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It is well known that for the computation of disconiinuous solutions of
hyperbolic partial differeniial equations, the use of conservative difference schemes
has partial theoretical justification. The theorem of Lax and Wendroff in [1] states
that for a conservative difference approximation of a conservative hyperbolic system
o/ , oF
ot = ox
the limit function is a weak solution of the original system of partial differential
equations, and hence satisfies the Rankine Hugoniot condition. Of-course the weak
solation obtained may not be the unique pnysically relevant solution, but under
normal circumstances it will be. Now, for real practical problems the partial
differential equations often have nonhomogeneous terms and the computational
regions usually require coordinate transformations for simplification. Therefore we
congider hyperbolic systems with coeflicients which depend only on the independable
variables and with nonhomogeneous terms we call such systems weakly
conservative. Computational experience over the years tells us that the use of weakly
conservative difference schemes derived from the weakly congervative hyperbolio
systems also yields in general the correct discontinuous solutions. The reagson will be
stated and proven in thig note.

First of all, let us observe that the Lax and Wendroff theorem holds also for
equations with nonhomogeneons terms. That is, for

=(), if the difference solution converges boundedly almost everywhere, then

ol , 8F | -
5t ki, (1)
where U, F(z, t, U) and B(x, #, U) are vectors, its weak solution U sabisfies
H(%T--U - ZE -F—W-B)dmﬁﬁ—l—jW(a:, 0)s T (w, 0)de=0 (2)

for every test function W which has continuous first derivatives and which vanishes
outside some bounded region. Suppose (1) has difference approximation

v | 4G | o
ﬂt'dm'oo’ (3)

where 4 denoteg any difference operator. F'rom congistency we have

 @le, i Flo—kds, ), «, Vietids, Da@ln b VP, =, Fi=Fa & 7,
Clz, t, V(e—mdz, t), -, V{z+ndz, t) >0z, t, V, -, V)=B{a, ¢, V),
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bere k, I, m, n are constants. For a given mesh, also denoted by 4, a discrete
solution can be obtained with (8) and then ¥ .(z, ) in the entire computational
region can be defined by inlerpolation. With only slight modification of the proof of
the Lax and Wendroff theorem in [1], we obtain the following result: if as dz, 46—>0,

¥V .(«, t) converges boundedly almost everywhere to a function Uz, ¢), then U(x, t)
is a weak solution of (1).

Now consider the coordinate transformation defined by

§=¢(, 1), n=nlz, 1) (4)
. - i BUE, ) o, 1)
with J #=0, J-= =0
oz, t) ols, 1)
in the region under consideration. In the new variables (1) is
t N z I Bﬁg, 5

here n,, &, ns, &z are ﬂunsidered ag functions of § and #. It hag difference
approximation |

| . | L —
t;ﬁh’;.- 1§¢ ﬂf |??.-= d?‘} lf,g é. U=0. (6)

Both (B) and (6) are weakly conservative, but they can be written in forms (1) and
(3) respectively. Equation (5) can be written as

ol . aF

el +B =0, . (7)
where O=nU+n,F, F=£(UAEF,
B=B— (U — ()0 — (£2)eF — (1) o F3 (8)
and with . Ve=nV+nQ G=£V-+E£G.
(6) can be written as
if: 1 jg +C =0, (9)

where € includes terms ﬁ" V etc. Since (7) and (9) are of formg (1) and (3)

respectively, we have: if the difference solution ¥ of (9), or rather ¥ defined by
solution ¥ of (6), converges to U, then U is a weak golution of (7). On the & 7
plane, U is a weak solution of (7) if it satisfies -

”(%@ ’ %T? F—W-B )dEdn+ JW(E, 0)-U(¢, 0)df=0 (10)

for every test function W. Here we have assumed that ¢=0 is mapped onto =0 and
that £>>0 corresponds to n>0, otherwise the single integral in (10) would have a
minus sign in front. Let us simply call U which defines [/ which satisfies (10) a
weak solution of (B).

We discuss first weak solutions which are piecewise continuously differentiable
in regions separated by smooth curves. The smooth parts ot ths solutions of (1), 6),
and (7) are the same because the equations are equivalent. The discontinuify
‘eondition for (1) is
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U] 22— (7], (11)

where %f— iz the slope of the discontinuity on the «, # plane; the discontinuity

condition for (7) is
[mUerF]—g%= EU+EF], (12)

where % is the slope of the discontinuity on the §, n plane. Using df=¢; dt+ &z dz,

dn=mn, dt +n.do and J %0, we see readily that the two Rankine Hugonio} conditions
are the same. Hence the weak solutions of (1) coincide with those of (5).

This result for more general weak solutions can also be obtained by direct
transformation of the weak solution equations. Suppose U is a weak solution of (b),
then for every test funetion W, (10) is valid. We prove that for an arbitrary tesi
vector W, (2) is also valid. Let

W=JW (&, n), (&, M);

obviously W is a test function, so (10) is true. We show first that the single integral
in (10) is equal to the single integral in (2). Because ¢{=0 is mapped onto n=0, on
thig initial line a change in £ does not result in a change in #, so =0, and from
Jn,= —1t,, we also have n,=0. Therefore

j [JW.(nU N F)E 1] 10 A0 =J[($;iE)W' (U )& t=ud$=jw(m; 0)-U(w, 0)da.

Here we have used d¢ =¢.dw when di=0 and 1= [JJ 0= (2,) (§am)-
As for the double integral in (10), we have that ils integrand satisfies

oW ~, W A W . W » w.
(E--U. o -F—W*E)J LU+ S F-W-B. (18)

7(2¥ .0 W .F-W-B)

=J(-@%m} 3;? 5;)-[7 —I—J'<%2Eﬂ,} Eg:.,r f,,)rF——JW-B

| =(J%?7W-+ J._.,W)- (mU—!—n_.,.F)-i—(J 1‘? 1J¢W)-(§¢U+§,F)

—IW [ B+L (Tt T T+ T et TEDF ], (14)

Indeed,

From J§,= —a,, Jn;=2,; we have

. (Jgt)f'l'(‘r'f}'tjﬂﬂo
or Jfgt+“rﬂﬂt=_'}'[(§t)£+(ﬂt)n]'f
Similarly J;§g+Jﬂ??g= —J [(gm')f_l_ (7?:1:) b3
Substituting these into (14) and noting (8), we get (18) immediately. So the double
" integral in (10) is equal to the double integral in (2), here tracing the @ axig and the
£ axis in the positive direotion, both regions of integration lie on the loft.

Wo see that given any test function W, (10) is valid for W=JW, and the
single and double integrals in (10) are equal to the single and doubie integrals in. (2)
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respectively, hence (2) is also valid. That is, a weak solution U of (b) i3 a weak
solution of (1). Clearly the converse is also true.

In summary, we have proven that if a2 conservative hyperbolic system becomes
weakly conservative mpon coordinate transformation, the difference scheme derived
from the transformed system, though weakly conservative, can be used to compute
the discontinuous solutions of the original conservative system, in the sense that if
the difference solution converges, then the limit function ig a weak solution of ihe
original system.
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