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Abstract

This work is concerned with spectral Jacobi-collocation methods for Volterra integral

equations of the second kind with a weakly singular of the form (t − s)−α. When the

underlying solutions are sufficiently smooth, the convergence analysis was carried out in

[Chen & Tang, J. Comput. Appl. Math., 233 (2009), pp. 938-950]; due to technical reasons

the results are restricted to 0 < µ < 1

2
. In this work, we will improve the results to the

general case 0 < µ < 1 and demonstrate that the numerical errors decay exponentially in

the infinity and weighted norms when the smooth solution is involved.
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1. Introduction

We consider the linear Volterra integral equations (VIEs) of the second kind with weakly

singular kernels

y(t) = g(t) +

∫ t

0

(t− s)−µK(t, s)y(s)ds, t ∈ I, (1.1)

where I = [0, T ], the function g ∈ C(I), y(t) is the unknown function, µ ∈ (0, 1) and K ∈

C(I × I) with K(t, t) 6= 0 for t ∈ I. Several numerical methods have been proposed for (1.1)

(see, e.g., [1,5,17,18]). For (1.1) without the singular kernel (i.e., µ = 0), spectral methods and

the corresponding error analysis have been provided recently [19].

As the first derivatives of the solution y(t) behave like y′(t) ∼ t−µ (see, e.g., [1]), it is difficult

to employ high order numerical methods for solving (1.1). In [4], a Jacobi-collocation spectral

method is developed for (1.1). To handle the non-smoothness of the underlying solutions, both

function transformation and variable transformation are used to change the equation into a

new Volterra integral equation defined on the standard interval [−1, 1]. However, the function

transformation (see also [5]) generally makes the resulting equations and approximations more
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complicated. We also point out a relevant recent work [8] where we consider the case with

µ = 1/2 (the so-called Abel integral equations) and with non-smooth solutions. In [8], only

coordinate transformation is used but the solution transformation is not used; where in [4] both

transformations are employed.

On the other hand, due to the presence of the singular factor (t − s)−µ in (1.1), even with

the smoothness assumption of the underlying solutions there are still difficulties in establishing

a framework to obtain spectral accuracy (i.e., errors decay exponentially with the increase the

degree of freedom). The study of establishing the framework was carried out in [3], but due

to the technical reason the convergence results were obtained for 0 < µ < 1
2 only. The main

purpose of this work is to extend the results in [3] to more general values of µ, i.e., 0 < µ < 1.

The main technical difference between this work and [3] will be pointed out at the end of Section

2. Moreover, unlike [4, 8], neither coordinate nor solution transformation will be used due to

the smoothness assumption of the underlying solutions.

This paper is organized as follows. In Section 2, we outline the spectral approaches for (1.1).

Some lemmas useful for establishing the convergence results will be provided in Section 3. The

convergence analysis will be carried out in Section 4.

2. Jacobi-collocation Methods

Let ωα,β(x) = (1 − x)α(1 + x)β be a weight function in the usual sense, for α, β > −1. As

defined in [2,7,16], the set of Jacobi polynomials {Jα,β
n (x)}∞n=0 forms a complete L2

ωα,β(−1, 1)-

orthogonal system, where L2
ωα,β(−1, 1) is a weighted space defined by

L2
ωα,β(−1, 1) = {v : v is measurable and ||v||ωα,β < ∞} ,

equipped with the norm

||v||ωα,β =

(∫ 1

−1

|v(x)|2ωα,β(x)dx

) 1
2

,

and the inner product

(u, v)ωα,β =

∫ 1

−1

u(x)v(x)ωα,β(x)dx, ∀ u, v ∈ L2
ωα,β (−1, 1).

For a given positive integer N , we denote the collocation points by {xi}
N
i=0, which is the set

of (N + 1) Jacobi Gauss points, corresponding to the weight ω−µ,−µ(x). Let PN denote the

space of all polynomials of degree not exceeding N . For any v ∈ C[−1, 1], we can define the

Lagrange interpolating polynomial Iα,βN v ∈ PN , satisfying

Iα,βN v(xi) = v(xi), 0 ≤ i ≤ N, (2.1)

see, e.g., [2, 7, 16]. The Lagrange interpolating polynomial can be written in the form

Iα,βN v(x) =

N∑

i=0

v(xi)Fi(x),

where Fi(x) is the Lagrange interpolation basis function associated with {xi}
N
i=0.

