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Abstract

In this paper, we develop a priori error estimates for the solution of constrained

convection-diffusion-reaction optimal control problems using a characteristic finite element

method. The cost functional of the optimal control problems consists of three parts: The

first part is about integration of the state over the whole time interval, the second part

refers to final-time state, and the third part is a regularization term about the control. We

discretize the state and co-state by piecewise linear continuous functions, while the control

is approximated by piecewise constant functions. Pointwise inequality function constraints

on the control are considered, and optimal a L2-norm priori error estimates are obtained.

Finally, we give two numerical examples to validate the theoretical analysis.
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1. Introduction

Optimal control problems governed by convection-diffusion equations arise in many scientific

and engineering applications, such as atmospheric pollution control problems [1, 2]. Efficient

numerical methods are essential to successful applications of such optimal control problems. To

the best of the authors’ knowledge, recently there are some growing published results on optimal

control problems governed by steady convection-diffusion equations; see [3,4] of SUPG method,

[5] of the standard finite element discretizations with stabilization, [6] of symmetric stabilization

method, [7] of edge-stabilization method, [8] of the application of RT mixed DG scheme, [9]

of domain decomposition method and so on. However, for the approximation of constrained

optimal control problems governed by time-dependent convection-diffusion equations, it is much

more complicated and only a few paper has been published, see [10–13] for example. Systematic
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introductions of the finite element method for PDEs and optimal control problems can be found

in, for example, [14–17].

In many time-dependent optimal control problems, people are usually interested in an opti-

mization of the final-time state y(x, T ). Therefore, in this paper we consider the cost functional

consisting of three parts: The first part is about integration of the state over the whole time

interval, the second part refers to final-time state, and the third part is a regularization term

about the control. Besides, we discuss the pointwise inequality function constraints on the

control. In what follows, we shall study in details the following convection-diffusion-reaction

state equations:

∂ty(x, t)− µ∆y(x, t) + a(x) · ∇y(x, t) + c(x)y(x, t)

= f(x, t) + u(x, t) in Ω× (0, T ],
(1.1)

combined with the following boundary and initial conditions

y(x, t) = 0 on ∂Ω× (0, T ], y(x, 0) = y0(x) in Ω, (1.2)

and

α(x, t) ≤ u(x, t) ≤ β(x, t) a.e. in Ω× [0, T ], (1.3)

where a, c, f , α, β are given functions, µ > 0 is a constant diffusion coefficient. Detailed

assumptions for model problems will be introduced in Section 2.

It is well known that for the above convection-diffusion-reaction equations standard finite

element discretization may not work. The methods of characteristics [19, 20] combine the con-

vection and capacity terms in the governing equations, to carry out the temporal discretization

in a Lagrange coordinate. These methods are symmetric and stable, even if large time steps

and coarse spatial meshes are used. Thus, in this work we apply a characteristic finite element

method to constrained optimal control problems governed by convection-diffusion-reaction equa-

tions. Pointwise inequality constraints on the control are also considered, and we obtain optimal

a L2-norm error estimates for both the control and state approximations.

The outline of the paper is as follows: In Section 2, we review the model problems and derive

the continuous optimality conditions. In Section 3, we describe the characteristic finite element

discretization of (1.1)-(1.3) and formulate a corresponding discretized optimality conditions. In

Section 4, we prove a L2-norm error estimates for the optimal control problems with control

constraints. In Section 5, some numerical experiments are presented to observe the convergence

behavior of the proposed numerical scheme.

In this paper, we denote C and δ be a generic constant and small positive number, which are

independent of the discrete parameters and may have different values in different circumstances,

respectively.

2. Model Problems and Optimality Conditions

Let Ω be a bounded open set in R2 with Lipschitz boundary ∂Ω. Just for simplicity of

presentation, we assume that Ω is a convex polygon. Throughout this paper, we use the

standard notations Lp(Ω) (1 ≤ p ≤ ∞) for Lebesgue space of real-valued functions with norm

‖ · ‖Lp(Ω), and Wm,p(Ω) (1 ≤ p ≤ ∞) for Sobolev spaces endowed with the norm ‖ · ‖Wm,p(Ω)

and semi-norm | · |Wm,p(Ω). For p = 2, we denote ‖ · ‖L2(Ω) = ‖ · ‖, Wm,2(Ω) = Hm(Ω) and

we drop the subscript p = 2 in the corresponding norms and semi-norms. We also denote by
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Ls(0, T ;Wm,p(Ω)) the Banach space of all Ls integrable functions from (0, T ) into Wm,p(Ω)

with norm

‖v‖Ls(0,T ;Wm,p(Ω)) =

(

∫ T

0

‖v‖Wm,p(Ω)dt

)
1

s

for s ∈ [1,∞),

and the standard modification for s = ∞. Similarly, one can define the spacesH l(0, T ;Wm,p(Ω))

and Cl(0, T ;Wm,p(Ω)). The details can be found in [14, 18].

The optimization problems considered in this paper are formulated in the following abstract

setting: Let V = H1
0 (Ω) and H = L2(Ω) be Hilbert spaces together with the dual space

V ′ = H−1(Ω) of V which satisfy V →֒ H →֒ V ′. For a time interval I = (0, T ), we shall take

the state space

W =
{

w|w ∈ L2(I;V ) and ∂tw ∈ L2(I;V ′)
}

,

and the control space

X = L2(I;U) with U = L2(Ω).

It is well known that the space W is continuously embedded in C(Ī ;H), see, e.g., [21]. Let K

be a closed convex set in X .

In the above problems (1.1)-(1.3), we assume

• µ is a positive constant;

• a(x) ∈ C1
0 (Ω̄)

2 which is divergence-free, i.e., ∇ · a = 0 in Ω;

• c(x) ∈ L∞(Ω) which satisfies c(x) ≥ 0;

• f ∈ L2(I;L2(Ω)), y0 ∈ V = H1
0 (Ω);

• α, β are functions in L∞(Ω) for any t ∈ I such that α < β.

