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GENERALIZED BERNSTEIN-BEZIER POLYNOMIALS®

CuaxNe GEng-zEE (¥ A1)
(China University of Science and Technology, Hefei, Ching)

In Qomputer Aided Geometric Design, the following functions

fao(2) =1,
fn (@)= é:?gil j;:l[ (1”_3;)“—1 ]’ =1, 2, <=, m (1)

are known as the mth Bézier basis functions ™»™. The analyfical properties of these
functions have been studied by many authors. Ii is proved in [3] that

I (@) =J g, 4(2) +Jn.i+1(ﬂ’)+'”+~rn,n(m): (2)
where J,., stands for (ﬂ)m‘ (1—a)** $=0, 1, ---, n, the nth Bernstein bagis func-
7
tion. Simple calculations show that
fn,l(m) "'fﬂ,H:l.(m) o Jn.i(m): (3)
f:h'r(m) =ﬂJl—1-i—1(m): d":lj 2: eeey, I, (4)
It is clear from (8) and (4) that
Fn1(B) > Fua(@) > >fan(@), ZE(0, 1), (3)

and that fai(2), =1, 2, +-+, m, Increases gtrictly from 0 to 1 on [0, 1].
For each funotion () defined on [0, 1] and each real number a>>0, we define

Buapi) =00 +3) p(2)- o (L55) 72 @, (6)
or equivalently .
Buolgi @)= 339 (L) [f250(@) —fhun @], (7)

where faniz=0. In the case a=1, we see from (7) and (3) that B,,1(@; ) is just the
nth Bernstein polynomial of p(2). (6) and (7) are called the generalized Bernstein—
Bézier polynomial of ¢(#), although they may fail to be polynomials when « is noi a
positive integer. * | | *

In this paper, the uniform convergence

Hm B,,.(p; %) = p(x)

TL— =D

ig established for (%) continuous on [0, 1} and for each a>0. And a theorem similar
to that of Kelisky and Rivlin for the iterates of Bernsiein operators 1s proved.

A proof of the uniform convergence of B, .(p) is also given, which is olementary
'but rather tedious. Professor Chen Xiru points oub that fa:(®) represents the
probability that an event A occurs i or more than 4 times in n independent frials,
where # ig the probability that A occurs in a given trial, as shown by (2). He also
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indicates that by the Tchebichev inequality ([6], p. 11) we have for arbitrarily given

>0

1, for i<n(z—s) '

O ’ s
f—reo Fail(®) 0, forizn(e+a) ®)

uniformly for #€ [0, 1], and that the first lemma of this paper follows immediately

irom the fact that 0< £, (o) <1.
The following two identities are nseful in the sequel;

“;j;':‘ gfn.‘i (m) =&, (9)
2 DNifui@) =L +(1-1) 2 (10)

Sinoe by (4) we have

gﬂn,; (@) =n‘_21 Ju-1,4-1{(x)=n
and f,,((0) =0, (9) is proved. Similarly we have

g ¢ [ (@) =n g 8 q-1,4-1(2) =ﬂg B[ famt,-1(®) — fa-1,1(®)]

n—1

=7 2 fa-z,4(2) =n[1+ (n—1)a],

Hence (10) follows. We are going 10 prove the following
Lemma 1. For each real number a:‘;*{} we have

B — Zfit (v) =2 (11)

o ﬂin

uneformly in [0, 1],
Proof. Assume az>1. For arbitrarily given real numbers >0 and 3>0, there
exisbs a positive integer N =N (8, 8) by (8) such that

0<1— 231 (2) <9, if i<n(w—a),
0= £y, i (2) <8, if i=n(z+¢g),
~for @€ [0, 1] and n>N. Hence we have

0<o—2 33 f2u(@) = 1 31, i@) [1-f52()]

-2 3+ 3 4

27 [i-ﬁn{r—s) s>=nizt+e) nlo—)<i<n(ets) ]-

With the last three terms denoted by 3, 2, s respectively, the following estimates
are easily obilained

<Ti<d = f,.i(m)«zﬁ-if...&m)@,

tania—s)
0<m<E 3 [(-frr@l<d31-s,
N ixnia+e) =1

O<T<= > 1< 28,

N nle—s)<é<n(z+s)

Hence the lemma is proved for a=1. It remains to consider the cage 0<a<1. Since
we have
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o<l 3 e (@) —a= L L3 @B~ @]

i=1
by the same reasoning we see that lemma 1 ig gtill valid for 0<a<1,
Lemma 2. For each »real number n:3=-0 we have

-”_—-—-2@ (m) =2/2 . o (12)

[

untformly on [0, 1],
Proof. Since

%12@‘-'-*(“’)‘2 i (m)‘g—— ‘ ( )If“(m)— mi (@) ]