For the sake of applying the theory of orthogonal polynomials, we use the change of variable

t =
1

2
T (1 + x), s =

1

2
T (1 + τ),
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and let

u(x) = y

(
T

2
(1 + x)

)
, f(x) = g

(
T

2
(1 + x)

)
. (2.2)

Following [3], we obtain from (1.1) that

u(x) = f(x) +

∫ x

−1

(x− τ)−µK̃(x, τ)u(τ)dτ, x ∈ [−1, 1], (2.3a)

where

K̃(x, τ) =

(
T

2

)1−µ

K

(
T

2
(1 + x),

T

2
(1 + τ)

)
. (2.3b)

Firstly, Eq. (2.3a) holds at the collocation points {xi}
N
i=0 on [-1,1], associated with ω−µ,−µ:

u(xi) = f(xi) +

∫ xi

−1

(xi − τ)−µK̃(xi, τ)u(τ)dτ, 0 ≤ i ≤ N. (2.4)

In order to obtain high order accuracy for the VIEs problem, the main difficulty is to compute

the integral term in (2.4). We rewrite the integral term as:

∫ xi

−1

(xi − τ)−µK̃(xi, τ)u(τ)dτ =

∫ 1

−1

(1− θ)−µK1(xi, τi(θ))u(τi(θ))dθ, (2.5)

by using the following variable change

τ = τi(θ) =
1 + xi

2
θ +

xi − 1

2
, θ ∈ [−1, 1], (2.6)

where

K1(xi, τi(θ)) =

(
1 + xi

2

)1−µ

K̃(xi, τi(θ)). (2.7)

Next, using a (N + 1)-point Gauss quadrature formula relative to the Jacobi weight {wi}
N
i=0,

the integration term in (2.4) can be approximated by

∫ 1

−1

(1 − θ)−µK1(xi, τi(θ))u(τi(θ)))dθ ∼
N∑

k=0

K1(xi, τi(θk))u(τi(θk))wk, (2.8)

where the set {θk}
N
k=0 is the set of (N + 1) Jacobi Gauss, or Jacobi Gauss-Radau, or Jacobi

Gauss-Lobatto points, corresponding to the weight ω−µ,0. We use ui, 0 ≤ i ≤ N , to approximate

the function value u(xi), 0 ≤ i ≤ N , and use

uN(x) =
N∑

j=0

ujFj(x) (2.9)

to approximate the function u(x), namely, u(xi) ≈ ui, u(x) ≈ uN (x), and

u(τi(θk)) ≈

N∑

j=0

ujFj(τi(θk)). (2.10)

Then, the Jacobi collocation method is to seek uN(x) such that {ui}
N
i=0 satisfies the following

collocation equations:

ui = f(xi) +

N∑

j=0

uj

(
N∑

k=0

K1(xi, τi(θk))Fj(τi(θk))wk

)
, 0 ≤ i ≤ N. (2.11)
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We close this section by pointing out the technical difference between this work and [3]. The

main difference is the choice of {xi} in (2.4) and {θk} in (2.8). In this work, {xi} is associated

with ω−µ,−µ and {θk} is associated with ω−µ,0, i.e., they are different; but in [3] both are

associated with ω−µ,0, i.e., xi = θi. Note our analysis requires to use the Lebesgue constant for

the Lagrange interpolation polynomials associated with the zeros of the Jacobi polynomials (for

details, see Lemma 3.3). It will be demonstrated that if {xi} and {θk} are chosen differently, we

can make better use of appropriate Lebesgue constants. This in turn will extend our analysis

to the general values of µ.

3. Some Useful Lemmas

Throughout the paper C will denote a generic positive constant that is independent of N

but which will depend on the length T of the interval I = [0, T ] and on bounds for the given

functions f , K̃ which is defined in (2.3b), and the index µ.