To formulate the optimal control problem, we introduce the admissible set K collecting the

pointwise inequality constraints (1.3) as

K =
{

v ∈ X : α(x, t) ≤ v(x, t) ≤ β(x, t) a.e. in Ω× [0, T ]
}

. (2.1)

In this paper, the cost functional J : W ×X → R is defined using two three times Gâteaux

differentiable functionals J1 : V → R and J2 : H → R by

J(y, u) =

∫ T

0

J1(y(x, t)) dt+ J2(y(x, T )) +
γ

2

∫ T

0

‖u(x, t)− u0(x, t)‖2 dt, (2.2)

where the regularization term is added which involves γ > 0 and a reference parameter u0 =

u0(x, t) ∈ X . In many practical applications,

J1(y(x, t)) =
λ1

2
‖y(x, t)− z1(x, t)‖2 and J2(y(x, T )) =

λ2

2
‖y(x, T )− z2(x)‖2,

where λ1 and λ2 are nonnegative parameters satisfying λ1 + λ2 > 0.

Let φ(x) =
√

|a|2 + 1, and let the characteristic direction associated with the material

derivative term ∂ty + a · ∇y be denoted by s, where

φ∂sy = ∂ty + a · ∇y. (2.3)
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Then the corresponding constrained optimization problem is formulated as follows: (QCP)

min
u∈K

J(y, u) (2.4)

subject to the standard weak formulation for the state

{

(φ∂sy(u), w) + a(y(u), w) = (f + u,w) ∀w ∈ V, t ∈ (0, T ],

y(u)(x, 0) = y0(x).

where a(v, w) = (µ∇v,∇w) + (cv, w) for any v, w ∈ V .

It is well known (see, e.g., [15]) that the control problem (QCP) has a unique solution

(y, u) ∈ W ×K. Moreover, a pair (y, u) is the solution of (QCP) if there is a co-state p ∈ W ,

such that the triplet (y, p, u) ∈ W ×W ×K satisfies the following optimality conditions: (QCP-

OPT)

{

(φ∂sy, w) + a(y, w) = (f + u,w) ∀w ∈ V, t ∈ (0, T ],

y(0) = y0,
(2.5)

{

− (φ∂sp, q) + a(q, p) = (J ′
1(y), q) ∀q ∈ V, t ∈ [0, T ),

p(T ) = J ′
2(y(T )),

(2.6)

∫ T

0

(γ(u− u0) + p, v − u) dt ≥ 0 ∀v ∈ K. (2.7)

Define the projection [22]

P[α, β]f(x, t) = max
{

α(x, t),min{β(x, t), f(x, t)}
}

. (2.8)

Then inequality (2.7) is equivalent to

u(x, t) = P[α, β]

(

u0 −
1

γ
p

)

(x, t). (2.9)

3. Discretization with Characteristic Finite Element

In this section, we consider a characteristic finite element approximation for the optimal

control problem (QCP).

Let 0 = t0 < t1 < t2 < · · · < tNT
= T be a subdivision of Ī = [0, T ], with corresponding

time intervals In = (tn−1, tn] and time steps ∆tn = tn − tn−1, n = 1, 2, · · · , NT . Denote

∆t = max1≤n≤NT
∆tn and fn(x) = f(x, tn). We define, for 1 ≤ q < ∞, the discrete time-

dependent norms

|||f |||Lq(I;A) =

(

NT
∑

n=1

∆tn‖fn‖qA

)

1

q

,

and the standard modification for q = ∞. Define

Lq
D(I;A) =

{

f : |||f |||Lq(I;A) < ∞
}

, 1 ≤ q ≤ ∞.

Let z = G(x∗, t∗; t) be an approximate characteristic curve passing through point x∗ at time

t∗, which is defined by

G(x∗, t∗; t) = x∗ − a(x∗)(t∗ − t). (3.1)
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We denote by x̄ = G(x, tn; tn−1) the foot at time tn−1 of the characteristic curve with head x

at time tn, and f̄(x) = f(x̄). Approximate (∂sy
n)(x) = (∂y/∂s)(x, tn) by a backward difference

quotient in the s-direction,

φ∂sy
n ≃ yn − ȳn−1

∆tn
. (3.2)

We remark that, for a bounded domain Ω, the mapping x → G(x∗, t∗; t) is a homeomorphism

of Ω onto itself for sufficiently small |t∗ − t| (cf. [23]). Thus, ȳn−1 is always defined and the

tangent to the characteristics (i.e., the s-segment) cannot cross a boundary to an undefined

location.

Let T h and T h
U be two regular triangulations of Ω, such that Ω̄ = ∪τ∈T h τ̄ and Ω̄ =

∪τU∈T h
U
τ̄U . Let h = maxτ∈T h hτ , hU = maxτU∈T h

U
hτU , where hτ and hτU denote the di-

ameters of the elements τ and τU , respectively. Let Pk denote polynomials of total degree at

most k. Then we introduce finite-dimensional subspaces as follows:

V h =
{

wh ∈ C(Ω̄) ∩H1
0 (Ω) : wh|τ ∈ P1 for τ ∈ T h, and wh = 0 on ∂Ω

}

, (3.3)

Uh =
{

vh ∈ L2(Ω) : vh|τU ∈ P0 for τU ∈ T h
U

}

, (3.4)

Kh
n =

{

vh ∈ Uh : α(tn)|τU ≤ vh ≤ β(tn)|τU for τU ∈ T h
U

}

, (3.5)

where

α(tn)|τU =
1

|τU |

∫

τU

α(x, tn)dx and β(tn)|τU =
1

|τU |

∫

τU

β(x, tn)dx.

It is obviously that Kh
n * K.

Define the following discretized cost functional

Jh(yh, uh) =

NT
∑

n=1

∆tnJ1(y
n
h) + J2(y

NT

h ) +
γ

2

NT
∑

n=1

∆tn‖un
h − un

0‖2.

Then the characteristic finite element discretization of (QCP), which will be labeled as (QCP)d,

is to find (ynh , u
n
h) ∈ V h ×Kh

n , n = 1, 2, · · · , NT , such that

min
un
h
∈Kh

n

Jh(yh, uh) (3.6)

subject to







(

ynh − ȳn−1
h

∆tn
, wh

)

+ a (ynh , wh) = (f(x, tn) + un
h, wh) ∀wh ∈ V h,

y0h(x) = yh0 (x), x ∈ Ω,

where yh0 ∈ V h is an approximation of y0 which will be specified later on.

