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Abstract

A new version of iterative method for solving Riemann problem of gas dynamies is presented. In
practice the new procedure exhihited a good convergence in easey where Riemann solution involves a
strong rarefaction wave or two rarefaction waves. In the other cases the new version is identical
with (Godunov procedure.

Introduction

Riemann solutions are the building blocks of several numerical methods for
solving the equations of gas dymamics (see [1], [3], [4], [7]). The usefulness of
these methods depends on the possibility of solving the Riemann problem acourately
and effectively. Generally speaking, Godunov iterative procedure provides an
approximating solution o the Riemann problem ([3], [5]). But as noted by
Godunov, the iteration may fail to converge in the presence of strong rarefaction.
To overcome this difficulty Chorin gave a modified iterative method [1]. In this
paper we present a new version of iterative method. In practioe we find that the new
version iy more effective in cases where the Riemann solution consists of fwo
rarefactions or a rarefaction plus a shook where the rarefaction is stronger than the
shock. In the other cases the new version is identical with Qodunov procedure.

The New Version of Iterative Procedure

Consider the gas dynamics equations
o+ (o), =0,

(022) 14 (ot +p) 2 =0,
e+ ((e+p)u),=0,

where p, u, o5, ¢ and p, respectively, denote the density, velooity, momentum,
internal energy, and pressure of the gas, and

(1)

ol

6=ps+—%—puﬂ

is the total energy of the gas. For polytropio gases g is given by the constiintive
relation

i, B,

y—1 p

F |

* Received August 31, 1982.
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where v is a constant larger than one.
The Riemann problem for (1) will have the initial data

SI= (Ph Uz, Pﬂ), £U<’:0_,
:0 » .:D ’ :0 =
e e {»5',-=(Pr, the, Dr), >0,

Tt is well-known that the solution consists of a right state §,, a left state §;, a

middle state 8,.(p=2p,, u=u,), separated by waves which are either rarcfactions or
shocks. 8, is divided by the slip line

da

o
into two parts with possibly different values of p,, but equal values of «, and p,.
The new version of proeedure is as follows,
1. In case of y<u,, the iterative method first computes w, in the state S..
Define the quantity

.Mr: (_'pr _Pi)/(ur_"u*) . (2)

The relation between S, and S, ean be written ([2],[7]) as
v =t +@ (D Dr, Pr), 3)
\/ 2 (P-t_ z}rL : P*}Pﬂ
N ((y+Dp.— (y—1)p) pr
where @(pﬁ P, Pr) EJ ‘\/_ i
Y
BT B (gl — ), p.<p,

Upon solving p, in terms of u, from (3), we have

Du=D+1p (s —Uy; Dr, Pr); (4)’

'}'+1 .y 2 \/ | 16 YDy
= (=) %, 14 4/ 14 L iy ), ww,

where  r(u, —us Dr, pr) =

Pr ((1 } g\}%’- (“*_ur) ‘\/Pr/ipr )%_1), Uy < Uy,

By substituting p, of (4) into (2), one gels

M r= (jpr Pr} I’fﬂ@p‘( (u*_ ur) (Pr.fi _'pr) ”ﬂ) Y (5)
4l /o g, 16+ 1”’)
h | V(@) { " (m+(m | (7+1)9) WY
where o) =
1 ; ‘}"_1 i—:l',...
;((1 ; 2\/? m)'T L 1), ${G_
Similarly, M; is defined by | |
M= — (Pi—P*)/(ﬁ:“ﬂ*) (6)
The relation between 8, and §; is
= —@(Pus Bs, P1), (7).
or |
piﬁ:pfn"'_'vb(ul’"‘”ﬁ D, F'I) ; (8)

From {6) and (7), one gots
M= (P o) ((4—uy) ( 2/ p)™%) . (9)
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Upon elimination of p, from (2) and (6), we have
_(p—p+ M, u+ M) 10
u’i ( Mr + ME) a ( )
There are three equations (5), (9) and (10) with three unknowns (u,, M,, M,). For

calculating the unknowns we construct by induction a sequence (u*, M 1, My v=
0,1, ---) as follows,

M7= (pepe) 2V () ~w.) (/PN Y?),
(M= (pp) W ((w— ) (o/ p)¥®),
yr+l = (ﬁ—-p,-+M$+1u,-—l—Mi’”u;)/(MEH—I—ME"“) '
This iteration is stopped when
max([M:¥— M2, |Mp¥— M|y <e,
where £>>0 is a given small number; One then sets M,=M vl My=My* and u,=
w,**, This procedure is started by setting
us = (u+o,) /2, M?= M} =100,
Once u,, M,, M; are found, then we compute
Do = (U—Y~+2,/ M A0/ M)/ (L/ M, +1/ M) (11)
from the definition of M; and M,
2. In case of 4,>>u,, the new version is the same as the Godunov procedure ([1],

(6], [6]). The procedure calculates p, first. Substituting (3), (7) into (2), (8)
respectively, one gels

M= (p.p )2 D(p,/n,), (12)
M= (21 p)* D (/1) (13)
RS
'(7;—1:6!721) , =1,
where - @ (@) — -
v—1 1—=
24/ v 11— gV DAV <1,

For solving the unknowns (p,, M;,, M,) from the equations(11), (12) and (13), the
Godunov method uses the following procedure; Pick starting values

Po= (Prt2r)/2, Mi=M)=100
and then Gninpute Mr, My, pi(y=0, 1, «--)using
M= (pr o) 2 P (/D)
M7 = (pup) " B (pi/pp),
o, = (w— v+ p/ M7 )/ M) [ (L M3 1/ MY
This iteration is stopped when
max (| M7 — M2, [ Mitr— M) <s;

One fhen sets M, =M+, M;=M{+' and p,=pi*t, Onoe p,, M, M, are known, we
have
Uy = (py— 0+ My + M,u,) /(M M,)
from (2) and (4),
After p,, wu., M, and M, are determined one can get complete Riemann
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solution from the jump conditions of shock and from the isentropic law and the
constanoy of Riemann invarianis of rarefaction. For detial see [6].

Note that in case of wu<u,. the Riemann solufion contains at least one
rarefaction, and the rarefaction is stronger than the shock if a shock exists in the
solution. In fact according to the value of u, the pattern of solufion has ihree
possibilities,

1. When u,<<u, <u,, the solution consists of two rarefactions.

2. When wu, <t <1, the solution consists of one right rarefaction and one left
shock. If we measure the strength of waves by the difference of velocities on the two
sides of the wave, the strength of rarefaction (| —w,|) is larger than the strength
of shoek (ju—wu.|).

3. When u;<u,<u,, the solution is similar to the ons in case of 2.

This new procedure was applied to reacting gas flow problems [7] and to several
test problems where the Godunov procedure does not converge or converges slowly,
such as a strong rarefaction or two rarefactions involved in the solutions. The new
algorithm exhibited a good convergence in the mosi cases.

Remark. We may go along the line described in [8] with our new version to get
a more effective but more complicated algorithm. We omit the details hers.
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