GENERALIZED BERNSTEIN-BÉZIER POLYNOMIALS*

CHANG GENG-ZHE (常庚哲)

(China University of Science and Technology, Hefei, China)

In Computer Aided Geometric Design, the following functions

$$f_{n,0}(x) = 1$$
,

$$f_{n,i}(x) = \frac{(-x)^i}{(i-1)!} \frac{d^{i-1}}{dx^{i-1}} \left[\frac{(1-x)^n - 1}{x} \right], \quad i=1, 2, \dots, n$$
 (1)

are known as the nth Bézier basis functions [13]. The analytical properties of these functions have been studied by many authors. It is proved in [3] that

$$f_{n,i}(x) = J_{n,i}(x) + J_{n,i+1}(x) + \dots + J_{n,n}(x),$$
 (2)

where $J_{n,i}$ stands for $\binom{n}{i}x^{i}(1-x)^{n-i}$, $i=0, 1, \dots, n$, the nth Bernstein basis func-

tion. Simple calculations show that

$$f_{n,i}(x) - f_{n,i+1}(x) = J_{n,i}(x),$$
 (3)

$$f'_{n,i}(x) = nJ_{n-1,i-1}(x), \quad i=1, 2, \dots, n.$$
 (4)

It is clear from (3) and (4) that

$$f_{n,1}(x) > f_{n,2}(x) > \cdots > f_{n,n}(x), \quad x \in (0, 1),$$
 (5)

and that $f_{n,i}(x)$, $i=1, 2, \dots, n$, increases strictly from 0 to 1 on [0, 1].

For each function $\varphi(x)$ defined on [0, 1] and each real number $\alpha>0$, we define

$$B_{n,\alpha}(\varphi;x) = \varphi(0) + \sum_{i=1}^{n} \left[\varphi\left(\frac{i}{n}\right) - \varphi\left(\frac{i-1}{n}\right) \right] f_{n,i}^{\alpha}(x), \tag{6}$$

or equivalently

$$B_{n,\alpha}(\varphi;x) = \sum_{i=0}^{n} \varphi\left(\frac{i}{n}\right) [f_{n,i}^{\alpha}(x) - f_{n,i+1}^{\alpha}(x)], \qquad (7)$$

where $f_{n,n+1}=0$. In the case $\alpha=1$, we see from (7) and (3) that $B_{n,1}(\varphi; x)$ is just the nth Bernstein polynomial of $\varphi(x)$. (6) and (7) are called the generalized Bernstein-Bézier polynomial of $\varphi(x)$, although they may fail to be polynomials when α is not a positive integer.

In this paper, the uniform convergence

$$\lim_{n\to\infty}B_{n,\alpha}(\varphi;x)=\varphi(x)$$

is established for $\varphi(x)$ continuous on [0, 1] and for each $\alpha>0$. And a theorem similar to that of Kelisky and Rivlin for the iterates of Bernstein operators is proved.

A proof of the uniform convergence of $B_{n,a}(\varphi)$ is also given, which is elementary but rather tedious. Professor Chen Xiru points out that $f_{n,i}(x)$ represents the probability that an event A occurs i or more than i times in n independent trials, where x is the probability that A occurs in a given trial, as shown by (2). He also

^{*} Received November 20, 1982.

indicates that by the Tchebichev inequality ([6], p. 11) we have for arbitrarily given s>0

$$\lim_{n\to\infty} f_{n,i}(x) = \begin{cases} 1, & \text{for } i \leq n(x-s), \\ 0, & \text{for } i \geq n(x+s) \end{cases}$$
 (8)

uniformly for $x \in [0, 1]$, and that the first lemma of this paper follows immediately from the fact that $0 \le f_{n,i}(x) \le 1$.

The following two identities are useful in the sequel:

$$\frac{1}{n} \sum_{i=1}^{n} f_{n,i}(x) = x, \tag{9}$$

$$\frac{1}{n^2} \sum_{i=1}^n i f_{n,i}(x) = \frac{x}{n} + \left(1 - \frac{1}{n}\right) \frac{x^2}{2}.$$
 (10)

Since by (4) we have

$$\sum_{i=1}^{n} f'_{n,i}(x) = n \sum_{i=1}^{n} J_{n-1,i-1}(x) = n$$

and $f_{*,i}(0) = 0$, (9) is proved. Similarly we have

$$\sum_{i=1}^{n} i f'_{n,i}(x) = n \sum_{i=1}^{n} i J_{n-1,i-1}(x) = n \sum_{i=1}^{n} i [f_{n-1,i-1}(x) - f_{n-1,i}(x)]$$

$$= n \sum_{i=0}^{n-1} f_{n-1,i}(x) = n [1 + (n-1)x].$$

Hence (10) follows. We are going to prove the following

Lemma 1. For each real number a>0, we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f_{n,i}^{\alpha}(x)=x\tag{11}$$

uniformly in [0, 1].