It again follows from [15] that the control problem (QCP)d has a unique solution (Y n
h , Un

h ) ∈
V h × Kh

n , and that a pair (Y n
h , Un

h ) is the solution of (QCP)d iff there is a co-state Pn−1
h ∈

V h, such that the triplet
(

Y n
h , Pn−1

h , Un
h

)

∈ V h × V h × Kh
n satisfies the following discretized

optimality conditions: (QCP-OPT)d:

For n = 1, 2, · · · , NT , solve







(

Y n
h − Ȳ n−1

h

∆tn
, wh

)

+ a (Y n
h , wh) = (fn + Un

h , wh) ∀wh ∈ V h,
(

Y 0
h , wh

)

=
(

yh0 , wh

)

;

(3.7)
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for n = NT , · · · , 2, 1, solve














(

Pn−1
h − ¯̄Pn

h · J
∆tn

, qh

)

+ a
(

qh, P
n−1
h

)

= (J ′
1(Y

n
h ), qh) ∀qh ∈ V h,

(

¯̄PNT

h · J, qh
)

=
(

J ′
2(Y

NT

h ), qh

)

;

(3.8)

for n = 1, 2, · · · , NT , solve

(

γ(Un
h − un

0 ) + Pn−1
h , vh − Un

h

)

≥ 0 ∀vh ∈ Kh
n , (3.9)

where ¯̄Pn
h := Pn

h (¯̄x), and ¯̄x represents the head of the characteristic curve with foot x at time

tn−1, namely, x = G(¯̄x, tn; tn−1).

We denote by J = |det DG(x, tn; tn−1)
−1| the determinant of the Jacobian transformation

from G to x. It is clear that for the incompressible flow, the determinant can be expressed as

det DG(x, tn; tn−1) = 1− (∇ · a)∆tn +O(∆t2n) = 1 +O(∆t2n),

which shows that J = 1 +O(∆t2n) for sufficiently small ∆tn.

In the rest of the paper, we shall use two auxiliary intermediate variables. For the con-

trol function u ∈ K, we define the discrete state solution (Y n
h (u), Pn

h (u)) ∈ V h × V h, n =

1, 2, · · · , NT , associated with u that







(

Y n
h (u)− Ȳ n−1

h (u)

∆tn
, wh

)

+ a (Y n
h (u), wh) = (fn + un, wh) ∀wh ∈ V h,

(

Y 0
h (u), wh

)

=
(

yh0 , wh

)

,

(3.10)















(

Pn−1
h (u)− ¯̄Pn

h (u) · J
∆tn

, qh

)

+ a
(

qh, P
n−1
h (u)

)

= (J ′
1(Y

n
h (u)), qh) ∀qh ∈ V h,

(

¯̄PNT

h (u) · J, qh
)

=
(

J ′
2(Y

NT

h (u)), qh

)

.

(3.11)

Let Πh be the L2-projection from U = L2(Ω) to Uh such that for any v ∈ U

(v −Πhv, φ) = 0 ∀φ ∈ Uh. (3.12)

It is easy to check that Πhu
n := Πhu(tn) ∈ Kh

n for the optimal control u ∈ K, and inequality

(3.9) is equivalent to

Un
h = P[α(tn), β(tn)]

Πh

(

un
0 − 1

γ
Pn−1
h

)

. (3.13)

4. A Priori Error Estimates

In this section, we develop a priori error estimates for the optimal control problem (QCP-

OPT) and its characteristic finite element approximation (QCP-OPT)d. Set

θn = Y n
h − Y n

h (u), ηn = yn − Y n
h (u), n = 0, 1, · · · , NT ,

ζn = Pn
h − Pn

h (u), ξn = pn − Pn
h (u), n = NT , · · · , 1, 0.

To derive the main results for the state and control, some useful lemmas are needed.
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Lemma 4.1. ([14]) For the L2-projection operator Πh defined by (3.12), there is a constant

C > 0 independent of hU such that

‖v −Πhv‖ ≤ ChU‖v‖1. (4.1)

for any v ∈ H1(Ω).

Lemma 4.2. ([19]) Suppose that f ∈ L2(Ω) and f̄(x) = f(x − g(x)∆t), where g and ∇g are

bounded on Ω̄. Then for sufficiently small ∆t, we have

‖f(x)− f̄(x)‖ ≤ C∆t‖f‖1, (4.2)

‖f(x)− f̄(x)‖−1 ≤ C∆t‖f‖, (4.3)

where the constant C depends only on ‖g‖L∞(Ω) and ‖∇g‖L∞(Ω), and the negative-norm ‖ · ‖−1

is defined as follows:

‖v‖−1 = sup
06=φ∈H1

0
(Ω)

(v, φ)

‖φ‖1
.

Lemma 4.3. Let (Yh, Ph) and (Yh(u), Ph(u)) be the solutions of (3.7)-(3.8) and (3.10)-(3.11),

respectively. Assume that J ′
1(·) and J ′

2(·) are uniformly Lipschitz continuous. Then the following

estimate holds

|||Yh − Yh(u)|||L∞(I;L2(Ω)) + |||Ph − Ph(u)|||L∞(I;L2(Ω))

≤ C|||u − Uh|||L2(I;L2(Ω)).
(4.4)

Proof. The proof of Lemma 4.3 is divided into two parts.

Part I. It follows from (3.7) and (3.10) that for ∀wh ∈ V h







(

θn − θ̄n−1

∆tn
, wh

)

+ a (θn, wh) = (Un
h − un, wh) ,

(θ0, wh) = 0.
(4.5)

Select wh = θn as a test function. The inequality a(a− b) ≥ 1
2 (a

2 − b2) and a direct calculation

show that
(

θn − θ̄n−1

∆tn
, θn
)

≥ 1

2∆tn

(

‖θn‖2 − ‖θ̄n−1‖2
)

, (4.6)

‖θ̄n−1‖2 ≤ (1 + C∆tn)‖θn−1‖2, (4.7)

‖θ0‖ = 0. (4.8)

Then inequalities (4.6)-(4.7) can be combined with (4.5) to give the recursion relation

1

2∆tn

(

‖θn‖2 − ‖θn−1‖2
)

+ ‖θn‖2a ≤ C(‖θn‖2 + ‖θn−1‖2) + C‖un − Un
h ‖2, (4.9)

where the ‖ · ‖a-norm is defined by ‖ · ‖a =
√

a(·, ·) which is equivalent to H1
0 -norm on Ω.

