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NUMERICAL METHOD FOR SOLVING A
PREMIXED LAMINAR FLAME®

Zuone XI-CHANG (%4 3)
(Computing Center, Academia Sinica)

Abstract

A gplitting-up method, which splits the chemical kinetic terms from the flow terms, is presented
to solve time-dependent, one-dimensional, laminar, premixed fame problems. An example for
studying the development of an ozone decompogition flame is calculated. A movable boundary
technique is adopted, so that the number of grid poinis can be eignificantly reduced. Bpecial care is
taken to maintain the accuracy of the solution. The results are checked in many ways. All checks
show that the present method is satisfactory.

Nomenclature

2y gpace coordinate

{ time coordinate

P pressure

0 density of fluid mixture

T  temperature

¥:  mass fraction of the i-th species

v velocity of fluid mixture

£ universal gas constant

U,  specific heat capacity at constant pressure of the fluid mixture
U, speocifio heat capacity at constant pressure of the ¢-th gpecies
@;  rate of production of 4-th species

M; molecular weight of i-th species

D;  binary diffusion coefficient for the ¢-th gpecies

A thermal conductivity -

hy  enthalpy of i-th species

ho  standard enthalpy of formation of ¢-th species

&

1. Introduction

More and more attention is paid to combustion problems not only by engineers
but also by mathematioians, becanse a number of inferesting and difficult problems
ooour. For example, a premixed flame problem will reduce to a typical reaction-
diffusion equation. ‘

It is well known that in a premixed combustible fluid mixture a steady flame
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will be developed when it is ignited. This fact has been proved theoretically for a
simple chemical reaction model. There have been many works on studying the
configuration of a laminar, premixed flame. These works bave essemtially followed
two different approaches. One is the steady-state approach in which the problem o be
solved is reduced to a two-point boundary value problem of ordinary differential
equations. The other is the time-dependent approach in which the full time-
dependent equations with proper boundary and initial conditions are treated. In this
paper our attention is focused on the latter approach.

Since the combustion proocesses are highly exothermic, cbemical reaction
processes and there exist a number of vastly differing iime scales, numerical
solutions will suffer from a number of difficulties. One is stiffnegs. With this in
mind a splitting-up method is presented, which splits the chemieal kinetic terms
from the fluid mechanioal terms. We think it might ameliorate some of the
difficulties.

Generally speaking, the region of caloulation must be taken large enough,
therefore a large amount of grid points must be taken. Obviously it is costly. In order
to reduce grid points a movable boundary technique is adopted.

Speoial care of error control is taken to maintain the accuracy of the solutions.

For comparison of the results obtained by the present methods with published
results an example for an ozone decomposition flame is calculated. The results are
also checked in many ways. The comparison and check show that the present
methods are satisfactory.

2. Formulation of the Problem

2.1 Qoverning Equations
We oconsider one-dimensional flow and neglect the effects of radiative heal
trangfor and thermal and pressure diffusion. The governing equations are as follows.
Continuity

op , 8(pu) _
0 208 o, (2.1)

Conservation of momentum |
i —!—puiu——- op + & [(,w—l—i 3)@-] (2.2)

- oy  Ov Ow 8 /ox
Conservation of species
oys oy, =_§_( . 3%)
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Conservation of energy
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and equation of state
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= D (2.5)

(=4)87
The variables appearing in these equations have their usmal meaning as listed in
nomenclature. In order to simplify these equations further, the effeot of viscosity is
assumed to be negligible and fluid velocity is assumed to be small compared to the

speed of sound. From the latter we can integrate equation (2.2) and obtain the
following condition.

P = Py = const, (2.6)
Then the equations (2.1)—(2.5) are simplified into
op , 9(pu) _
5 =i, (2.0
33}; 33;; 1 7, 3@!{ Cﬂ{
ot ® or p ( ) (2.8)
o' o 1 @ T 1 oy, \ T
o " ow  pO, afo(" Y ) o0, :§1 Wi (;..EIPD‘O’* B f B )
Po
P ; (2.10)
I
(=45
Ii is convenient to introduoe a Lagrangian coordinate i,
b, )~ oG, Hda (2.11)

