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. Abstract

Under the condition that the triangnlation of the given domain is strongly regular, the maximum
norm estimate with accuracy O (h2) of the linear finite element approximation is obtained, the optimal
points of etresses at the midpoints of common sides for all adjacent elements are shown, and the
estimate with higher accuracy for the extrapolation approximation based on mesh refinement and
extrapolation is given.

§ 1. Introduction

The I ~-error estimates of the finite clement approximations for second order
linear elliptic boundary value problems have been established by Frehse, Nitsche,
Rannacher, Scott, et al. Fried has published an example which indicates that the
pointwise estimate

[ o, <SR -t (1)

may be of optimal order in the usual case. However, if some resirictive assumptions
are imposed, then the convergence order can be improved. As an example, when the
triangulation of the given domain is sirongly regular (seo0 [6]—I[T7] or the next
section), and u€ H® (2) NWZ (£2), the following result is obtained for the linear

finite element approximation in {7]:

bl il LY
o= Pfo,sp<ch? (0 ) [[tlz,mnt feefssel, (2)

where DC . .

In the present paper, we shall prove in section 2 the following

Theorem 1. If the triangulation II, of the given domain €2 4s strongly regular
and wCWE(Q) N HLQ), then the poimtwise accuracy of the linear fintte element
approzimation w* will be

max |u( p) —u*(p)| <ch?(|u] s, (3)
One of the new developments in finite element analysis is the investigation of

the phenomena of superconvergence. Obviously, it i of interest to improve the
sccuracy of stresses by using the optimal points of stresses. The superconvergence

* Received April 4, 1983.
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estimate for the gradient with accuracy O(4?) has been obtained in [5, 6] by using
the means of gradients for two adjacent elements as the approximations to the
gradient at the midpoints of common sides for some elements. However, it was not
proved that there exist the optimal points of stresses for all elements and it was not
stated where the elements which have the optimal points of gtresses are located. In
[8], the above resuli was improved and the inner superconvergenoe estimates of
gradient for the optimal point of stresses was obtained. In seotion 3, we shall prove
the following,

Theorem 2. Iy the triangulaiion II, is strongly regular and u & C*(Q) N H{(Q),
then the midpoints of common sides for all adjacent elements are the entirely optimal

povnts of stresses with accuracy O(kﬂln 715'>

In the last seotion, the exfrapolation for the finife element approximations is
congidered. The mesh refinement for the triangulation II, of 2 should be a new
triangulation which is achieved via dividing each triangle of II, info four small
equal iriangles. Let %* be the linear finite element approximation over the
triangulation I, and «*? the new approximation over a mnew friangulation.
The numerical results show that the acouracy of the extrapo]ation approximation

1(4'&” 2 _u*) is much better than +*3, However, the theoretical bagis for this algo-

rithm still remains an open question and we mll iry o give some answer to this
guestion. We prove, |
Theorem 3. _Assume that the iriangulation II, is strongly regular end u€O*(Q)
H3(Q). Let o*, v»? be the linear finite clement approximation over II, and the
refinement resg:ecﬁévely._ We have for the nodes of II, - -

. _%._ (I@m —uP) %_..—..0( R In %) . 4)

§ 2. Maximum Norm Estimate

For simplicity we shall consider the 2-dimen sional Poisson equation
— = in Q
u=£ on 653 | o

Suppose that the friangulation II; of 2,(CQ) is
strongly regular, i.e. I, satisties the following GOIldl— -
tions: .

cl: Kach friangle T" ¢ II, containg a circle of radius
cih and is contained in a circle of radius cih, 0<ci<leq
independent of 2 and T (gquasi-uniform).

c¢2: Any two adjacent triangles of Il form an

approximate parallelogram, i. e. there exists a constant
¢ independent of &, such that (see Fig, 1)

| P12 Psps | <Sch?. (6)

Let & be the piecewise linear finite element space on Q, with zero on Q\£,,
«* €S, the finite element approximation satisfying
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a(v, 1) =(f, %), VEDS, (7)
where a(u, v) = (Vu, Vo), and %! the interpolation of u on .
By [2], for any z,&Q, there exist an element T €Il and the linear weight
funotion w(Ay, Aa, As) on T, such that zo €T and the relation®