Proof. Assume $\alpha \ge 1$. For arbitrarily given real numbers s > 0 and $\delta > 0$, there exists a positive integer $N = N(s, \delta)$ by (8) such that

$$0 \le 1 - f_{n,i}^{a-1}(x) < \delta$$
, if $i \le n(x-\varepsilon)$, $0 \le f_{n,i}(x) < \delta$, if $i \ge n(x+\varepsilon)$,

for $x \in [0, 1]$ and n > N. Hence we have

$$0 \le x - \frac{1}{n} \sum_{i=1}^{n} f_{n,i}^{\alpha}(x) = \frac{1}{n} \sum_{i=1}^{n} f_{n,i}(x) \left[1 - f_{n,i}^{\alpha-1}(x) \right]$$

$$= \frac{1}{n} \left[\sum_{i < n(x-s)} + \sum_{i > n(x+s)} + \sum_{n(x-s) < i < n(x+s)} \right].$$

With the last three terms denoted by Σ_1 , Σ_2 , Σ_3 respectively, the following estimates are easily obtained

$$0 \leqslant \sum_{1} \leqslant \frac{\delta}{n} \sum_{i < n(x-s)} f_{n,i}(x) \leqslant \frac{\delta}{n} \sum_{i=1}^{n} f_{n,i}(x) \leqslant \delta,$$

$$0 \leqslant \sum_{2} \leqslant \frac{\delta}{n} \sum_{i > n(x+s)} [1 - f_{n,i}^{\alpha-1}(x)] \leqslant \frac{\delta}{n} \sum_{i=1}^{n} 1 = \delta,$$

$$0 \leqslant \sum_{3} \leqslant \frac{1}{n} \sum_{n(x-s) < i < n(x+s)} 1 \leqslant 2s.$$

Hence the lemma is proved for $\alpha \ge 1$. It remains to consider the case $0 < \alpha < 1$. Since we have

$$0 \leqslant \frac{1}{n} \sum_{i=1}^{n} f_{n,i}^{\alpha}(x) - x = \frac{1}{n} \sum_{i=1}^{n} f_{n,i}^{\alpha}(x) \left[1 - f_{n,i}^{1-\alpha}(x) \right]$$

by the same reasoning we see that lemma 1 is still valid for $0 < \alpha < 1$.

Lemma 2. For each real number $\alpha > 0$, we have

$$\lim_{n\to\infty} \frac{1}{n^3} \sum_{i=1}^n i f_{n,i}^{\alpha}(x) = x^3/2 \tag{12}$$

uniformly on [0, 1].

Proof. Since

$$\frac{1}{n^{2}}\left|\sum_{i=1}^{n}if_{n,i}(x)-\sum_{i=1}^{n}if_{n,i}^{\alpha}(x)\right| \leq \frac{1}{n}\sum_{i=1}^{n}\left(\frac{i}{n}\right)|f_{n,i}(x)-f_{n,i}^{\alpha}(x)|$$

$$\leq \frac{1}{n}\sum_{i=1}^{n}|f_{n,i}(x)-f_{n,i}^{\alpha}(x)| = \left|x-\frac{1}{n}\sum_{i=1}^{n}f_{n,i}^{\alpha}(x)\right|,$$

lemma 2 follows directly by (10) and lemma 1.

It is clear that $B_{n,\alpha}(1;x)=1$ by the definition (6). Lemma 1 and lemma 2 imply respectively that

$$\lim_{n\to\infty}B_{n,a}(x;x)=x$$

and

$$\lim_{n\to\infty}B_{n,\alpha}(x^2;x)=x^2$$

uniformly on [0, 1]. By (5) and (7) we see that $B_{n,\sigma}$ is a linear and positive operator. Invoking Korovkin's theorem⁽⁴⁾ we conclude

Theorem 1. For any function $\varphi(x)$ continuous in [0, 1] and any real number $\alpha>0$, we have

$$\lim_{n\to\infty}B_{n,\alpha}(\varphi;x)=\varphi(x)$$

uniformly on [0, 1].