<L 3@ -fu @] = o—1 it @ |,

lemma 2 follows directly by (10) and lemma 1,
Tt ig clear that B, .(1; ) =1 by the definition (6). Lemm.a. 1 and lemma 2 imply
regpectively that

Ilm Bﬂ,’n(ﬂ'}; fn‘}) ==

and

lim B, .(a%; v) =a*

uniformly on [0, 11. By (B) and (7) we see that B, , isa linear and positive operator.
Invoking Korovkin’s theorem"’ we conclude
Theorem 1. For any function p(a) continuous in [0, 1] and any real number

a>0, we have
lim Bn.n(‘Pi m) =‘P($)

H—oo

uniformly on [0, 1],
We now turn to the disoussion of the limit of iterates of the operator B, .. If we

introduce the following matrix notations

[4(D)])-[¢(2)-+©, o(2) -0 (3) = oW —-o(*73))
 [fea(e)” |
File)y=| i |,

Euo=[10(2) A5 s

then (6) can be rewritten as

By, o(@; @) =9(0) + [ dp (%)]F‘:(m)

and
BZ .(@; @) = Ba,a[Ba, o (p; 2); ] =9(0) +[d¢ (%)]K malin(®),

In general we have
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By (o ﬂﬁ) =§D(0)+[A@ (;)]Kn,aﬁ‘n(m): m=0, 1, 2, -, (13)

From (13) we see that the investigation of the limit of iterates of the operator B, , is

shifted to that of the limit of the

matrix sequence K, as m—>oc. If we put

L =1 . .
1 -1
P~ |
1 —1
1 I
then
=1 1 s 15
Pt _ 0 1 - 1
. LD ¢ - 1J
Since
Kea=[ru()] p-2P[12(])] 7

we can say that the maitrix X, , is similar to the matrix

| () £a(3) - a(5E) 1
P[f:,;(-f?)]—eP ...................................................
) Ba(B) o ) 1 ,
[ RB)-R) o R -mT) o

-

whose elements are all nonnegative by (5) and the sum of all the elements in the jih

J

){1, where =
n

column is f3 1

1, 2, ---, n—1. We have shown that the maitrix K, ,

has 1 as its isolated eigenvalue and other eigenvalues are less than 1 by modulus.

Since K, , i8 a row stochastic ma

irix, it has the column vector whose components are

all 1 as an eigenvector corresponding o the eigenvalue 1. By the theory of canonical
form we know that the Jordan block associated with the isclated eigenvalue 1 is the
1x 1 submatrix (1). Hence there exists a nonsingular matrix M whose elements in
the first column are all -1 such that | | | o

K,.=M| :} ;]M‘l,
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where € is an (n—1) X (n—1) matrix with spectral radius less than 1, thus
0

]jmK:*u-—-'limM[l |-
- : mM—oo 0 Qm
=4 O wn 0= ) :
0 O «- O A Ag 2t e
=M M":l: --------------- .
_000_ . . .

where [As, Ag, **-, An] i8 the first row of M. Since the limit matrix should still be
row stochastio, we have

AtAgt oo +hp=1, (14)

If A is replaced by Mi(a), ¢=1, 2, ---, n, we can gay that [A;(&), -+, A(a)]” i3 a
normalized eigenvector associated with the maximal eigenvalue 1 of the matrix K7,
where v denotes the transpose operation of matrices. [A(a), *++, Aa(a)]” is called the
normalized maximal positive eigenvector of K7 ,. By normalization we mean that (14)
is satisfied by the componenis of the eigenvector.

Lot m—>oo in both sides of (13) we oblain

Theorem 2. For any function p(2) defined in {0, 1], we have

lim BYo(g; @) =¢(0) + [p(1) —p(0)] 3 hi(a)fa (@) (15)

uniformly on [0, 11, where [A1(a), +»+, A(a)]™ is the normalized mazimal positive
eigenvector of the matriz K7 ,.
Consider the special case a=1. By (9), the sum of the jth column of K, ,

3 uu(L)~ua(252)] () -w(52) 1, o2

$=1 n T

thus the matrix K, 1 is doubly stochastic. Hence

A1) =Aa(1) =--=2,(1) =1/n
and by (9) again (15) becomses

lim B7 1 (@; @) = @(0) + (1) —@(0)] 2,

¥ —3 O

This result was established for the Bernstein operators by Kelisky and Rivlin in
19675, |
Ag a direot consequence of theorem 2, we can determine all fixed points of the
operator B, ,. '
Theorem 3. The set of all fiwed poinis of the operator B, 4 consisis of the following
funciions -

0,4-Cs E M(a) fai (),
myhere 01 and Cy are arbitrary constanis.

The author would like to give his sincere thanks to Professor Chen Xiru for his
kind suggestions.
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