J’Tm(?‘-‘l{ lﬂ: lﬂ) v (‘1’1: ?"2: 3‘3) dz =" (ﬂu) (8)

holds uniformly for any linear function » on 7, where (A1, As, As) I8 the borycentrio
coordinates. We will consider the funotion d=wzy, where zr is the characterisiio
function of 7, and the equation

—4g=8 in R,
g=0 on £,

where the regularized Green’s function g corresponds to G* in [2].
Suppose that u€ Wi (Q) N Hi(Q2). Thus u€C?(£2) and we have

a(g, u")=(9, u') =u" (%), o (10)
a(g, )= (3, w)= | wude=| ofulz) + T () (z0)

le=

- (9)

+ 3 - u(p)(z—2)® Jds=uz) +O(H). (11)
Oombining (10) with (11) we obtain
alg, u—u*) =u(z) —u*(20) +O(A*). | (12)
Note that the left side of (12) can be written as
a(g, u—u*)=a(g—¢', v—u*)+a(g—dg', u—ul). (13)

By using the superconvergence estimate given in (380), (40), etc., we oblain

|a(g—9¢', u'—u)|=|a(g"~¢', u—u') | <ch®|us, ] 9"~ ¢ 1,1, (14)
where g* is the Rilz projection of g. According to the results for the regularized
Green’s function in [2] we have

1

ﬂ.‘?h“‘gfﬂi:i‘g “9“9”|1;1+ ”Q—.'?’":L,fiﬂh In ik (1b)

31’”

Hence
a(g—g', w—u) | <ch® In3-{ufs, (16)

On the other hand, we have
a(g—g, u—u)=—| (u—u?) dgde—a(g", u—u')

=J‘Tm(u-—'uf)dz-'—a(gl, % —) =J;+Ja A7)

Obvionsly, | . |
| 1] <chl. (18)
By using (80), (40), ete., | | |

| el <ch?[u)s,m] g 1,1
and from [2], [g]1,2=0C0).

R T

1) For instance, w(A1, As, A.;)—‘i (12 A{—3)A;/meas T,
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Hence : |
[gl:=00). (19)
Thus we obtain
| T | <ch?|u]g,m (20)

Combine (12), (13), (16), (17), (18) with (20) and note that 2, is any point in
Q2. Then Theorem 1 is proved.

§ 3. Optimal Points of Stresses

Let M be the midpoint of common sides for any two adjacent triangles of II,
(Fig. 2) and v C*(Q)N.H;(Q). We will prove that M is the optimal point of
gtresses in the sense of [b, 6].

We now employ the argumenis of § 2 repeatedly. B
Let 2, €482 be a node of any element. Then there exist
Tecil, the function @ on T and the ocorresponding
regularized funciion g, such that

C A
u(a0) —(z0) + 3 o u(ao) | @(a—20)" de+O(h%)
=a(g' -9, H—%’)—Fﬂ(y—y’, u—u')
=Lm(u—uf)dz.—-a(g’, u-u’)+0( hﬂln%). (21) D
But Rig, 2

[, ow—urde= ofutm)+ 3 w0 -0+ T, 5 u (o) (2—20)* ]z

+OB®) —! (o)=5 3 u(z) | w(e—2)"de+O().  (22)
Substituting (22) into (21) we obtain, for z being a node,
w(zo) —u(20) = —a(g", u—u)+0(AIn 3. (23)

In order to emphasize that ¢ is dopendent on zp, We replace ¢ with ¢(z, 2z). We
first consider the directional derivative along the edge OA of the pomt M shown in
Fig. 2:

H(A) _H'(O) i q .
Dosu(M) a0 +O(A") | (24)
and : . .
Doat? (M) = uh(A%# (OL_ ' (25)

Replacing z, with 4 and O in (28) respectively we obtain
| Dosts( ) — Doat (M) | = | == a(u—+, ¢(0, )—g'(4, 2))]

+0 (K In %)gchnunﬂ,m]gf(o, ) —g'(4, 2) J1.+0(AIn %)