We now turn to the discussion of the limit of iterates of the operator $B_{n,\alpha}$. If we introduce the following matrix notations

$$\left[\Delta \varphi \left(\frac{1}{n} \right) \right] = \left[\varphi \left(\frac{1}{n} \right) - \varphi(0), \ \varphi \left(\frac{2}{n} \right) - \varphi \left(\frac{1}{n} \right), \ \cdots, \ \varphi(1) - \varphi \left(\frac{n-1}{n} \right) \right],$$

$$F_n^{\alpha}(x) = \begin{bmatrix} f_{n,1}^{\alpha}(x) \\ \vdots \\ f_{n,n}^{\alpha}(x) \end{bmatrix},$$

$$K_{\mathbf{n}, \alpha} = \left[f_{n,i}^{\alpha} \left(\frac{j}{n} \right) - f_{n,i}^{\alpha} \left(\frac{j-1}{n} \right) \right],$$

then (6) can be rewritten as

$$B_{n,\alpha}(\varphi;x) = \varphi(0) + \left[\Delta\varphi\left(\frac{1}{n}\right)\right]F_n^{\alpha}(x)$$

and

$$B_{n,\,\alpha}^2(\varphi;\,x)=B_{n,\,\alpha}[B_{n,\,\alpha}(\varphi;\,x)\,;\,x]=\varphi(0)+\Big[\varDelta\varphi\left(\frac{1}{n}\right)\Big]K_{n,\,\alpha}F_n^\alpha(x)\,,$$

In general we have

$$B_{n,\alpha}^{m+1}(\varphi;x) = \varphi(0) + \left[\Delta\varphi\left(\frac{1}{m}\right)\right] K_{n,\alpha}^m F_n^{\alpha}(x), \quad m = 0, 1, 2, \cdots.$$
 (13)

From (13) we see that the investigation of the limit of iterates of the operator $B_{n,\alpha}$ is shifted to that of the limit of the matrix sequence $K_{n,\alpha}^m$ as $m\to\infty$. If we put

$$P = \begin{bmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & 1 & -1 & \\ & & & 1 \end{bmatrix}$$

then

$$P^{-1} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ & & & \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Since

$$K_{n,\alpha} = \left[f_{n,i}^{\alpha}\left(\frac{j}{n}\right)\right]P = P^{-1}P\left[f_{n,i}^{\alpha}\left(\frac{j}{n}\right)\right]P,$$

we can say that the matrix $K_{n,a}$ is similar to the matrix

$$P[f_{n,i}^{\alpha}(\frac{j}{n})] = P\begin{bmatrix} f_{n,1}^{\alpha}(\frac{1}{n}), & f_{n,1}^{\alpha}(\frac{2}{n}), & \cdots, & f_{n,1}^{\alpha}(\frac{n-1}{n}), & 1 \\ & & & & \\ f_{n,n}^{\alpha}(\frac{1}{n}), & f_{n,n}^{\alpha}(\frac{2}{n}), & \cdots, & f_{n,n}^{\alpha}(\frac{n-1}{n}), & 1 \end{bmatrix}$$

$$= \begin{bmatrix} f_{n,1}^{\alpha}(\frac{1}{n}) - f_{n,2}^{\alpha}(\frac{1}{n}), & \cdots, & f_{n,1}^{\alpha}(\frac{n-1}{n}) - f_{n,2}^{\alpha}(\frac{n-1}{n}), & 0 \\ & & & \\ f_{n,n-1}^{\alpha}(\frac{1}{n}) - f_{n,n}^{\alpha}(\frac{1}{n}), & \cdots, & f_{n,n-1}^{\alpha}(\frac{n-1}{n}) - f_{n,n}^{\alpha}(\frac{n-1}{n}), & 0 \\ & & & \\ f_{n,n}^{\alpha}(\frac{1}{n}), & \cdots, & f_{n,n}^{\alpha}(\frac{n-1}{n}), & 1 \end{bmatrix}$$

whose elements are all nonnegative by (5) and the sum of all the elements in the jth column is $f_{n,1}^a(\frac{j}{n}) < 1$, where $j=1, 2, \dots, n-1$. We have shown that the matrix $K_{n,a}$ has 1 as its isolated eigenvalue and other eigenvalues are less than 1 by modulus. Since $K_{n,a}$ is a row stochastic matrix, it has the column vector whose components are all 1 as an eigenvector corresponding to the eigenvalue 1. By the theory of canonical form we know that the Jordan block associated with the isolated eigenvalue 1 is the 1×1 submatrix (1). Hence there exists a nonsingular matrix M whose elements in the first column are all 1 such that