Under these coordinates, the continuity equation (2.7) is identically satisfied,
because

p _
_3; P,

s =J” op (@, t) =__J" —
il R S o (P88 = — pti-t-my,

0
where mg= ptt] ,—g. Since
ofr o ¢

__ll—-l—-- ——— ——

ﬁw o o * oy

2 o o . 2
G B BE T BV ety

the remaining equationg become

MW 1 g U1 _ 0 (0D 28) 4+ 20 (2.12)

¢. ot *

(2.13)

By introducing the following nondimensional variables:
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=ity T =y

D=L, W=

-G %=

e G,,_hT,., A - ﬂi

& --::, P = m;i“-,

- =y
Y= tpt ; reo = oo boo = p”é:ﬁ“:,
the equations can be nondimensionalized as
g Z L5 E)
Pép é o — (L) -12 Yo 2D, ‘2’3: g’—:; (2.15)

where Lo = = ;.;: 5

is a ocharaoteristic Lewis number, and pw, Te, Do, As, U, and M. are some
characteristio values of density, temperature, mass diffusivity, heat conduotivity,
specific heat oapacity, and molecular weight, respectively. For simplicity, the
superscript star is omitted in the above equations.
2.2 Initial and boundary conditions

The equations (2.14)—(2.15) are a parabolio system; thus boundary and initial
conditions are required. In this paper we consider the propagation of a premixed
flame. So we can speoify the boundary conditions in the following way. At the
burned boundary the burned values are taken and at the unburned boundary the
unburned values are taken, i. e.

T — TI'.I »

at burned boundary
Yo=Y,
T=17,,

at unburned boundary
= Yiu.

The unburned and burned values must satisfy some conditions, which depend
on what model is assumed. For example, in this paper we assume that the flame is an
adiabatio flame and the burned values satisfy chemically equilibrinm equations.

The initial condifions are specified as a step function, i. e.
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T, >y,
T, 0) ={ for Wb
Tb ',t"lg ';br.ﬁ
(2.16)
Yiu '1&:)‘##:
ﬁhi&p; {n}== for
Yin Hbg llbﬂl
where i, is a given value.
2.3 OChemioal Kinstio Formulation
The elementary chemioal reactions ars expressed ag
N N
Z'T?:n,iﬂ?i — Zwﬂz.imi, m=1, 2, -, M, (2.17)
i=1 i=1

The rate of production w; of the i-th species appearing in equations (2.12), (2.13) is
given by the law of mass aotion.

M N N
= 2} @ni—2.0) My [ K4 1T o= 11 eroh ] (2.18)

where o}, and of,, are the stoochastic coofficiorts of the species ¢, ¢=1, ---, N,
appearing in & reactant and produot in the reversible reaction m, m=1, 2 «. M,
0, are the moles per unit volume of species 4 and related o $ho mass fraction by

oy=—L2m 4. (2.19)

The specific rate constants for forward and backward mode of reaction m are usually
given by the following expression.

kL, = B}, T ¢~/
B, s, E! = congt,
k7, hag a simjlar expression. The constants B, and B}, are the activation energy of

the forward and backward mode of reaction m, respectively. In terms of
nondimensional variables @, in the equation (2.14) is expressed as

ST M (wii;.i—w:,,,t)[kifp*"m'lﬁ(—%)””"-'-—kiﬁ"’“ﬁ(-f{ii)”ﬁ*-‘], (2.21)

& =1 i=1 §=21

where the superseript star refers to the nondimensional variable and

N N
Cam =‘=21 #m,i: Bﬂl ='=21 Qfﬂ.i:

(2.20)

. iy =k, tm(%) p—_ (2.22)
B = Ra(£=)"

Correspondingly, in the eguation (2. 15)

1 A - M N hg » » # n
e 2 E( H0,7s T T M (”'“"“”"""j)

=1 §=1
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3'. Numerical Method

3.1 Coordinate Transformation

Strictly speaking, the infinite boundary must be considered, but it is impossible
and unnecessary in practice. In general one can take a value, i large enough to
allow the full development of the flame before any effect could be felt there.
However it is costly to do so. In order to reduce grid peints, it is effective to adopt
the movable boundary and to introduce the following coordinate transformation,

{g_ b—y() __ b=t (8)

. (2) — Y (2) e(®)

t =1,
where Y1, . represent the burned and unburned values, ¥, respectively. Sinoe

¢ _— % 551 2 o % — E(‘;}u_'ﬁb)""ﬁb 4

ot ©of ot ot ot 8 o’
g _1 2
o & OF
the equations (2.14)—(2.15) become
Oy mot+b 8ys 1 0 ( ap O\, @
ot i g of L.g® o0& (P - o0& )' o’ 3.1)
or , mo+b T _ 1 & oT T &
o e 9 O ag("’?“ ag) "‘T,E“"’*"
1 <Yy op 0y 0T
T & AL T S

where b= — & (i, — )+, and the dot represents the derivative with respect to 7.