If we multiply both sides of (4.9) by 2∆tn and sum over n from 1 to N (1 ≤ N ≤ NT ), then

it follows from (4.8) that

‖θN‖2 + 2

N
∑

n=1

∆tn‖θn‖2a ≤ C

N
∑

n=1

∆tn‖θn‖2 + C

N
∑

n=1

∆tn‖un − Un
h ‖2. (4.10)
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We apply the discrete Gronwall’s lemma to conclude

|||Yh − Yh(u)|||L∞(I;L2(Ω)) + |||Yh − Yh(u)|||L2(I;H1

0
(Ω)) ≤ C|||u− Uh|||L2(I;L2(Ω)). (4.11)

Part II. We derive from (3.8) and (3.11) that for ∀qh ∈ V h















(

ζn−1 − ¯̄ζn · J
∆tn

, qh

)

+ a
(

qh, ζ
n−1
)

= (J ′
1(Y

n
h )− J ′

1(Y
n
h (u)), qh) ,

(

¯̄ζNT · J, qh
)

=
(

J ′
2(Y

NT

h )− J ′
2(Y

NT

h (u)), qh

)

.

(4.12)

Then with qh = ζn−1 and qh = ¯̄ζNT , respectively, in (4.12) we have














(

ζn−1 − ¯̄ζn

∆tn
, ζn−1

)

+ ‖ζn−1‖2a =
(

J ′
1(Y

n
h )− J ′

1(Y
n
h (u)), ζn−1

)

−
(

¯̄ζn − ¯̄ζn · J
∆tn

, ζn−1

)

,

(

¯̄ζNT · J, ¯̄ζNT

)

=
(

J ′
2(Y

NT

h )− J ′
2(Y

NT

h (u)), ¯̄ζNT

)

.

(4.13)

Note that
(

¯̄ζNT · J, ¯̄ζNT

)

= ‖ζNT ‖2, (4.14)

and J ′
1(·) and J ′

2(·) are uniformly Lipschitz continuous. Then

∣

∣

(

J ′
1(Y

n
h )− J ′

1(Y
n
h (u)), ζn−1

)∣

∣ ≤ C‖θn‖‖ζn−1‖ ≤ C‖θn‖2 + C‖ζn−1‖2, (4.15)
∣

∣

∣

(

J ′
2(Y

NT

h )− J ′
2(Y

NT

h (u)), ¯̄ζNT

)∣

∣

∣
≤ C‖θNT ‖‖ζNT ‖, (4.16)

where (4.14) and (4.16) imply that

‖ζNT ‖ ≤ C‖θNT ‖. (4.17)

Moreover, it follows from J = 1 +O(∆t2n) that
∣

∣

∣

∣

∣

(

¯̄ζn − ¯̄ζn · J
∆tn

, ζn−1

)
∣

∣

∣

∣

∣

≤ C∆tn‖ζn‖‖ζn−1‖ ≤ C∆tn‖ζn‖2 + C∆tn‖ζn−1‖2. (4.18)

Finally, we substitute the above estimates (4.15)-(4.18) into (4.13), by using of a similar

results of (4.6)-(4.7), and multiply both sides of (4.13) by 2∆tn, then sum over n from NT to

M + 1 (0 ≤ M ≤ NT − 1), we get

|||ζ|||L∞(I;L2(Ω)) + |||ζ|||L2(I;H1

0
(Ω)) ≤ C|||Yh − Yh(u)|||L∞(I;L2(Ω)). (4.19)

Therefore Lemma 4.3 is proved from (4.11) and (4.19). �

In the following, it is necessary to estimate |||u−Uh|||L2(I;L2(Ω)). Before that, we recall the

following result.

Lemma 4.4. ([24,25]) For n = 1, 2, · · · , NT and any vh ∈ Kh
n, there exists a function v∗ ∈ K

such that

v∗(tn)
∣

∣

τU
= vh

∣

∣

τU
for τU ∈ T h

U , (4.20)

where v∗(tn)
∣

∣

τU
= 1

|τU |

∫

τU
v∗(x, tn)dx. Moreover, for all τU ∈ T h

U the following estimate holds

‖vh − v∗(tn)‖−1 ≤ Ch2
U

(

‖α(tn)‖21 + ‖β(tn)‖21
)1/2

. (4.21)
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Theorem 4.1. Let (y, p, u) and (Yh, Ph, Uh) be the solutions of (QCP-OPT) and (QCP-OPT)d,

respectively. Let Uh be the piecewise constant element space. Suppose that u, u0, α, β ∈ L2
D (I;

H1(Ω)), and p ∈ L2
D(I;H1

0 (Ω)) ∩ H1(I;L2(Ω)). Furthermore, assume that J ′
1(·) and J ′

2(·)
satisfy the following convexity conditions:

(

J ′
1(v)− J ′

1(w), v − w
)

≥ 0 and
(

J ′
2(v)− J ′

2(w), v − w
)

≥ 0 ∀v, w ∈ V. (4.22)

Then we have

|||u− Uh|||L2(I;L2(Ω))

≤ C1(u, u0, p, γ, α, β)
(

hU +∆t+ |||p− Ph(u)|||L2(I;L2(Ω))

)

, (4.23)

where the constant C1 depends on some spatial and temporal derivatives of u, u0, p, γ, α and β,

and Ph(u) is defined in (3.11).