We first introduce some weighted Hilbert spaces. For simplicity, denote ∂xv(x) = (∂/∂x)v(x),

etc. For non-negative integer m, define

Hm
ωα,β (−1, 1) :=

{
v : ∂k

xv ∈ L2
ωα,β (−1, 1), 0 ≤ k ≤ m

}
,

with the semi-norm and the norm as

|v|m,ωα,β = ||∂m
x v||ωα,β , ||v||m,ωα,β =

(
m∑

k=0

|v|2k,ωα,β

)1/2

,

respectively.

To bound approximation errors of Jacobi polynomials, only some of the L2-norms appearing

on the right-hand side of above norm enter into play. Thus, it is convenient to introduce the

semi-norms

|v|m;N
ωα,β := |v|Hm;N

ωα,β
(−1,1) =




m∑

k=min(m,N+1)

||∂k
xv||

2
L2

ωα,β
(−1,1)




1
2

.

Lemma 3.1. ([2,15]) For any function v satisfying v ∈ Hm
ωα,β (−1, 1), with −1 < α, β < 1, we

have

||v − Iα,βN v||ωα,β ≤ CN−m|v|m;N
ωα,β , (3.1)

||v − Iα,βN v||1,ωα,β ≤ CN1−m|v|m;N
ωα,β , (3.2)

for the three families of Jacobi Gauss points.

Let us define a discrete inner product. For any u, v ∈ C[−1, 1], define

(u, v)N =

N∑

j=0

u(xj)v(xj)wj . (3.3)

Lemma 3.2. ([2,15]) If v ∈ Hm
ωα,β (−1, 1) for some m ≥ 1 and φ ∈ PN , then for the three

families of Jacobi Gauss integration we have

|(v, φ)ωα,β − (v, φ)N | ≤ CN−m|v|m;N
ωα,β ||φ||ωα,β . (3.4)
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From [10], we have the following result on the Lebesgue constant for the Lagrange interpo-

lation polynomials associated with the zeros of the Jacobi polynomials.

Lemma 3.3. Let {Fj(x)}
N
j=0 be the N -th Lagrange interpolation polynomials associated with

the Gauss points of the Jacobi polynomials. Then

||Iα,βN ||∞ := max
x∈[−1,1]

N∑

j=0

|Fj(x)| =

{
O (logN) , −1 < α, β ≤ − 1

2 ,

O
(
Nγ+ 1

2

)
, γ = max(α, β), otherwise.

(3.5)

For r ≥ 0 and κ ∈ [0, 1], Cr,κ([−1, 1]) will denote the space of functions whose r-th deriva-

tives are Hölder continuous with exponent κ, endowed with the usual norm

||v||r,κ = max
0≤k≤r

max
x∈[−1,1]

|∂k
xv(x)| + max

0≤k≤r
sup

x 6=y∈[−1,1]

|∂k
xv(x) − ∂k

xv(y)|

|x− y|κ
.

When κ = 0, Cr,0([−1, 1]) denotes the space of functions with r continuous derivatives on

[−1, 1], which is also commonly denoted by Cr([−1, 1]), and with norm || · ||r.

We shall make use of a result of Ragozin [12,13], which states that, for non-negative integers

r and κ ∈ (0, 1), there exists a constant Cr,κ > 0 such that for any function v ∈ Cr,κ([−1, 1]),

there exists a polynomial function TNv ∈ PN such that

||v − TNv||∞ ≤ Cr,κN
−(r+κ)||v||r,κ. (3.6)

Actually, as stated in [12, 13], TN is a linear operator from Cr,κ([−1, 1]) into PN .

We further define a linear, weakly singular integral operator M:

Mv =

∫ x

−1

(x− τ)−µK̃(x, τ)v(τ)dτ. (3.7)

Below we will show that M is compact as an operator from C([−1, 1]) to C0,κ([−1, 1]) provided

that the index κ satisfies 0 < κ < 1− µ. The proof of the following lemma can be found in [4].

