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Abstract

In this paper we eata.hhsh the Haar and Walsh yatema on a tnangle These uystems are complets
in Ly(J) . The uniform convergence of the Haar-Fourier sories and the uniform convergence by group
~ of the Walsh-Fourier series for any continuous fanction are proved.

1. Introduction

Tt is interesting and useful o study multivariate Haar and Walsh functions
either in theory or in practice. If we investigate on a domain which can be considered
a Cartesian product, then the functions are readily extended 10 geveral variables from
one variable. Setting by the tensor product construct Harmuth has shown those
kinds of multivariate sysmms in hig l:.‘n:)t)lr.“‘:t and pomted out the applications in
communication. |

In this paper we attempt to foous on a triangle, or more ganera.lly on a simplex
in n—dimensional space. We dld not find any paper about it. Perhaps it puzzles some
people temporarily.

The main contribntion of this paper is to establish the Haar ‘and Walsh system
with two variables on a triangle. We prove their orthonormality and completeness in
- Hilbert space L,. Moreover, the corresponding Haar-Fourier sgeries and Walsh-
Fourier series for any continuous function are uniformly ﬁenvergent a.nd convergent
by group respectively. '

It is easy to generalize these results to the n—dimensional simplex. For simplicity
we will discuss only the two—dimensional triangle.

Now we explain some preliminaries and notations.

The Haar functions on [0, 1] are defined as followsa:

yo(t):=1,  for O<i<l,

and - ,.'—2" 4 for | 2 3“:12 <t 2722:11_-’
o B — - ;
wO =, for 2l 2 -1
hO,' elsewhere in [0, 1],

k=1, 2, 3, +, 2% n=1,2,3,:, 00,
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The Walsh functions on [0, 1] congist of the following ones,

Wo(E) s m1, for 0,
oy ol
wy(t):= - { VL (1.2)
[t
w® (28) , for Ogm—;-,
v () = e
(—1)* @ 2¢—-1), for 5 <t<1,
w®(2t), for oqm%,
Wit (t) 1 = | 1
(=L %P2t -1), for §{t=£§1,

kﬁll -21 3:-';;: 2"-.1 ﬂ=1} 2: 3:. wey 09, |

Some detailed investigation of the Haar and Walsh systems can be found in 1],
[3], [B].

In order to generalize the Haar and Walsh systems to the two—dimensional case
we should explain our representation in this paper. The Qartesian coordinates are not
very convenient for triangular elements, and .a special type of coordinate system
called ares coordinates should be used. | |

In Figure 1 it ig seen that the internal point P will divide the {riangle ABC into
three smaller friangles, and depending on the position of the point P, the area of each
of the triangles PAB, PBO, PUA can vary from zero to|4|, which is the area of the

triangle ABC. In other words, the ratios 7 o > -and -5 will tako any value
PBO, POA, PAB

between zero and unity. Here @, b, ¢ are the area of triangleg

respectively. |
These ratios are called area coordinates,

defined i'::y Il:-—i-, lg: = b , lai=
C(x3,51) X 4] far
y 1%
- It is eagy to see that
1 1 1 1\/L)
> x . z |=[ wa w3 Y| & |,
ta A Y Y1 Y2 ys /\ls

It two points P and @ are in two similar triangles respectively, and have the same
area coordinates, then we denote them by P~Q.

2. An Orthonormal Sequen_ce % on a Triangular Domain

Suppose 4(or 4450)is any triangle on a plane and || =1 is the area of dazo. If D,
K, F are midpoints of AB, B0, CA respectively, connecting DK, EF, FD, we divide
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4 into four similar Elmall t:gla.ngles 'déj}p, 'AIJBE; ﬁjﬂﬂﬂ,-- ‘:_IEFD- Waﬁa.ll them Al: ﬁg, "113, Vil

respeotively. ‘
We define the sequence x as follows, A
2(P)i=1,  for PE4,
1, = for PEA UL,
ﬂl‘:(P) __{ | | oI G 1U 2,

~ ---'\/’2‘, for PE 4,

2 2(P):={—~/2, for PE4y,

0, for PE dyl) 4q,
'3,  forPE€ds, |
O(P):=d~~2, for PC4,, °
10, - for PeaUd,

{EJH}' (P): ={ ea(Q), for PC 4,
0_, for PEA\J}_,_]_,.
where Q€4 Q~F; j=0, 1, 2, 8; i=1, 2, », Bed" 2 =2 8 oo,
At a point of discontinuity, let the value of these functions be the average.
Now we consider the orthogonality of the sequenca y. We prove the following

theorem.