Proof. Let Πhu
n ∈ Kh

n be an approximation of u(tn). Then we have

γ|||u− Uh|||2L2(I;L2(Ω))

=

NT
∑

n=1

∆tn

(

γ(un − un
0 ), u

n − Un
h

)

−
NT
∑

n=1

∆tn

(

γ(Un
h − un

0 ), u
n − Un

h

)

=

NT
∑

n=1

∆tn

(

γ(un − un
0 ) + pn, un − Un

h

)

+

NT
∑

n=1

∆tn

(

γ(Un
h − un

0 ) + Pn−1
h , Un

h −Πhu
n
)

+

NT
∑

n=1

∆tn

(

γ(Un
h − un),Πhu

n − un
)

+

NT
∑

n=1

∆tn

(

γ(un − un
0 ) + pn,Πhu

n − un
)

+

NT
∑

n=1

∆tn

(

pn−1 − pn,Πhu
n − un

)

+

NT
∑

n=1

∆tn

(

pn−1 − Pn−1
h (u), un −Πhu

n
)

+

NT
∑

n=1

∆tn

(

Pn−1
h (u)− Pn−1

h , un −Πhu
n
)

+

NT
∑

n=1

∆tn

(

Pn−1
h − Pn−1

h (u), un − Un
h

)

+

NT
∑

n=1

∆tn

(

Pn−1
h (u)− pn−1, un − Un

h

)

+

NT
∑

n=1

∆tn

(

pn−1 − pn, un − Un
h

)

=:

10
∑

j=1

Ij . (4.24)

First, from Lemma 4.4 we know that for every Un
h ∈ Kh

n there exists a function u∗ ∈ K such

that for all τU ∈ T h
U

u∗
n
∣

∣

τU
= Un

h

∣

∣

τU
, (4.25)

‖Un
h − un

∗‖−1 ≤ Ch2
U

(

‖αn‖21 + ‖βn‖21
)1/2

. (4.26)
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Then we deduce from inequalities (2.7) and (4.26) that

I1 =

NT
∑

n=1

∆tn (γ(u
n − un

0 ) + pn, un − un
∗ ) +

NT
∑

n=1

∆tn (γ(u
n − un

0 ) + pn, un
∗ − Un

h )

≤0 +

NT
∑

n=1

∆tn ‖γ(un − un
0 ) + pn‖1 ‖un

∗ − Un
h ‖−1

≤C(γ)h2
U

∑

v=u,u0,p,α,β

|||v|||2L2(I;H1(Ω)). (4.27)

Second, we see that inequality (3.9) implies that

I2 ≤ 0. (4.28)

Third, it follows from the L2-projection (3.12) and Lemma 4.1 that

I4 =

NT
∑

n=1

∆tn
((

γ(un − un
0 ) + pn

)

−Πh

(

γ(un − un
0 ) + pn

)

,Πhu
n − un

)

≤
NT
∑

n=1

∆tn
∥

∥

(

γ(un − un
0 ) + pn

)

−Πh

(

γ(un − un
0 ) + pn

)
∥

∥ ‖Πhu
n − un‖

≤Ch2
U

(

‖|u‖|2L2(I;H1(Ω)) + ‖|u0‖|2L2(I;H1(Ω)) + ‖|p‖|2L2(I;H1(Ω))

)

. (4.29)

Fourth, by letting wh = ζn−1 in (4.5) and qh = θn in (4.12), we derive form (4.22) that

I8 =−
NT
∑

n=1

∆tn

(

θn − θ̄n−1

∆tn
, ζn−1

)

−
NT
∑

n=1

∆tna
(

θn, ζn−1
)

=−
NT
∑

n=1

∆tn

(

ζn−1 − ¯̄ζn · J
∆tn

, θn

)

−
NT
∑

n=1

∆tna
(

θn, ζn−1
)

−
(

¯̄ζNT · J, ζNT

)

=−
NT
∑

n=1

∆tn (J
′
1(Y

n
h )− J ′

1(Y
n
h (u)), θn)−

(

J ′
2(Y

NT

h )− J ′
2(Y

NT

h (u)), θNT

)

≤ 0. (4.30)

Finally, note that

|pn − pn−1|2 =

∣

∣

∣

∣

∣

∫ tn

tn−1

∂tp dt

∣

∣

∣

∣

∣

2

≤ ∆tn

∫ tn

tn−1

|∂tp|2 dt.

It then follows from Lemmas 4.1 and 4.3, the Cauchy-Schwarz inequality, and the inequalities

(4.27)-(4.30) that

γ|||u− Uh|||2L2(I;L2(Ω))

≤ C(u, u0, p, γ, α, β)h
2
U + C∆t2 ‖∂tp‖2L2(I;L2(Ω)) + C‖|p− Ph(u)‖|2L2(I;L2(Ω))

+Cδ1‖|Ph − Ph(u)‖|2L2(I;L2(Ω)) + Cδ2|||u− Uh|||2L2(I;L2(Ω)) (4.31)

≤ C(u, u0, p, γ, α, β)
(

h2
U +∆t2

)

+ C|||p− Ph(u)|||2L2(I;L2(Ω)) +
γ

2
|||u− Uh|||2L2(I;L2(Ω)),

where δ1 and δ2 are sufficiently small positive number. Thus Theorem 4.1 follows immediately

from (4.31). �



98 H.F. FU, H.X. RUI AND H. GUO

In the following, let Rh : H1
0 (Ω) → V h be the Ritz projection of (y, p) which satisfies

a(Rhy, wh) = a(y, wh) ∀wh ∈ V h, (4.32)

a(qh, Rhp) = a(qh, p) ∀qh ∈ V h. (4.33)

Then, we recall some well-known results in [26], which are useful for our work.

Lemma 4.5. For every t ∈ I and h sufficiently small, there is a positive constant C such that

‖y −Rhy‖+ h‖y −Rhy‖1 ≤ Ch2‖y‖2, (4.34a)

‖p−Rhp‖+ h‖p−Rhp‖1 ≤ Ch2‖p‖2. (4.34b)

Lemma 4.6. Let (Rhy,Rhp) and (Yh(u), Ph(u)) be the solutions of (4.32)-(4.33) and (3.10)-

(3.11), respectively. Assume that y, p ∈ L∞
D (I;H1

0 (Ω)∩H2(Ω))∩H1(I;H2(Ω))∩H2(I;L2(Ω)).