Lemma 3.4. Let κ ∈ (0, 1) and M be defined by (3.7). Then for any function v ∈ C([−1, 1]),

there exists a positive constant C, which is dependent of ||K̃||0,κ, such that

|Mv(x′)−Mv(x′′)|

|x′ − x′′|κ
≤ C max

x∈[−1,1]
|v(x)|, (3.8)

under the assumption that 0 < κ < 1 − µ, for any x′, x′′ ∈ [−1, 1] and x′ 6= x′′. This implies

that

||Mv||0,κ ≤ C||v||∞, 0 < κ < 1− µ, (3.9)

where || · ||∞ is the standard norm in C([−1, 1]).

4. Convergence Analysis

The objective of this section is to analyze the approximation scheme (2.11). Firstly, we

derive the error estimate in L∞ norm of the Jacobi collocation method.
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4.1. Error estimate in L∞

Theorem 4.1. Let u be the exact solution to the Volterra integral equation (2.3) and the ap-

proximated solution uN be obtained by using the spectral collocation scheme (2.11) together

with a polynomial interpolation (2.9). If µ associated with the weakly singular kernel satisfies

0 < µ < 1 and u ∈ Hm
ω−µ,−µ(−1, 1) (m ≥ 1), then

||u− uN ||∞ ≤





CN

1
2
−m
(
|u|m;N

ω−µ,−µ +N− 1
2 logNK∗||u||∞

)
, 1

2 ≤ µ < 1,

CN
1
2
−m
(
|u|m;N

ω−µ,−µ +N−µK∗||u||∞

)
, 0 < µ < 1

2 ,
(4.1)

for N sufficiently large, where

K∗ = max
0≤i≤N

|K1(xi, τi(·))|
m;N
ω−µ,0 . (4.2)

Proof. First, we use the weighted inner product to rewrite (2.4) as

u(xi) = f(xi) + (K1(xi, τi(·)), u(τi(·)))ω−µ,0 , 0 ≤ i ≤ N. (4.3)

By using the discrete inner product (3.3), we set

(K1(xi, τi(·)), φ(τi(·)))N =

N∑

k=0

K1(xi, τi(θk))φ(τi(θk))wk.

Then, the numerical scheme (2.11) can be written as

ui = f(xi) +
(
K1(xi, τi(·)), u

N (τi(·))
)
N
, 0 ≤ i ≤ N, (4.4)

where uN is defined by (2.9). Subtracting (4.4) from (4.3) gives the error equation:

u(xi)− ui = (K1(xi, τi(·)), e(τi(·)))ω−µ,0 + Ii,2

=

∫ xi

−1

(xi − τ)−µK̃(xi, τ)e(τ)dτ + Ii,2, (4.5)

for 0 ≤ i ≤ N , where e(x) = u(x)− uN(x) is the error function,

Ii,2 =
(
K1(xi, τi(·)), u

N (τi(·))
)
ω−µ,0 −

(
K1(xi, τi(·)), u

N (τi(·))
)
N
,

and the integral transformation (2.5) was used here. Using the integration error estimates from

Jacobi-Gauss polynomials quadrature in Lemma 3.2, we have

|Ii,2| ≤ CN−m|K1(xi, τi(·))|
m;N
ω−µ,0 ||u

N(τi(·))||ω−µ,0 . (4.6)

Multiplying Fi(x) on both sides of the error equation (4.5) and summing up from i = 0 to

i = N yield

I−µ,−µ
N u− uN

= I−µ,−µ
N

(∫ x

−1

(x− τ)−µK̃(x, τ)e(τ)dτ

)
+

N∑

i=0

Ii,2Fi(x). (4.7)

Consequently,

e(x) =

∫ x

−1

(x − τ)−µK̃(x, τ)e(τ)dτ + I1 + I2 + I3, (4.8)
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where

I1 = u− I−µ,−µ
N u, I2 =

N∑

i=0

Ii,2Fi(x), (4.9a)

I3 = I−µ,−µ
N

(∫ x

−1

(x − τ)−µK̃(x, τ)e(τ)dτ

)

−

∫ x

−1

(x− τ)−µK̃(x, τ)e(τ)dτ. (4.9b)

It follows from the Gronwall inequality (see [4])

||e||∞ ≤ C
(
||I1||∞ + ||I2||∞ + ||I3||∞

)
. (4.10)