Theorem 1. The sequence y deﬁmd by (2.1) 4s orthonormal. |
Proof. First, it is easy to ocheck that when n<2 the sequence {¢$’} is orthonormal.

We suppose that the theorem holds for n<<N. For 2<m<N+1; j1, ja=0, 1, 4, 3; 4, =
1, 2, oo+, 3e4¥ L 4,=1 2 ., 83.4™2 by (2.1) and induction hypothesis, we get

~_. | J' d ki (P) y31a+ia (PYdP =43, ,, I ¥ (@) k‘“’} (Q)dP

43 +1

8,5 [ 2 @282 (Q AP =81, 130, B3, m.
It is easy to verify that :

[ 204 (@y212(PYIP = || 2841 (P)o(P)AP =0,
Therefore the theorsm holds for n=N+1, -'and this finighes the induction.

(2.1)

3. Convergence Propérties |

L

~ The triangle 4 has been divided into four gimilar smaller triangles 4(¢=1, 2, 3,
4). Now set
| d:=4 @E=1,2, 3, 4),
For each 4, ,, we divide it into four similar éma.ller triangles in the same way as
wo did before. We order them as ds 1, 43,2, *++, 43 16 such that
4y, 1= 4z, 6 dg, 42U 4, 442U 43, si-3, i=1, 2, 3, 4,
We continue this process. For any n we got a sequence d,1, 4u,a, ***, dse» sSuch that

Aoy 9=y, sl o, sa-1U dy, 112U An, 44-3,
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¢=1,2, 8, -, 4" n=1, 2, 8, -, oo,
4y 12 =4,
Define a function sequence {f, ;} on the d
fo(P):=1,  for PE€4,
1, for Pcdy;, -
f“(P):%{O, for P:ﬁ::;m, t=1 2 3, 4,

L A FEREN TN N BN I IR BN

1,- for PEA“J,

f"*(P)‘: ={0, for P €4\4,,,, (3.1)
=12 38, -, 4" m=1,2 8, + oo
It is obvions that the sequence {f,, is orthogonal.
Lot
M. =span(fu1, faa, ***, fae), n=20, (3.2)
Thus &
5 dim M,=4"
For convenience, sometimes we use notation
X1+ = Xo, ‘
Lan-r it =3P, n=1; 4=1, 2, «er) 30471 ” (3.8)
Hy:=span(y1, xa, *=, Xa).
It is clear that ' . ; 5
H4"=Mﬂ: - L (3.4)
since H M, and dim H4,.=d1mM =4r | - | -
We define

@i {y ] ao<e]
and . .
| 1= fdo

Then the Fourier series of a given function F €I, (A) in ferms of the function
sequence {y,r is X

Fa g s T (8.5)
with - L
a:=[ F(Py(PYaP,
Let L .
| PF:=Son(P) , (3.6)

be the n-th p&rtml sum of the series (3.5),
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P v LT =iy

From the orthogonalily of sequence {x.}, ZF is the best L;—approximation tc #
from H,. Hence i} is convergent to ¥ if F ig in Ly(d), since H, is dense in L,(4).
Thus we get the following theorem.

Theorem 2. If ¥ € Ly(4), then

Yim{ F — .@Fllﬁo

11—

" In order o study the uniform convergence we let

O(d):={f|f is continuous on A}
and

[ £t =max]| f(P) ],
For F € 0(4) we define

PIF: = I Fyedo- xn+f FyiPdo x4 +J’ Fx.?}dcr 2, (3.7)
Set
Ko(P, Q) :=x(P)2(Q), (for P, Qe d)
K (P, @): —xo(P)xo(Q)+x D(P) P (@) + - +x‘”(P)x{”(Q), (3.8)
j—-l, 2, s 3'4:"_1; ﬂ=1, 2,
Thus
PPF(P) =-=L KPP, QF Q. (3.9)
Lot A: = (ay) (¢, j=1, 2, 8, «-, 4") be any 4% 4"(n=1, 2, .-} matrix and G (P,