Furthermore, suppose that J ′
1(·) and J ′

2(·) are uniformly Lipschitz continuous. Then the follow-

ing estimates hold

|||Rhy − Yh(u)|||L∞(I;L2(Ω)) ≤ C2(y)
(

h2 +∆t
)

, (4.35)

|||Rhp− Ph(u)|||L∞(I;L2(Ω)) ≤ C3(y, p)
(

h2 +∆t
)

, (4.36)

where the constants C2 and C3 depend on some spatial and temporal derivatives of y and y, p

respectively.

Proof. Let

η = (y −Rhy) + (Rhy − Yh(u)) = µ+ κ,

ξ = (p−Rhp) + (Rhp− Ph(u)) = ρ+ π.

In the following, we also divide the proof into two parts.

Part I. We derive an error equation from (2.5) and (3.10) on η = y − Yh(u) that
(

ηn − η̄n−1

∆tn
, wh

)

+ a (ηn, wh) = −(σn, wh) ∀wh ∈ V h, n = 1, 2, · · · , NT ,

where

σn = φ∂sy
n − (yn − ȳn−1)/∆tn.

Note that the estimate for µ is known, we need only to derive an estimate for κ. By choosing

wh = κn and making use of Ritz projection (4.32), we can rewrite the above equation in terms

of µ and κ:
(

κn − κ̄n−1

∆tn
, κn

)

+ a (κn, κn) = −(σn, κn)−
(

µn − µ̄n−1

∆tn
, κn

)

. (4.37)

Firstly, for the first term on the right-hand sides of (4.37), it follows from [19] that

‖σn‖2 ≤ C∆tn ‖∂ssy‖2L2(In;L2(Ω)) . (4.38)

Then for the second term on the right-hand sides of (4.37), we obtain from Lemmas 4.2 and

4.5 that
∣

∣(µn − µ̄n−1, κn)
∣

∣ ≤
∣

∣(µn − µn−1, κn)
∣

∣ +
∣

∣(µn−1 − µ̄n−1, κn)
∣

∣

≤ ‖κn‖
∫ tn

tn−1

‖∂tµ‖dt+ ‖µn−1 − µ̄n−1‖−1‖κn‖1

≤ C‖∂tµ‖2L2(In;L2(Ω)) + C(δ)∆tn‖µn−1‖2 + C∆tn‖κn‖2 + Cδ∆tn‖κn‖21 (4.39)

≤ Ch4‖∂ty‖2L2(In;H2(Ω)) + C∆tnh
4‖|y‖|2L∞(I;H2(Ω)) + C∆tn‖κn‖2 + Cδ∆tn‖κn‖2a.
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Multiply both sides of (4.37) by ∆tn and sum over 1 ≤ n ≤ N (1 ≤ N ≤ NT ). We then

conclude by (4.38)-(4.39) and the same estimates as (4.6)-(4.7) that

1

2
‖κN‖2 +

N
∑

n=1

∆tn‖κn‖2a

≤ C∆t2‖∂ssy‖2L2(I;L2(Ω)) + Ch4
[

‖∂ty‖2L2(I;H2(Ω)) + ‖|y‖|2L∞(I;H2(Ω))

]

+C

N
∑

n=1

∆tn‖κn‖2 + Cδ

N
∑

n=1

∆tn‖κn‖2a, (4.40)

where yh0 is chosen to be the Ritz projection of y0 which satisfies (4.32), i.e., κ0 = 0.

Let Cδ = 1/2 and apply the discrete Gronwall’s lemma to (4.40) yields that

‖|κ‖|L∞(I;L2(Ω))

≤ C∆t‖∂ssy‖L2(I;L2(Ω)) + Ch2
[

‖∂ty‖L2(I;H2(Ω)) + ‖|y‖|L∞(I;H2(Ω))

]

. (4.41)

Part II. In this part, we consider the estimate for the difference π between the projection

solution Rhp and the intermediate solution Ph(u). We conclude from (2.6) and (3.11) that for

qh ∈ V h and n = NT , · · · , 2, 1 :

(

ξn−1 − ¯̄ξn · J
∆tn

, qh

)

+ a
(

qh, ξ
n−1
)

= −(χn−1, qh) +

(

¯̄pn − ¯̄pn · J
∆tn

, qh

)

+
(

J ′
1(y

n−1)− J ′
1(Y

n
h (u)), qh

)

,

where

χn−1 = −φ∂sp
n−1 − (pn−1 − ¯̄pn)/∆tn.

Select qh = πn−1, it then follows that

(

πn−1 − ¯̄πn

∆tn
, πn−1

)

+ a
(

πn−1, πn−1
)

(4.42)

= −(χn−1, πn−1)−
(

ρn−1 − ¯̄ρn

∆tn
, πn−1

)

−
(

¯̄ρn − ¯̄ρn · J
∆tn

, πn−1

)

−
(

¯̄πn − ¯̄πn · J
∆tn

, πn−1

)

+

(

¯̄pn − ¯̄pn · J
∆tn

, πn−1

)

+
(

J ′
1(y

n)− J ′
1(Y

n
h (u)), πn−1

)

+
(

J ′
1(y

n−1)− J ′
1(y

n), πn−1
)

.

Firstly, we can estimate the first and second terms on the right-hand sides of (4.42) just as

(4.38)-(4.39), that is

|(χn−1, πn−1)| ≤ C∆tn ‖∂ssp‖2L2(In;L2(Ω)) + C‖πn−1‖2, (4.43)
∣

∣

∣

∣

(

ρn−1 − ¯̄ρn

∆tn
, πn−1

)
∣

∣

∣

∣

≤ C∆t−1
n ‖∂tρ‖2L2(In;L2(Ω)) + C‖ρn‖2

+C‖πn−1‖2 + 1

2
‖πn−1‖2a. (4.44)
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Then for the next three terms, note that J = 1 +O(∆t2n), we have

∣

∣

∣

∣

(

¯̄ρn − ¯̄ρn · J
∆tn

, πn−1

)
∣

∣

∣

∣

≤ C∆tn‖ ¯̄ρn‖‖πn−1‖ ≤ C∆tn‖ρn‖2 + C∆tn‖πn−1‖2, (4.45)

