method is a simple and effeotive numerical method for computing
integration and solving differential equations in the case of one dimension. For the
multidimensional problems one can use extrapolation process along all variables
homogeneously, but the effort will be high. This note pregents the so called splitting
extrapolation process, which uses the one—-dimensional exirapolation process along
only one variable, the other variables fixed. We hope this method is appropriate for
the parallel algorithm and will save computational effort in eomparison with the

isotropic extrapolation.

2. Multiple Integrals

We are concerned with tho s-dimensional integral in a cube:
e Lf(m)dzv with V=[—1, 1],

Lot us divide Vin cuboids of length A= (b, *-, hs).

Bt TR WA
c V=0, Vil Me- A, S,

f=1

where M;= (M, -, M,;,) is the center of V;. We define the rectangular cubature by
Ip(hy, ==, ha) =j_21 meas (V) f (M)

and the trapezoidal cubature by

IT(}?L ey h’s) =.§:1 %’8" IIlEi&S(V;) (f(N;t) +f(N.4_i)):

i=1
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where Nj;;=(My, - Mﬂﬂ:%f—, «-o, M;,) are the centers on the faces of V,,
The principle of splitting extrapolation bases on the following asymptotic
expansion.
Theorem 1. For £ € 09D (V) ws have
I—Ta(hy, =, k)= 3} 03, B +0(3"*%) @
1< k<

wiih the coefficients cey indepondent of h and
pr= (Pi; =S PI): |pl =p1+'"+.ph hq.:hq:...}agaj ho.__'ma'x{hi: oy E}-
Proof. Note first that

I=Iy(h, o, ) =3 (f (@) ~F () da, ey
Then insertion of the Taylor expansion

f@)—fM)= 2 "k_ll"f(m(ﬂff) (@ —M)°+0 (R§™**)

ip =
1<k<2m41

into (2) and use of
0 if ¢ contfains an odd component g,

2, _ V h\?F
L’, (—Mp)%dw= A smea.s( i) ( 5 ) when ¢=2p
h E (1+2p)

I—=TIg(hy, ==, by =) ¥ he €L 7> F‘WW’) M +0(A5™+2),
(2k) | g(l-!-zp;)(z)

By induction we assume that (1) holds for 2<<m and come to prove it for m-+1.
In fact for f€ G ()

L—Tg(hy, =, h,)zi E jmﬂ(%) meas (V) (g)ﬂp + 0 (A2m+4)

R bl (26) 1 1A+ 20)

i=1

N L JOT NS )

e LT (2k) 'H (1+2p;)
-3 (F@ (z) — F@ (M) 51 AN 10 (p2mH
G Ll ‘L‘* : (2k) IH (1+2py) ( . ) )
- 3 [ @i — 1 1§
ity I (2k) !H(1+2 ;) (2)
P AP I G ORY L6 )T M — (3)" +ouss,
1< il ] | (2*@ !HL(]-‘;‘L)?Q

Then substitution of the asymptotic expansion (1) for k<m into
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3, @) -7 M ))da, |p|<m+1

=1

in the last term implies (1) for m+1,
Theorem 2. For f € 0™ (}),

I_IT(hIJ gt hl) = 11"2=;q-, dﬂﬂ hﬂj&+0(hgm+2). (3)
1<k

Proof. Note first that
I-Iphs, = b =B [ (F@) = 5 DEWD +f W))do=Tu+Ts, @

gl
where

7i=3 | (F@—fM))de ®)

J==1 J V3
and

Ti=3 [ (PO - S EH+fV2)da

; mees(Fy) gww D —2f (M) +F (V)
e : oy Inea (V) 2# 2m+-2
AT 22 gy DEr ) (G) +owa

) (2t) f,, Das @da()

Jm] =l I=1

)85 (gm [, (DEr@ - ay)ds(-5)" +0Em

E (21?)' J .Dgﬂf(m)dm( )ﬂt

3 [ D@f @) -DeFMY)da () +ORE™?)

(6)
Then substitation of the asymptotic expansion (1) into J; and the last term of J

implies (38) with the coefficients dg, independent of h. This completes the proof of

Theorem 2,
Comparing (4)—{(6) with (2) we ¢an see the relation between the coeilicients of

(1) and (8),

§=1i=1 (2ﬁ)' f=1

3

dﬂi'=03ﬂ_? Cap, |P)=

Particularly, we have
Corollary 1. For s=3,
; I—1Ir(hy, he, hs) =0(h3).
Forse3,  I—t(Te(h, =, h)—(1=2)Ta(ha, -, £))=0GH).
Therefore we can combine Ir with Ip to generate a cubature with the same

accuracy a8 the Simpson rule.
We now turn to the extrapolation method. In the one dimensional case we

divide the interval suceessively in 1, 2, 2%, «.-equal subintervals and compute the
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S s =

corresponding rectangular (or trapezoidal) cubatures TP, TP, TP, «-respectively.
Then we define the Romberg sequence

E41 K
po _ 4T~ T,

i
4m_1 > m s 2 &

Write the Romberg sequence
TY=R(TY, -, T§

and introduce the notation
I ( *, T, ')
in which only , is regarded as a variable but the others, z; (j#4), are fixed.
A splitting extrapolation process with acouracy of 0(A*™**) is defined as follows.

