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Abstract

If f9(a) (a=a, b, =0, 1, .-+, k—2) are given, then we get a class of the Hermite approximation
operator f=7F satisfying X (u::s} =% (), where F is the many-knot splire function whose knots
are at polnts wia = g4y < 1y <<+ c:y_;;-In-E:- and FEP,on [y, ;1. The operator is of the form

QF: -=§§ { £ (@) s+ FP (b)) ]. We give an explicit representation of ¢; and ¥, in terms of B-splines
N, ;. We show that ¢ reproduces appropriate classes of polynomials,

1. Introduction

Some authors considered operators of the form @f=3AfN,x where {N,;} is a
sequence of B-gplines and {A;} is a sequence of linear functionals. The variation
diminishing method of Schoenberg ([9], [B], [6]) and the guasi-inferpolant of de
Boor and Fix are well-known. Such approximation schemes have several imporiant
advantages over spline interpolation. They can be constructed directly without mairix
inversion, and loocal error bounds can be obtained naturally. Qi considered the so—
called many-knot splines which have many more knots than degrees of freedom and
constructed the cardinal spline € f=23 f(z)¢,z where g is made up of B-splines
on a uniform partition, has small support and satisfies ¢;z(z;) = 3. Such an
approximation operator reproduces appropriate clagses of polynomials™’,

The purpose of this paper is to construot a olass of many-knot explicit local

polynomial spline approximation operators for Hermite interpolation of real-valued
functions defined on some interval [@, 6].

Let Py be a set of polynomials of degree less than &, and let
@ =go<y1 <+ <yn1=b. (1.0)
We define .
St = {9 9| wore € P, ¢=0,1, ., k—2},

S, is the familiar class of polynomial splines of order % with knots at the points
9, (4=0, 1, -, k—1).
Let % be a linear space of real valued functions on [¢, b], and suppose #

containg the class of polynomials Pj. Given f&.#, we cﬁnstruct an approximation
F(. )-=Qf( ) such that.

FO(a) =fP(a), yﬂ}(b) ftI)(b> =0, 1"...., h—2, (1:.1)
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In other words, sel

Qfi= 3 fP@ (@) + 3 fOBYh(a); (1.2)

suppose ¢, Y satisfying |
BP(a) =y, #°(B)=0, (1-9)
'i'}‘} (ﬂ) =l ]rbjﬂ(b) _"ai:f.r E’: .?= 0, 3, #id; k-2, (1 '4)

If ¢; and ¢, are chosen in Pg_g, then the problem above has been considered (see,
for instance, [1], [8], [4]), and in this case F' € Pgy_gon [a, 6].

We will find a many-knot spline #¢€ Sy satisfying (1.1). Such many-knob
cardinal splines {¢;} and {Js,} are of degree less than %; therefore ¥ is also of degree
loss than %. We present ¢, and i, as explicit representations.

This paper proves that the many-knot spline Hermite approximation operator €
reproduces appropriate classes of polynomials on {a, 6].

2. Construction of ¢; and ¥;

Without loss of generahty, we assume ¢=0 and d=1. First of all we set k= 3 ag
an example.

Let cbo, 1, o, Wy be piecewise polynomials of degree 2 with knots 0, 2 g

satisfying the following conditions
$o(0) =1, $1(0) =1,
$0(0) =po(1) =¢o(1) =0, ¢1(0) =¢1(1) =1 (1) =0,

W30 (30, (F0)-eh)

#(g+0)=¢h(3—0), #i(z+0)-#(z-0),
and Yo{z): =<£:u(1-—w), (@)t =—i (1 —=).
Easily one gets

—_22+1, wxclo

¢u(m)=‘l :1
2(e-1)7, s€|5.1);

— 2.2+, o€[0, 2],
; 2 li
¢1(m)={ " -y
_1\3 0
'_2-({3 1) 2 me_gj ]-

Their graphs are sketohed as follows
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In order to consider the general case, denote
R I,:=1{0, 1, -+, m}
$y(x): = 2 0,0, BE [, B1], JE€Tya

BETyay

(the partition is 0=gy<ay < 2q< - +L@p_y=1), and
¢?}($¢—0)=¢”($¢+0), i’EIﬁ—ﬂ\{O}J ZGIE—EJ
D (0) =8y, P2(1)=0, € Ixa.

Since we have 4(%—1) unknown ocoefficients a,,, with %(k—1) conditions, so it
seems possible to find a,,. Bub, it is difficult to get the explicit repregentations for
o, Below we will directly present the explicit formulas for ¢; and v, -

Here are the notations used in our discussion.