Note that w,, defined by (8) is continnously dependent on 2, for zC7'. According 1o
[2] and using the continuity of Vg at A0 we have
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16" (O, 2) —g"(4, D) ]n2<[# (0, ©) —9(0, 2)|1.1+19(0, ) —9g(4, 2)]sx
41904, =g (4, Dl1<|9(0, g(A,Da+0(b1n )

_ 1 1
] % A o b T
<O A0|g(p, #) ha.l—l—O(h]_n h) o(fb]n h),
where p € AC. Therefore, we obtain

| Doau(M) — Do (M) | =04 In %) (26)

Next, for the directional derivative along the edge MB, let us take the mean of
gredients of »* for two adjacent elements as the approximation of gradient of " at the
point M. Thus we have

i‘l. h h h

D = L[ LB 20 | O s (D) |- EELED) 4 oy (2
because the union of two adjacent elements is an approximate parallelogram. Using
the same arguments as above we obtain

| Dugts(M) ~ D (3 | = O (W 1n 7). ' (28)

Since the accuracies of the directional derivatives at the point M along two
different directions are O(hﬂln -%—
for all directional derivatives at the point M, and then Theorem 2 is proved.

), the superconvergence acouracy O(h"‘“ In -1‘—) holds

§ 4. Extrapolation for the Finite Element Approximations

Suppose that « E C4{(Q) N Hi(Q), # being a node of any element Thus we have
by (23)

o (20) — t(2o) =§‘:fm (4—2?) %%’ ds+0(h* In. =), (29)

In order to estimate the first term on the right side of (29), we will employ the
symbols and notations in [5, 6] (except for the notes below).
Let T be a sta,nda,rd element of I, (Fig. 1). We have

3, ) dom3 [ [ F -G e
=3 J‘m (w—u!)sin Oss( — g+ g)ds+ L . (u—u)cos Bas(gy — gi)ds
:J3+J4, (30)

where 3 denotes the sum in which psps runs though the common sides of all two

adjacent tnangles f.. is the directional angle of psms, and gi=(g9')a
Note that ¢' is the piecewise linear funection and that

B 7 N g —s
E_ gl i o0 . 004 -} Tyl 31
Jo—Ga=—m o —F o (go+9a)s (81)
where [Js=s-s denotes the area of the approximate parallelogram (T' +T" and
wy=g¢i—¢i. Thus, by using the remainder expression of the trapezoid quadrature

formula for «—«', we obtain
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Ty 32 [ LU 0) 1 008) |- imbas [ Lhrrsg 4 25 Gragy |

D5 { _Jag [ 1ag
5gF
+EJ (—u')e my » 8in Gag dis
Pata { Jog
3 _
-3 i ZUTL). gin ,y(s' ) G2+ 95)/ D
"']"E %211 32?&3(;3::53) 51]16 Sﬂy ’Iﬂl,{ggg
A%’
+2J' (u—e) s m623533+0(h3)—~.f5+.f3 J.+-0(h?), (82)
A [7ag

where lon— P_g ps, and M ag 18 the mldpmnt of side 14 s Dg Pa.
In order to calculate 3 we need mesh
refinement for I7,, where an apprnmmate parallelogram
[Tw 18 divided into four small approximate
parallelograms [75¥(A=1, 2, 8, 4). Ag shown in Fig. 3,
[758, [7%7 are the parallelograms and the small approx-
imate parallelogramg 7§y, 7% are similar contraction

with respect to [7,3. To prove (4), it is sufficient to show 2,
that Fig. 3

4 STP+TP) — T3~ T =0(FIn %) (33)

where the super script A denotes the terms corresponding to (380), (32) nbt&med by
the mesh refinement.

We now consider J;. Since 72 and [7{7 are the parallelograms, &%y~s—s=0;
thus

| J@=J®=0. (34)
Next, let the consfant ¢y satisfy
<5 s [8in Bas (5~ 8) /LT as] = caslfs /8. - (35

Obviously, the valmes in [--:] are invariant under the similar contraction, and [F¥
(A=1, 8) are similar coniraction with respect t0 [Jas. Thus

3
JP =3 112(%3 ) 65“3(3:%5:93) ﬂmﬁna(s —s) (g3 2+9 /%) /2

ek 2-[ Fu(z) gL 8
3 2 Caglss o o8 ‘11'5"‘0(}5)

==‘-]"- p Gﬂazgz ,L 3;%:) Gs(%: z)&z—l— O( ha-]-n %‘); =1, _3: ‘ (36)

where g2, g2 denote the derivatives of the interpola.ting function of g on the refined
mesh, GF(zo, 2) is Green’s function with respect to (6), and the lasi slep in (86) is
obtained by ¢g*=G*, (1b), and | -

|6~ a0 1n 7).