In order to solve the equations (3.1)—(8.2), a splitting-up method is presented.
3.2 Syplitting-up Method

The system of equations (8.1) —(3.2) is wusually stiff and the solution
frequently hag rapid transients. In other words, there are a number of time scales
and these scales vary widely. For example, in the vicinity of the flame, the chemical
reactions are quite rapid, compared with the fluid mechanical scale and among the
ohemical reactions some may be quite faster than others. The splitfing-up method
could allow one 1o use different step sizes according to different fime scales, e. g. one
large step size can be'used to advance the slowly varying terms while several smaller
step sizes can be taken on the faster terms. For simplioity we rewrite the equations
(3.1)—(3.2) as

of  _of , ., P %
Y @ Y ld-a—&'(’f} —E%)-F—y. (3.3)

We split equation (3.8) into two parts which group the fluid mechaniocs and
ohemical kinetic terms,

ef __of 4 © %
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g (3.5)

Since equation (3.4) is parabolic, we use the following implicit finite difference

scheme,
i+1

—J1 % (Fir— Firl
T Goe W B SI
d
| z:lé‘ﬂ [mreanf i — sz rmp_a @) Pt s fitil, (3.6)

where supersoripts represent fime location and subsoripts denote space location, and
1 1
Nisl/n =5 (Mg t2),  MW-12= 0} (ms+m-1) (8.7)

Obviously, the equation (3.6) is a fridiagonal system, So the solutions for any 7 and
all 7 can be accomplished with a fridiagonal matrix algorithm.

Having obtained the solution for the first part of the split, we may turn our
attention to the equation (3.5). The solutions f4*! can be thought of as predicated
intermediate values of the solution, and are used as the inifial conditions of the
equation (3.5). Since g oontains no spatial derivatives equation (3.5) is a system
of ordinary differential equations at each grid 4. Usually the equation is siiff, so some
offeotive stiff methods such as the Hindmarsh-Gear package can be used.

In order to improve the acouracy and efficiency of the calculation, a symmetric
split operator is used. Let Ly be the operator providing a predicated value of f§*! and
L¢ be the operator that obtains a correction of the first step. The following operator

is used to advanoe the solution from ¢ to {-+24,
f5t2=Lp Lo Lo Lp f}. (3.8)

3.3 Arror Conirol

In caleulating the nonlinear terms a, d, 7, g of equations (3.6) and (3.8) are
linearized and evaluated explicitly. In order to control error the following approach
is taken. We take two steps of 41/2 and one step of 4f; then compare the solutions at

i+ 4f. Let f }'
= [ §+10L) _ £ 441(2) 1

where superscripts (1), (2) refer to the number of steps. Whether the step size is
inereased or deoreased depends on whether ¢ is less than or greater than K. K is an
error tolerance and is specified beforchand. If the convergence has been reached (i. e.
e<E), ' ig taken ag the solution at £+ 4.

3.4 Movable Boundary Technique .

As previously poinfed out, if the boundary is fixed, a large value of b must be
taken. Thus it is computationally cosily. It is naturally desirable that the
computational domain be confined to such a region that it always ocontains the flame
and it is ag small ag possible. It is well known that in a premixed combustible fluid
mixture a steady flame will be established after ignition. In other words, the flame
will propagate through the combustible fluid with a constant velocity. In view of
this faot, the movable boundaries covld be used. Moreover, the moving velocity
could be taken to be the same as the velooity of the flame. Let s, i, §, represent
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the moving velooities of the unburned boundary, the burned boundary, and the
flame, respeotively. Then the boundary values of i are obtained by integrating

dl!’r: - r
ai W,

d!bh ; = )
= . (3.10)