Let X': = () be a nondecreasing sequence. The é~th B-spline of order % for the
knot sequence (@) is denoted by

Niwlo):= (Bign— ) [, iy Gpa] (o —2)

for all # € R, where the symbol [z, «++, #;,3] denotes the 2~th order divided—difference
functional *

Eymﬂ-(ai: g, ***, aﬂ-—i) s = 2 Oy Opyy* Oy
L TRETY 2

"’JEIH-J.; pi?": P;(’i'#j),

w—1
£¢7: =8ymo(+++) i =
From (1.0), we define |
Ts=0—1, ox_qy3i=q, for 4C€I, 4 | (2.2)
Thus we get a partition on [—1, 1] from [0, 1]:
— 1=z oy < o LWy g < gy = 0L Y L W1 < 0+ < Zopgy =1, (2.3)

We construot the following functions on [0, 1] as a speeial kind of combination of
B-splines

b () —T 2 EIYV N, o(2), for z€ [0, 1], jE€Ix_a, (2.4)
Theorem 1. The functions ¢,(x) defined in (2.4) satisfy

: | B3P (0) =3y, (2.5)

¢y (@) =0 for |2|=>1, 1, jEI,,, (2.6)

Proof. If ¢€ Iz and |z|>1, then N®.(z)=0. Therefore ¢ (2) =0 for all
L,i€l s and || =1, If ¢ € I4_a, then N¥.(0) =0 since

Iﬂ—ﬂ={@"!é"6{"':'—2: _1: O; 1: 21 "'}: Nirk({))%ﬂ}-
By Marsden’s Identity[m,- for z & [0 : 48
t= 3 EPN(2), p- 1, 2, ==, k& (2.7)

$Clax-a

Thus
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qsﬂ) (m) lm=0_'( J' ‘E%_‘ §U+1} Ni,k(m)) %‘[(ium =t ;: )fif—rl)N;.n(ﬁ) L-ﬂ
n_j!_(m’)m 3 =d, for I, jEI::—ﬂ.

Let
(@)= (w—1),

From (2.2), (2.8), we easily see

¢,(m)=_1__ 2 LN, (D). (2.8)

By (2.5) we gel lp?}(o) o
YiP (1) =38y, forl, € Ipa,
k=3: (Cﬁo)_( 11 1) (No.a(ﬂ?))
b1 a—5 &) \Nys(z) ;

ﬂ=3}’m1(?}m 91)/2= lyﬁ_;yi ——%1

‘When the partition is uniform, then
¢0=N913(m) + N:L;S(m):

by= “%Nms(ﬂ?) '1'% Nis(z), zc[0, 1],

k=4:
| 1 1 1
¢1 |= ﬂ'1—§ g %
2 ( -—a:1+ y{' /21 ﬂg—ﬂj_‘l'%ﬂ /21 Qg/2 |
Nﬂ,4(ﬂ=)
* N1,4(m) E EE[(}, 1];
Nn.-i(m)
where ‘ “1=5}'m1(‘ym Y1, ?}2)/3= yﬂ+y31+yﬂl
aa=symy(go, 9, ys) /3= LILTVGaT Voo
In uniform case,
Po=No, a4+ Ny s+Ng,,
(,61= _%Nﬂ.i‘l‘}g—Nﬂ,i,
2 1 2
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3. The Operator Q Reproduces Appropriate
Classes of Polynomials

Using the funotions ¢, and i;, we have the following approximation operator

Qf(+): = > [P0+ 1(-).

Edx.q

¢ defines a linear operator mapping F into Sy
Theorem 2. Qg=g for all g€ P,.

Proof. Let
span(N): =span(N;; 4 € Ig.9), |
span (e, ¢):=span(d,, ¥y; jEIx_a),
S:={g:Qg=g}. -
The dimension of span(¢, ) is 2k—2. Then both span{ N ) and span(¢, ) are
linear subspaces of # on [0, 1] of dimension 2k —2,

Obviously PrCspan(N),
L. e, PyCspan(e, ¥),
Now it is sufficient to prove that -
S=span (¢, ¥), (3.1)
It follows from the definition of the sét & and the operator ¢ that
SSspan (¢, yr), (3.2)

On the other hand, Theorem '1 implies that we have Qf— f for any

F & span(d, ). Hence -
| span(¢, ) =S, | (8.3)
(3.2) and (3.8) mean that (3.1) is valid.
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