On the other hand, by Mas= -2:-1-(.&{{213)—1—3!%'), we have
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Js= D caslds [Tas al€ oty (ga+9:)/8

0533
e Fu (M) | Pu(MED \ = s
Zonlsas (et + S )(gm+g£)/16+0(h In h)
—.!'_ & j asu'(z) 3 l
5 Dol | 3 |0 Toi-Guleo, )de+O(RIn )
—4(JP+TE)+ O(A1n i).
A
Therefore, |
4TP+TP+TP+TP) = T;=0 (R ). (8N
o Note that J@=J®=0 and [sin fge
; : 2 1 2 O%mwy] /[ Tas i8 invariant under the similar

contraction. Repeating the above arguments,
we can obtain

4 g TP~ To=O(R? ]n-}b—). (38)

i3 75 ¢ Now oconsider J;. We will employ the
Fig. 4 techniques of united elements in [5, 6]. As
an example, congider the case shown by Fig. 4. We obfain

&g’ ;
TSt j___ Ct— 7y i B

[ Jag Jvm

SEE Y, S 5] I g S!S Y

D 23 s Ps D 43 T

-=—-1—(yi—9§)[ = s

D43 fralia Pals
3
- — (i g8 gp—+ 0@ || LLR). i > — LU0 i G|+

(89)
where the values of 1y on 7,3 and F7.s are denoted by #iV, #{® respectively. Note that
| gin 945”132} — gin 953??51} | o= O(ﬁa) 3

Thus , |
NO— 3 I . . ﬁ) BEH(M43) . 333 e (ha]lll
Tr=— (s g S0 igenf® Mol Szt i 4O(Wn )
e 2 2 3u(z) a1, 1
Cyqgtag - 3343 g 3.9%3 3‘93 dz+ +O(h In h)
o ‘N u(z) oo O L 40
Cagl3g L“ e G (2, 2) B Dt dz-+ -+ ( In h)’ (40)
where 3? denotes the directional derivative along M, Mys and the constants c,--
29

are invariant under the similar contiraction. Hence, via refinement, we have ¢;=
¢P(A=1, 3) since [TP(A=1, 8) are the similar contraction with respect to Ty, and
cis=cP +0(y) (A=2, 4) sinoe (P’ (A=2, 4) are the approximate parallelograms.
Therefore, we obtain

d 1
2: (A . — 3 dee 41
4 IJT JT 0(h ]Il h )- ( )
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Combining (87), (88) with (41) we conclude that

43 7P~ Ts=0(FIn -1-). - (42)
o f
Similarly, we have
B 31n — ). 43
4R TP, O(ﬁlnh) (43)

Combining (42) with (43), we obiain (33).

and

Note from (29) that -
' "(zo)—ﬂ(zo)ufa+f4+0(k3]n =)

u’*f*(zo) -—-u(m - E J(f*>+ff”>+0(hﬂxn —)

Therefore (4) holds. However the constant in (4) is nobt only dependent on the
original division and this will be left to a separate paper,

Finally, we remark that the extra,polatmn prﬂﬂedura is also eﬂ'aﬂtwe for the

elliptio eigenvalue problem:

l—% lwﬂ+ -%-- M“O(}ﬁ)

The pmﬂf is ba&ed on the estimates

A (Dp, Un) =A(u, Up) = A,
A— M= a(u—put, 4—p) +0(A*) =a(u—u!, u—u') +O0(h*),

the Green formula for a(u—u', u— u’) &nd (30) (32) atc We Wl].l disouss it in
detail in a separate paper.

The authors wish to thank Liu Jia-quan and Zu Qi-ding for their diseussions.

Remark. There is a simple proof for Theorem 8 in the case of parallelogram

meshes. See Research Report IMS-10, Chengdu Branch of Academia Sinica, 1983.
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