Q) be any funntwn defined on 4% d
The notation G (P, @)<>A meansg that the value of G(P Q)is ay when Pc 4, ,,
QE 4, . It leads to the following relationship,

B, ok ks B9
1 1 1 1
P * =
10(P) 10(Q) €0y 111 11"
L1 1 1 1<
1 1 —1 14
1 1 -1 —1
) (1) . o
ﬁl (P)xi (Q)‘H’G':L 1 -1 1 1il*
-1 -1 1 1A
) - 2 -2 0 0
-2 2 0 0
2) ¢ P {2 -
2P (P) x® (Q) o0 s 6 o 6l
. 0 0 0 0d
-0 0 0 0O
: O ¢ ¢ O
B (P) ¢t ' = 10
2 (P) 217 (@) 003 5 B B (3.10)
wp 0 -2 2.
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To write those more shortly, we use the notation

diag block (4y, Ag, ==+, Az)i= + =, |, - (3.11)

where A, is a square submafrix,
Using (38.11) we geot

KPP, Q) oag+a,=diag blmk[[z 2] [Z z]]

KP (P, Q) <»0o+01+0y=diag blmk[4 4 [2 2}]
] . | 3 ¥ . 2 2 ’ 2
KS_E)(P, Q)Hau+ﬂ'1+frg+ﬁa'=dj&g blmk(‘j:_, 4, 4, 4),

where diag block(4, 4, 4, 4)=41,, I,ig nXn identity matrix. We denote the mXm
zero—element matrix by 0,, below.

Since s % |

Ig} (P:)?fén (Q) dea’g(4ﬂ-l: 04} 04; 04): (1"'=1: -21 3)

we geot |
K§(P, Q<> diag blook(4 330y, 414, 41, 41,),
K§+9(P, Q)«> diag block(£'1,, 4 3oy, 41, 41.),
4

KEH (P, @)«> diag blmk(fl 427 ,, 412_;30';, 414),

and

K+ (P, Q> diag blook( 4L, 4., 4°1,, 4 ,Zi.'g o), (i=1, 2, 8)

especially
K8P(P, Q) 4°I,, =diag block(421,, 431,, 4°1,, 4°1,),
Suppose in the general case that
K& (P, Q o 4'L,, (3.12)
By definitiens of (2.1) and (3.8),
KP,(P, @) odiag block (K 1, K33, ***, Ksn, 4n)

where each K, ,is ahti X 4 matrix. More precisely

K& (P, Q<> diag block(4" gg,, 40T, oo 4L ), (=1 2 8,

S S (3.13)

E$ (P, Q<> diag blook(4™1I,, +v, 4 g o1, +v, 4°L),

where the term 4" Z}a, ig the. (§+1)-th block (§=1, 2, «-, 4"—1); in partiocular
L=

K& (P, @ H4"+II e
Therefore for any n=1, 2, --- (3.12) holds.
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Suppose
By (3.9),

a E Aﬂ_, 4(!‘---1)+i::‘dn—1. iy i‘ o 1: 2; 3; 4-

PPF (@)= EP(s, QF Q. (3.14)
By (3.13), (3.14) we obtain
FPLF (@) =41
for j<3(1—1) and
PPF@) =4[ F(Q)dQ--

F@d@=-7=—(  F(@de (3.16)

MH=1:1 [ o £ 3

—|, F@da® (3.16)

for j=>81,
For j=81—2, 81—1 we have

PHOF (a) =+ A.f;;f ([, P@a+|

F(Q)dQ)  (3.17)

Apns ath=-1H441

(¢=1o0r 3) and

[t F@dR, a€duinas i=1, 2,
ﬁégl—l}F Gl 7nr i 13-17
T2 (|,  r@de+| — F@d), -3, 4 -
I Al"-in 4 I dyr 4t0-13+9 ' e ai-1)+4 g * g
In any case, from (3.15) to (3.18) we conclude
lim °F (a) - |ja| L F(Q)dQ=F (a), (3.19)
where 4,E {ds ¢ and e € 4,, |4;| >0 when n—> oo,
It is easy to check that
[ 1RO, @la@-1, (3.20)

Now (3.19), (3.20) imply the following theorem
Theorem 3. For F€O(d), im|PPF ~Flle=0 (=1, 2, «--, 8:4"3),

fA—0o

4. On the Walsh System

Naturally there ex ‘et some different forms of definition which are equivalent. We
use area coordinates to define the two—variable Walsh funoction. Some notations

follow the caaeﬂf tha Haar functions.