∣

∣

∣

∣

(

¯̄πn − ¯̄πn · J
∆tn

, πn−1

)∣

∣

∣

∣

≤ C∆tn‖πn‖2 + C∆tn‖πn−1‖2, (4.46)

∣

∣

∣

∣

(

¯̄pn − ¯̄pn · J
∆tn

, πn−1

)
∣

∣

∣

∣

≤ C∆t2n‖pn‖2 + C‖πn−1‖2. (4.47)

Finally, since J ′
1(·) is uniformly Lipschitz continuous, we obtain

∣

∣

(

J ′
1(y

n)− J ′
1(Y

n
h (u)), πn−1

)∣

∣

≤ C‖yn − Y n
h (u)‖‖πn−1‖ ≤ C‖µn‖2 + C‖κn‖2 + C‖πn−1‖2, (4.48)

∣

∣

(

J ′
1(y

n−1)− J ′
1(y

n), πn−1
)
∣

∣

≤ C‖yn−1 − yn‖‖πn−1‖ ≤ C∆tn‖∂ty‖2L2(In;L2(Ω)) + C‖πn−1‖2. (4.49)

Therefore, similar to the estimate of κ, we first insert the estimates (4.43)-(4.49) into (4.42)

and multiply (4.42) by ∆tn, then sum over n from NT to M +1 (0 ≤ M ≤ NT − 1) to conclude

∥

∥πM
∥

∥

2
+

NT
∑

n=M+1

∆tn‖πn−1‖2a

≤
∥

∥πNT
∥

∥

2
+ C∆t2

[

‖∂ssp‖2L2(I;L2(Ω)) + ‖∂ty‖2L2(I;L2(Ω)) + ‖|p‖|2L∞(I;L2(Ω))

]

+C
∑

v=ρ,µ,κ

NT
∑

n=M+1

∆tn‖vn‖2 + C‖∂tρ‖2L2(I;L2(Ω)) + C

NT
∑

n=M

∆tn‖πn‖2. (4.50)

Before applying the discrete Gronwall’s lemma to (4.50), we should pay special attention on

the term ‖πNT ‖. From (2.6), it is easy to see that

(¯̄p(T ) · J, q) = (J ′
2(¯̄y(T )) · J, q). (4.51)

Then we subtract the second equation in (3.11) from (4.51) that

(

¯̄ξNT · J, qh
)

=
(

J ′
2(¯̄y(T )) · J − J ′

2(Y
NT

h (u)), qh

)

=
(

J ′
2(¯̄y(T )) · J − J ′

2(¯̄y(T )), qh

)

+
(

J ′
2(¯̄y(T ))− J ′

2(y(T )), qh

)

+
(

J ′
2(y(T ))− J ′

2(Y
NT

h (u)), qh

)

. (4.52)

Let qh = ¯̄πNT and by the uniformly Lipschitz continuous of J ′
2(·), we have

∥

∥πNT
∥

∥

2
=
(

¯̄πNT · J, ¯̄πNT
)

≤
[

∥

∥ ¯̄ρNT · J
∥

∥+ ‖J ′
2(¯̄y(T )) · J − J ′

2(¯̄y(T ))‖+ ‖J ′
2(¯̄y(T ))− J ′

2(y(T ))‖

+
∥

∥

∥
J ′
2(y(T ))− J ′

2(Y
NT

h (u))
∥

∥

∥

]

∥

∥¯̄πNT
∥

∥

≤
[

C
∥

∥ρNT
∥

∥+ C∆t2 ‖J ′
2(y(T ))‖+ C∆t ‖y(T )‖1 +

∥

∥ηNT
∥

∥

]

∥

∥πNT
∥

∥ .
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That is

∥

∥πNT
∥

∥ ≤ C
∥

∥ρNT
∥

∥+ C∆t2 ‖J ′
2(y(T ))‖+ C∆t ‖y(T )‖1 +

∥

∥ηNT
∥

∥ . (4.53)

Thus it follows from Lemma 4.5, (4.41), (4.50) and (4.53) that

‖|π‖|L∞(I;L2(Ω))

≤ C∆t

[

∑

v=y,p

‖∂ssv‖L2(I;L2(Ω)) +
∑

v=y,p

‖∂tv‖L2(I;L2(Ω)) + ‖|p‖|L∞(I;L2(Ω)) (4.54)

+‖|y‖|L∞(I;H1(Ω)) + ‖J ′
2(y(T ))‖

]

+ Ch2
∑

v=y,p

[

‖∂tv‖L2(I;H2(Ω)) + ‖|v‖|L∞(I;H2(Ω))

]

,

which completed the proof of the lemma. �

From Lemmas 4.5-4.6, we can easily obtain the following main error estimate for the inter-

mediate error.

Theorem 4.2. Let (y, p) and (Yh(u), Ph(u)) be the solutions of (2.5)-(2.6) and (3.10)-(3.11),

respectively. Assume all conditions in Lemmas 4.5-4.6 are valid. Then we have

|||y − Yh(u)|||L∞(I;L2(Ω)) + |||p− Ph(u)|||L∞(I;L2(Ω)) ≤ C4(y, p)
(

h2 +∆t
)

, (4.55)

where the constant C4 depends on some spatial and temporal derivatives of y and p.

Gather the bounds given by Theorems 4.1 and 4.2, we can easily establish the main result

for the control, state and co-state.

Theorem 4.3. Suppose that {y, p, u} and {Yh, Ph, Uh} are the solutions of (2.5)-(2.7) and

(3.7)-(3.9), respectively. Moreover, we assume that all conditions in Theorems 4.1 and 4.2

hold. Then we have

|||y − Yh|||L∞(I;L2(Ω)) + |||p− Ph|||L∞(I;L2(Ω)) + |||u− Uh|||L2(I;L2(Ω))

≤ C5(u, u0, y, p, γ, α, β)
(

hU + h2 +∆t
)

, (4.56)

where the constant C5 depends on some spatial and temporal derivatives of u, u0, y, p, γ, α and

β.

5. Numerical Experiments

In this section, we carry out two numerical examples to demonstrate the theoretical results

showed in Theorem 4.3. To solve the optimal control problems numerically, we use the C++

software package:AFEPack, it is freely available at http://dsec.pku.edu.cn/˜rli.