The flame velocity based on the density of the unburned mixture can be evaluated
by means of the mass congervation prineiple. That is, the net mass produoction rate of
gpeocies ¢, inside a eontrol volume (whioch is large compared to the thickness of the
flame), must be equal to the mass rate of outflow of species ¢. The resulting equation
in terms of i is

¥a
Su=] . ‘-’j A/ pu (Yoo~ 1h1a) . (3.11)

In prinoiple, any of the chemical species can be used to compute the flame
velocity, because all these computed flame velocities should be identical. But in
practice, owing to the numerical error there are some differences between these
velocities. In our caleulation one of them is taken and the other is used to check the
accuracy of the caleulation.

In order that the calculated region can be automatically confined to where
significant ohanges ocour, the grid interval is allowed to expand or confract. The way
to do so ig as follows. At the beginning, we use

‘1{"“= ‘Em [ Yiuw — Yiuu >, 3]

Y — Yip
T b la_J{ Yo—Ym *
o= [2— { (Lo ) 51", (3.12)
s
where . lﬁm—- —J e dfr/ (yib—%u)

and 3, a are some constants (e. g. 3--100; a=0.1), Subscripts uz, bb represent some
grid points near the unburned and burned boundaries, respectively. After the
caloulation prooeeds for cerfain time steps we turn to use

o [ ay
o= = — 0.Su L i 3 ‘ 13
l\" t‘hh e gib yiu ( )

The reason for doing so is that we found it was not easy for the flame velooity o be
stable if only the formulas (3.12) are used.

1

4. Example of Calculation

The method described above is applied to calculate the structure of an ozone
decomposition flame. In order to compare the resulfs with the published results, the

following nonessential approximations were made,
D;=Dg=+o.=D,=D and p*D =oonst. =p2.D_,
pA = congt. = p,, A,
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Op.=0p-="'=om=0ﬂ=0ﬂ. :

The reaction mechanism for the ozone decomposition consists of seven reversible
reactions.

ke
Oa“f"ﬂi T Oﬂ+0‘l“ﬂl, (4:.1)
2/
0 +0, L};zoﬂ, (4.2)
kg
O+ 72042, (4.8)
7

where @ represents any of the three species @, Oy, Os,

Below we illustrate how to determine the boundary conditions. At unburned
boundary a ocombustible mixture of 75% O, and 25% O, (by volume) at a
temperature of 300°K are agsumed. That ig,

Va=0, Ys—, Ysu=, Tu=300°K, (4.9)

The burned values can be determined by the unburned values. Between these
values some conditions must be satisfied. In this case, they are
conservation of total enthalphy

Coly—OpTu+ Y1 57 =y 5>, (4.5)
and chemical equilibrium equation
P\ _ K potm
( Ml) ¢ M el

The equations (4.5), (4.6) are a system of nonlinear equations. The Newton
1teration method is used. The solutions are

Yip = 0.1259 % IU_TJ UYap = 1—0.1259 « 10_71

4.7
Y=0, T,=1246.9°K_ (4.7)

N
The rate of production w; and the term { 3 A, m;) / p are given by the equations

=1

(2.21) and (2.22). The thermodynamie and kinetic daia used here are given in

Table 1.
The initial conditions were taken to be

0 'at' :}'1{’#:

‘ Y2 () = { 0.1259%10~7 <t e
g |
Y2 () ={ 3 e (4.9)
1—0.1259 %1077 Y<ify;
-1
wipy={3 V7 (4.10)
| L0 lpgﬁbai
_ 300°K r >,
T _{1246.9“K Pt -
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Table 1 Data for Ozone Decomposition

Symbol .Value Symbol Value
B cal : 106
Bi, Ef, B 24140 - R} 1.88x 10
¥ Eﬂ]. '3 2
Ei 6000 —~ BBy, B 2,47 % 10
cal ) cal
Bl BLE! | 117350 %21 s 58675 2L
B3, ES, B} 0 h& 0
] cal
E 9210 =2 )