From Sobolev inequality (see p.490, A.12, [2]) and Lemma 3.1, we obtained that

||I1||∞ = ||u− I−µ,−µ
N u||∞

≤ C||u− I−µ,−µ
N u||

1/2
ω−µ,−µ ||u− I−µ,−µ

N u||
1/2
1,ω−µ,−µ

≤ CN
1
2
−m|u|m;N

ω−µ,−µ . (4.11)

Next, from (4.6), we have

max
0≤i≤N

|Ii,2| ≤ CN−m max
0≤i≤N

|K1(xi, τi(·))|
m;N
ω−µ,0 max

0≤i≤N
||uN (τi(·))||ω−µ,0

≤ CN−m max
0≤i≤N

|K1(xi, τi(·))|
m;N
ω−µ,0 ||u

N ||∞

≤ CN−m max
0≤i≤N

|K1(xi, τi(·))|
m;N
ω−µ,0 (||e||∞ + ||u||∞) . (4.12)

Hence, by using (4.9a), (4.12) and Lemma 3.3, we have

||I2||∞ =

∥∥∥∥∥

N∑

i=0

Ii,2Fi(x)

∥∥∥∥∥
∞

(4.13)

≤ C max
0≤i≤N

|Ii,2| max
x∈[−1,1]

N∑

j=0

|Fj(x)|

≤

{
CN−m logN max0≤i≤N |K1(xi, τi(·))|

m;N
ω−µ,0 (||e||∞ + ||u||∞) , 1

2 ≤ µ < 1,

CN
1
2
−µ−m max0≤i≤N |K1(xi, τi(·))|

m;N
ω−µ,0 (||e||∞ + ||u||∞) , 0 < µ < 1

2 ,

for sufficiently large N . We now estimate the third term I3. Note that

I−µ,−µ
N p(x) = p(x), i.e., (I−µ,−µ

N − I)p(x) = 0, ∀ p(x) ∈ PN . (4.14)

As for the bound of ||I3||∞, we use the same idea as [4]. It follows from (4.14), (3.6), and

Lemma 3.3 that

||I3||∞ = ||(I−µ,−µ
N − I)Me||∞ ≤

{
CN−κ logN ||e||∞, 1

2 ≤ µ < 1,

CN
1
2
−µ−κ||e||∞, 0 < µ < 1

2 ,
(4.15)

where in the last step we have used Lemma 3.4 under the following assumption:
{

0 < κ < 1− µ, when 1
2 ≤ µ < 1,

1
2 − µ < κ < 1− µ, when 0 < µ < 1

2 .

It is clear that

||I3||∞ ≤
1

3
||e||∞, (4.16)
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provided that N is sufficiently large. Combining (4.10), (4.11), (4.13) and (4.16) gives the

desired estimate (4.1). �

4.2. Error estimate in weighted L2 norm

To prove the error estimate in weighted L2 norm, we need the generalized Hardy’s inequality

with weights (see, e.g., [9, 14]).

Lemma 4.1. For all measurable function f ≥ 0, the following generalized Hardy’s inequality

(∫ b

a

|(Tf)(x)|qu(x)dx

)1/q

≤ C

(∫ b

a

|f(x)|pv(x)dx

)1/p

holds if and only if

sup
a<x<b

(∫ b

x

u(t)dt

)1/q (∫ x

a

v1−p′

(t)dt

)1/p′

< ∞, p′ =
p

p− 1

for the case 1 < p ≤ q < ∞. Here, T is an operator of the form

(Tf)(x) =

∫ x

a

k(x, t)f(t)dt

with k(x, t) a given kernel, u, v weight functions, and −∞ ≤ a < b ≤ ∞.

From Theorem 1 in [11], we have the following weighted mean convergence result of Lagrange

interpolation based at the zeros of Jacobi polynomials.

Lemma 4.2. For every bounded function v(x), there exists a constant C independent of v such

that

sup
N

∥∥∥∥∥∥

N∑

j=0

v(xj)Fj(x)

∥∥∥∥∥∥
L2

ωα,β
(−1,1)

≤ C||v||∞,

where Fi(x) is the Lagrange interpolation basis function associated with the Jacobi collocation

points {xi}
N
i=0.