$$K_{n,\alpha}=M\begin{bmatrix}1&0\\0&Q\end{bmatrix}M^{-1},$$

where Q is an $(n-1) \times (n-1)$ matrix with spectral radius less than 1, thus

$$\lim_{m \to \infty} K_{n,\alpha}^m = \lim_{m \to \infty} M \begin{bmatrix} 1 & 0 \\ 0 & Q^m \end{bmatrix} M^{-1}$$

$$= M \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} M^{-1} = \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \ddots & \ddots & \vdots \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \end{bmatrix},$$

where $[\lambda_1, \lambda_2, \dots, \lambda_n]$ is the first row of M^{-1} . Since the limit matrix should still be row stochastic, we have

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = 1. \tag{14}$$

If λ_i is replaced by $\lambda_i(\alpha)$, $i=1, 2, \dots, n$, we can say that $[\lambda_1(\alpha), \dots, \lambda_n(\alpha)]^{\tau}$ is a normalized eigenvector associated with the maximal eigenvalue 1 of the matrix $K_{n,\alpha}^{\tau}$, where τ denotes the transpose operation of matrices. $[\lambda_1(\alpha), \dots, \lambda_n(\alpha)]^{\tau}$ is called the normalized maximal positive eigenvector of $K_{n,\alpha}^{\tau}$. By normalization we mean that (14) is satisfied by the components of the eigenvector.

Let $m\to\infty$ in both sides of (13) we obtain

Theorem 2. For any function $\varphi(x)$ defined in [0, 1], we have

$$\lim_{m\to\infty} B_{n,\alpha}^m(\varphi;x) = \varphi(0) + \left[\varphi(1) - \varphi(0)\right] \sum_{i=1}^n \lambda_i(\alpha) f_{n,i}^\alpha(x) \tag{15}$$

uniformly on [0, 1], where $[\lambda_1(\alpha), \dots, \lambda_n(\alpha)]^{\tau}$ is the normalized maximal positive eigenvector of the matrix $K_{n,\alpha}^{\tau}$.

Consider the special case $\alpha=1$. By (9), the sum of the jth column of $K_{\bullet,1}$

$$\sum_{i=1}^{n} \left[f_{n,i} \left(\frac{j}{n} \right) - f_{n,i} \left(\frac{j-1}{n} \right) \right] = n \left(\frac{j}{n} \right) - n \left(\frac{j-1}{n} \right) = 1, \quad j = 1, 2, \dots, n,$$

thus the matrix $K_{*,1}$ is doubly stochastic. Hence

$$\lambda_1(1) = \lambda_2(1) = \cdots = \lambda_n(1) = 1/n$$

and by (9) again (15) becomes

$$\lim_{m\to\infty}B_{n,1}^m(\varphi;x)=\varphi(0)+[\varphi(1)-\varphi(0)]x.$$

This result was established for the Bernstein operators by Kelisky and Rivlin in 1967^[5].

As a direct consequence of theorem 2, we can determine all fixed points of the operator $B_{n,a}$.

Theorem 3. The set of all fixed points of the operator $B_{n,\alpha}$ consists of the following functions

$$C_1+C_2\sum_{i=1}^n \lambda_i(\alpha) f_{n,i}^{\alpha}(x),$$

where O_1 and O_2 are arbitrary constants.

The author would like to give his sincere thanks to Professor Chen Xiru for his kind suggestions.

References

- [1] P. Bézier, Numerical Control----Mathematics and Applications, John Wiley and Sons, London, 1972.
- [2] R. E. Barnhill, R. F. Riesenfeld, (eds), Computer Aided Geometric Design, Academic Press, New York, 1974.
- [3] Chang Geng-zhe, Matrix formulations of Bézier technique, Computer-aided design, Vol. 14, No. 6, 1982, 345—350.
- [4] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
- [5] R. P. Kelisky, T. J. Rivlin, Iterates of Bernstein polynomials, Pacific J. of Math., Vol. 21, No. 3, 1967, 511—520.

u A u

[6] M. Loève, Probability Theory, Vol. 1, 4th Edition, Springer-Verlag, New York, 1977.