% Y = i 34535 —
E}, B3, B3 0 O 1.201><10—3c..£.5.
8%, 8L, &f b/2 /i 300 °K

1
’g 5f2 Cp. 00,2524 ng
_5 cal
S‘g, Bg: 3; | 5}” 2 8 9.112w 10 s
2 2 2 | -
8y, 85, s§ 7/ D s T
5/9 4
83 I v M 16 mme
‘?E: 33: S% 7!,2 Eu 4. 203 x 10_3 44 21|
Bi, Bf, BI 6.76 x 108 to ' 5.878 X 105 see
B 4.58 %108 L/ ta 71.51 %
B{, Bf, BY 5.71 % 108 2 1 0.821 atm.
5 1.18x102 M g
B%r Bﬂr Bg ﬂ 1 16 s

5. Results and Discussion

The solution of the equations (3.1)—(38.2) with boundary conditions (4.4)—
(4.7) and initial conditions (4.8)—(4.11) have been obtained for Z.,=1_ In the
following we desoribe some results and disouss them.

The DGEAR routine of the IMSL: package, which is an adaptation of the package
designed by Hindmarsh-Gear, is used for the integration of ODE (8.5). The steady
profiles of temperature and concentrations for a fully developed ozone flame ars
shown in Figures 1—2. Here 29 grid points are used and i, —i,=12.97. The flame
velocity based on O, is §y=51.5cm/sec. Margolis [1] used the method of lines involv-
ing collocation with B-splines and obtained §,=49.7 cm/sec, while Bledjian [2]
used the method of lines with low order accuracy and got S, =54 cm/sec,

In addition, the flame velocity is senstive to the acecuracy of variables, so the
appropriate control error must be chosen. In the present case, the control error % is
taken t0 be 10~* in equation (3.9) and 107° in integration of the ODE.

In order to establish the validity of the movable boundary techniqus, the fixed
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|
T ¥
40 04
|
30 03 - 103
20 02 -1 104
1.0 0.1 - 103
0.6 1 ! Fooo i
I ; 10 20 30
10 20 - 30 grid p‘:i:t grid point
Fig. 1. Steady profile of temperature Fig. 2. Steady profile of econcentration O,

I and concentrations O, Oy

boundary is also considered. We take yiu,—1fr,=500 and 99 grid points. The time
development of the right propagating flame and the profiles of temperature and
concentrations are shown in Figures 3—05. The flame velocity is in good agreement
with that obfained by movable boundaries. Their deviation is about 0.7%. From this
it is seen that the movable boundary fechnique can significanily reduce grid points;
thersfore save machine time.

T l
l
4 04 1.0 *—ﬁ
3 0_3 0O 1 02
=269
2 02 081
0.71- i t=10.1 =369
1 0.1 s L
| 1 1 i 1 i
| i 10 20 30 40 50
Fig. 3. Profile of temperature T and eoncentration O, Fig. 4. Profile of concentration Og

As for the grid points, some tests are made. When grid points are reduced to 19,
the results still remain good. The flame velooity is almost the samo ag that obtained
by 29 grid points (the difference between them is only in the fourth decimal).
However, when grid points are reduced to 14, the results get worse. The results with
19 grid points are shown in Figures 6—17.

The results are checked in many ways. It is well known that the concentrations
must satisfy

N

2%“1.

d=al
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In the present calculation this condition is satisfied very well. Its deviation from 1 is
only in the fifth decimal.

| As mentioned above, a comparison between

10 the flame veloocities based on different species can
ol be taken as a check on the results. In our
e caloulation the difference between the flame

B s ‘ velocities based on Oy and Oy i3 less than 0.2%.

Finally, a remark has to be made. When
| | uging the gplitting-up method, one has to decide

10-¢ -

whether the solution is congidered after an

I e LoLololp sequence or after an LgLpLpLg
.}:‘ zLL' L + . sequence. Generally gpeaking, both yield walid
’ solutions, but there are always some differences

g Foe Gl between them. In order that the solutions after,

an Ly or an L, step are within a certain tolerance of each other, an additional con-
straint on the step size is required. Fortunately when the control error mentioned
above is used, the solution after an L¢ i in good agreement with that affter an L.
The difference between two flame velocities is less than 0.2%,

Y2 ‘
T ¥
40 0.4
|
Y1

3.0 03 —11073
24 02 —~ 1074

1.0 0.1 — 1075

| - i, | T,
10 20 grid point 10 20 grid point
Fig. 6. Bieady profileof 0,0, T Fig. 7. Bieady profile of 04
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