Start with
TP =IO (hs, +=v, hy) = In(ha, -, h)

and continne with

I(r-l_n(hi: o hs) = 1 iTEr?—r,i L (S 'r_l)I{r}(hlr T hﬁ)-f

r+1 i=1 r+1
where T,‘;l"lr,4=R(I""’(-, %, -)_, O<ksm—r), O<r<m-—1,

Theorem 3. For f C C¥™2()),
I—I™(hy, =, hy) =0 (h3"?),
Proof. Let Q(k) be the set of vectors with only 4 components being non-zeres.
Then the asymplotic expansion (1) can be rewritten as

I—TOC - h)=3 3 3 e h*+0(A3"), (7)

k=1 1<ig <m gc@(k)

Woe regard A as variable but h;(j%%) as constants in (7), and compute the Romberg
sequence along /4,

TE,??FR(IW](-, ._2;‘_ ) oqum)_

We can see that

I-T@=3 3 3 ash+0(R™), (8)

(90
k=1 1< giam geQ{k)
ge={}

since by extrapolation the terms containing i have been eliminated. Summation of
(8) leads 1o

SISDTO=3 5=k 3 3 oahM+0RI).,
=1 k=1 1<|g <m gE@k)

Combining this with (7) we eliminate the single—variable terms like AZ, Ag, <=

(1<<k<s) and get
1'—(i T8 — =L I, v, h.))=1-—1<11

=1

=3 .33 R0, (9)

igism gl

Note that the largest exponent of A, in (9) is 2(m—1) rather than 2m sinoce the
single—variable terms have been eliminated. Computing
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TE,}E;=R(I‘1’(-, —-27“? ) o-gkgm—q)

we get |
I-T9=3 3 3 ofh+-0(R™), (10)
k=2 2L igism qu‘EER}

Then summation of (10) leads to

SI-NTP=F(—F) 3 3 cPR+-0R™),
i=1

k=2 | 2 |glam Qeik)
Combining this with (9) we eliminate the twin-variable terms like A;hi(¢#j) and
get

I.._é_(g TD, — (5—2) IV (hy, -, h,))r_r—lfﬂJ(hl, v, Fiy)

o, ]E " “Izlim . 2 ﬂ%}hﬂq_]_o(hﬁm-i-ﬂ) :

€0k

Continuing in this way we can prove Theorem 3.
Weo remark that the above extrapolation process is not an optimal algorithm but
a simpler one. In fact we need about 2™™—1/2g"™ meghpoints to get the accuracy of

D (h%M 1) *

3. Multidimensional Integral Equations

Consider the infegral equation

u(@) - | Ko, wyu@)dy-g@) - (11)

with the smooth kernel K (z, y) and the smooth right term g, It is well-known that
the integral equation (11) can be solved approximately by the Nysirém method

defined as follows.
Approximating the integral operator

Ku-| K (s, g)uly)dy
with the rectangular cubature
= E meas (V) K (z, M,)u(M))
or tho tra.pezoida,l ﬁub@ture
C Ku=3) = S meas(V) (K (, N) +K (2, N3)),

=1 28 =1 -
one gets the approximate solution
ﬂR“KRﬂR=9 or W—KTUT“—'Q
with the solution %z or wy. The result is
u—ur=0(0A3), u—ur=0(h3),

However, by a principle about the combination of approximate solutions proposed
by the authors[1], it follows from Corollary 1 that

Corollaxry 2. For s=3,



50 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 1

—_— “ '

u—ur=0(hg),
For s+3, u—%—[%r —(1—%)HR]=G(}*3).

4. Partial Differential Equations

Our attention will be restricted to the Poisson equation
du=g inV=(-1,1)%,
=0 ondl,

where the solution u is assumed to be sufficiently smooth.

It is well-known that the Poisson equation can be solved approximately by the
finite difference method defined as follows.

Approximating the Laplace operator 4 with the central difference quotient

Mu=h"? ji‘—l (u(mi.: B mi’i_h: % m,)—2u(w1, o, Ty, "%, {E;)

k=l

+“(¢1; eer, zyt+h, o, ﬂ?:))
defined on the mesh
VP={(zq, ++*, @,) with gz=mzh, m,=0, £1, =, + (n—1), nh=1},
one gets the finite difference equation
Lrut=g in VP,
=0 onoV*
with the solution %* defined on V*, The result is
u—u'=0(h3) on V*,

However, by the splitting extrapolation method, we fine the mesh * along only
one variable ;, which is denoted by

V?*_* {(ﬂij_, Sk Er,) with Ty = (% —+my ) h, T = Ty h(k!ﬁ'fr)} U | %
and define the corresponding difference quotient
—3
A‘lu= (_}%) I:u(ml: vee, mi—%: ore m.) — 2@(;;1} ser @y, el m.)

, +H(5U1, e @y + %, e ﬂ?,)]-l'h_ﬂ E (u(mij vos, mk_h, 2y m.)

fomd
—2?5(‘1}1: ter, Xg, °°%, ﬂ?,) "|I—'H(m11 R mk—l—h: S m"))

on V. Then we compute the solutions uf(1<i<s) of the corresponding finite
difference equations
Aul=g inV?,
w'=0 on V%,
In [1] the aunthors prdved that
u—1 (¢ B - 4s—3)w)=0(kS)

=]
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and that the necessary computational effort of the isotropic extrapolation method is
about 2°¢~" fimes that of the splitting extrapolation method. What we can add

here is that this result can be carried on to acouracy of ]:ugher order by using the
Romberg process.

Reoference

[1] LinQun and Lii Tao, The combination of approximate solutions for accelerating the convergence,
submitted to RATRO Numer. Anal.
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