Wol(P):=1, for Pe 4;
WOL(P): =W (Q), for PEA, i, B, ~on, &2,
(4-:+I) (P) _{ '?"‘: fOT Pedi w fjﬁ;
‘ 3‘: - fﬁr Pedﬂ - dﬂi:
Wgﬁ_f"‘l”ﬂ(})):E{ ﬁ., for PEAJ__.AQJ
_}-,  for Pedg JA.L_,

W0 (P : { A, for P& A, 1J 44, (4.1)
:‘\, for P G ﬁg U Ag,
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B .- - F

where |
AM=WPWE), Q€4 Q~P; i=1, 2, 8, =+, 4", n=0, 1, 2, ...,

| W‘C”(Pj —WG(P) 1, - for Pcd,
ThlS finishes the definition of the sequence W.

Sometlmes we prefer W,;(I=1, 2, 8, ..., 4™ o WU 1 with I=4+4"+14 (i=1,
2, -, 4™ 4=0, 1, 2, 8).
| At a point of discontinuity, the wvalues of these funotions are taken as the
average,

Figures 2 and 8 show the Walsh sequence when n=0, 1,

Before the discussion of the orthogonality of the Walsh system we introduce the
Hadamard matrix([2], [4], p. 207). |

The Hadamard mairix is a square array whose olements consist only of +1 and
—1 and whose rows (and columns) are orthogonal to one ancther. Obviously the
lowest order nonirivial Hadamard matrix is of order two, viz

1 1

- —
Higher order matrices whose orders are powers of two can be obtained from the
recurrent relationship

H2:=[ (4.2)

Hy=Hp 0 H,, (4.3)
where ) denotes the direct or Kronecker product and n is a power of two. The direct
product means replacing each element in the matrix by H,. With the help of the
Hadamard matrix the one—dimensional Walsh function can be dﬂﬁnedm In the
two—dimensional case we should use the 4 X 4 matrix

H 4= H 2®H 2
and get the recurrent relationship : .
Hﬂ=HN;4®H.; (4 4)

The Hadamard mafrix (4.4) corresponds to the Walsh sequence W} (¢=1, 2,

, 4%) for a given N _

Figures 2 and 3 show the Walsh sequence associated with the Hadamard matrix.

In Figures 2 and 3 black areas represent +4-1, and while areas —1. The following
triangle shows a certain order.

e+ + + 4+
2 —_ 4 -

n=0 i * =5 Hy
WPeo| + + — —
el 4+ — — +_

(where we omit 1 in these elements of
Wlf Y the Hadamard matrix)

Fig. 2

v
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+
. e K o— i i
W + 4 4 +
W + — + -
we o+t = -
Ve 4+ - -+
W + + + +
WEI.IIJJ L
Wi k. C——
Wi e — — b
G
W o 4 — 4 —
BB o b o e s
we . 4+ — — +

Now we notice that

is the best L;—approximation to a given function ¥ from
ﬂn: = Bpan (Wi) 1

where

wf)

(7)
WZ

. W(;I)

(15)
by

= w}*)

W

W

W

(8)
2

il

(12)
2

(16)
.

+ 4+ + 4+ ++ + + + + 4+
el e e o el o
i IR B S e T S St
4 — ~ + + - -+ + = =+
- e e e
— 4+ — 4+ 4+ -+ - - S
el e o e R
o i T S + -~ =H®H,
e i S T
+ = F = =% -+ —F =+
e M w2 B A R B s e g
- =+ — + + - =+ 4 =
I S o
— e o e —ook -
i B A
il S el R

Fig. 3

n
'?HF:=§WWI

a: = F(PYW(P)dP.

Hence it is convergent to F if F is in Ly, since lﬁ. is dense in L4, i. o.
Theorem 4. If F € L,(4), then im|F — P, F[,=0,

Since M= M, and from Theorem 8 we get the following theorem,
Theorem 8. Let F CO(d), Py be La—projector onto M on 4; then
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Ii.m.“F_ﬁ.j,ﬂFHm=0,
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