Theorem 4.2. Let u be the exact solution to the Volterra integral equation (2.3) and the ap-

proximated solution uN be obtained by using the spectral collocation scheme (2.11) together

with a polynomial interpolation (2.9). Assume that u ∈ Hm
ω−µ,−µ(−1, 1) (m ≥ 1), then, for N

sufficiently large

||u− uN ||ω−µ,−µ

≤





CN−m
(
N

1
2
−κ|u|m;N

ω−µ,−µ +K∗||u||∞

)
, 1

2 ≤ µ < 1, 0 < κ < 1− µ,

CN−m
(
|u|m;N

ω−µ,−µ +K∗||u||∞

)
, 0 < µ < 1

2 ,
1
2 < κ < 1− µ,

(4.17)

where K∗ is defined by (4.2).

Proof. It follows from the Gronwall’s lemma (see [4]) and (4.8) that

e(x) ≤ C

∫ x

−1

(x− τ)−µK̃(x, τ)(I1 + I2 + I3)(τ)dτ + I1 + I2 + I3. (4.18)
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By the generalized Hardy’s inequality Lemma 4.1, we obtain that

||e||ω−µ,−µ ≤ C

∥∥∥∥
∫ x

−1

(x − τ)−µK̃(x, τ)(I1 + I2 + I3)(τ)dτ

∥∥∥∥
ω−µ,−µ

+C
(
||I1||ω−µ,−µ + ||I2||ω−µ,−µ + ||I3||ω−µ,−µ

)

≤ C
(
||I1||ω−µ,−µ + ||I2||ω−µ,−µ + ||I3||ω−µ,−µ

)
. (4.19)

Now, using Lemma 3.1, we obtain that

||I1||ω−µ,−µ = ||u− I−µ,−µ
N u||ω−µ,−µ ≤ CN−m|u|m;N

ω−µ,−µ . (4.20)

Using Lemma 4.2 and (4.12) gives

||I2||ω−µ,−µ =

∥∥∥∥∥

N∑

i=0

Ii,2Fi(x)

∥∥∥∥∥
ω−µ,−µ

≤ C max
0≤i≤N

|Ii,2|

≤ CN−mK∗ (||e||∞ + ||u||∞) . (4.21)

Finally, for the bound of ||I3||∞, we use the same idea as [4]. It follows from (4.14), Lemma

4.2, and (3.6) that

||I3||ω−µ,−µ = ||(I−µ,−µ
N − I)Me||ω−µ,−µ ≤ CN−κ||e||∞, (4.22)

where in the last step we used Lemma 3.4 for any κ ∈ (0, 1− µ). By the convergence result in

Theorem 4.1, we obtain that

||I3||ω−µ,−µ ≤





CN

1
2
−m−κ

(
|u|m;N

ω−µ,−µ +N− 1
2 logNK∗||u||∞

)
, 1

2 ≤ µ < 1,

CN
1
2
−m−κ

(
|u|m;N

ω−µ,−µ +N−µK∗||u||∞

)
, 0 < µ < 1

2 ,
(4.23)

for N sufficiently large and for any κ ∈ (0, 1 − µ). The desired estimate (4.17) is obtained by

combining (4.20), (4.22), and (4.23). �

5. Concluding Remarks

In this work, we have considered the Volterra integral equation (1.1) with the assumption

that the exact solutions of (1.1) are smooth. We point out that this case may occur when

the source function g in (1.1) is non-smooth; see, e.g., Theorem 6.1.11 in [1]. In this case, the

Jacobi-collocation spectral method can be applied directly, which leads to spectral accuracy

without using any coordinate or function transformations.

We close this work by noting that the Jacobi weighted Besov/Sobolev may be a natural tool

for polynomial approximations. In [6, 7], it was demonstrated that Jacobi-weighted Besov and

Sobolev spaces are the most appropriate tools for obtaining optimal upper and lower bounds

when dealing with weakly singular problems, particularly for those with certain singularity at

the end-points. This approach may be useful for analyzing the direct Jacobi-collocation spectral

approach outlined in this work. It remains to be a future research topic.
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