In our numerical test, we consider the following optimal control problem:

min
1

2

∫ T

0

‖y(t)− z1(t)‖2dt+
1

2
‖y(T )− z2‖2 +

1

2

∫ T

0

‖u− u0‖2 dt, (5.1)

subject to
{

∂ty − µ∆y + a · ∇y + cy = f + u in Ω× I,

y(0) = y0 in Ω.
(5.2)
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Fig. 5.1. Example 5.1: the numerical solution of the control (left) and its contour-line (right).

The corresponding co-state equation is

{

−∂tp− µ∆p− a · ∇p+ cp = y − z1 in Ω× I,

p(T ) = y(T )− z2 in Ω.
(5.3)

Both equations (5.2) and (5.3) are combined with homogeneous Dirichlet boundary conditions.

For simplicity, in this work we use the same mesh for T h and T h
U . For constrained optimal

control problems governed by convection-diffusion equations, people usually pay their attention

on the state and the control. Therefore in the following numerical examples, we mostly center

on the state variable y, which is approximated by piecewise linear elements; and the control

variable u, which is discretized using piecewise constant elements.

Example 5.1. For the first example, the spatial domain is Ω = (0, 1)2, the time interval is

Ī = [0, 1], the velocity field is imposed as a = (x2 − 0.5, 0.5 − x1), the diffusion coefficient

µ = 1.0e-5, the reaction coefficient c = 1. Functions f , z1 and z2 are chosen such that the

analytical solutions for problems (5.2)-(5.3) are as follows:
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Fig. 5.2. Example 5.1: the numerical solution of the state (left) and its contour-line (right).
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Table 5.1: Numerical results for the state, co-state and control for Example 5.1.

h |||y − Yh||| Order |||p − Ph||| Order |||u− Uh||| Order
1

8
3.980545E-2 —— 4.245534E-2 —— 4.190737E-2 ——

1

16
1.144331E-2 1.8037 1.395041E-2 1.6020 2.288011E-2 0.8716

1

32
2.533822E-3 2.1890 3.706113E-3 1.9198 1.133799E-2 1.0190

1

64
9.476185E-4 1.4739 9.644054E-4 1.8875 5.651237E-3 0.9873

p(x, t) = sin(πt/2) sin(πx1) sin(πx2)exp

(

− (x1 − 0.5)2 + (x2 − 0.5)2√
µ

)

,

u0(x, t) = 1− sin(πx1)− sin(πx2),

u(x, t) = max(0,min(u0 − p, 0.5)),

y(x, t) = p
(

1 + 4
√
µ+ 2µπ2 − 4

(

(x1 − 0.5)2 + (x2 − 0.5)2
))

.

It is clear that the state, co-state and control solutions are strictly dependent on the diffusion

parameter µ, and for small µ the state equation is strongly convection-dominated.

In this example, the solutions describe an internal layer problem for the state and co-state.

Although the layer does not move with time, it is very sharp near the center-point (0.5, 0.5) and

the function value is varying at this point with the time marching. Beside, it is easy to see that

for those points far away from the center-point, the solutions y and p are almost zero. However,

the characteristic finite element discretization used in this paper shows a good approximation to

the control problem. It can be seen that in Table 5.1 numerical convergence order is presented

with µ=1.0e-5 and the time step size ∆t = h. Fig. 5.1 shows the numerical solution of the

control and its contour-line at T = 1. The elevation plot of the numerical state solution and

its corresponding contour-line at T = 1 are presented in Fig. 5.2.

Example 5.2. The second example considered is the transport of a two-dimensional rotating

Gaussian pulse in Ω = (−0.5, 0.5)2 and Ī = [0, 1]. Problems (5.2)-(5.3) are given with a rotating

velocity field a = (−x2, x1), a diffusion coefficient µ = 1.0e-4 and a reaction coefficient c = 0.

Let f = −u, z1 = y and z2 = y(T )− p(T ) such that the analytical solutions are as follows:

y(x, t) =
2σ2

2σ2 + 4µt
exp

(

− (x̄1 − x1c)
2 + (x̄2 − x2c)

2

2σ2 + 4µt

)

,

p(x, t) = 0,

u0(x, t) = sin(πt/2) sin(πx1) sin(πx2),

u(x, t) = max(−0.5,min(u0 − p, 0.5)),

where x1c, x2c, and σ are the centered and standard deviations, respectively, and x̄1 = x1 cos t+

x2 sin t, x̄2 = x2 cos t− x1 sin t.

In this numerical test, the data are chosen as follows: x1c = −0.25, x2c = 0, σ = 0.0447 which

gives 2σ2 = 0.0040. This problem provides an example for a homogeneous two-dimensional

convection-diffusion equation with a variable velocity field and a known analytical solution. It

has been used widely to test for numerical artifacts of different schemes, such as numerical

stability and numerical dispersion, spurious oscillations, and phase errors. In Table 5.2 numer-

ical results are presented with spatial step sizes h = 1/8, 1/16, 1/32, 1/64, which show that the

characteristic finite element scheme maintains a first-order accuracy in space for the control.

In Figs. 5.3-5.4, we also show the numerical solutions and their corresponding contour-lines for

the control and state at T = 1, respectively.
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Fig. 5.3. Example 5.2: the numerical solution of the control (left) and its contour-line (right).
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Fig. 5.4. Example 5.2: the numerical solution of the state (left) and its contour-line (right).

Table 5.2: Numerical results for the state, co-state and control for Example 5.2.

h |||y − Yh||| Order |||p − Ph||| Order |||u− Uh||| Order
1

8
4.958123E-2 —— 1.744643E-2 —— 3.996715E-2 ——

1

16
2.078207E-2 1.2545 1.074794E-2 0.6989 1.972796E-2 1.0186

1

32
5.939231E-3 1.8070 3.614890E-3 1.5720 9.365068E-3 1.0749

1

64
2.276362E-3 1.3835 1.246851E-3 1.5357 4.587253E-3 1.0297

From these results we find that using the scheme given in this paper we can approximate

the analytical solutions with high accuracy.
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