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Abstract

In this paper we modify the MEBDF method using the NDFs as predictors instead

of the BDFs. We have done it in three different ways: changing both predictors of the

MEBDF, changing only the first predictor and changing only the second one. We have

called the new methods MENDF, MENBDF and MEBNDF respectively. The new methods

are A-stable up to order 4 and the stability properties of the new methods are better than

the MEBDF method.
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1. Introduction

In this paper we will consider the initial value problem:

y′(x) = f (x, y(x)) , y (x0) = y0, (1.1)

on the finite interval T = [x0, xn], and being y : [x0, xn] → R
m and f : [x0, xn] × R

m
→ R

m

continuous functions. When we are solving systems of stiff ordinary differential equations by

numerical integration, it is important to use an accurate algorithm which has good stability

properties [6]. Many researches have been focused on the generation of efficient algorithms

for the numerical integration of stiff systems and some of them have been based on backward

differentiation formulae (BDF) [9]. The BDFs give us the possibility to use high order formulae

in highly stable schemes, but their biggest drawback is the poor stability properties of the

highest orders formulae, when the eigenvalues of the Jacobian matrix lie close to the imaginary

axis.

A great effort to derive methods with better accuracy and stability properties than the ones

of the BDFs has been made. One of the modifications made to the BDFs in this line are the

NDFs (Numerical Differentiation formulae) [17]. It is a computationally cheap modification

that consists of anticipating a difference of order (k + 1) multiplied by a constant κγk in the

BDF formula of order k. This term makes the NDFs more accurate than the BDFs and not
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much less stable. This modification was proposed only for orders k = 1, 2, 3, 4, because it is

inefficient for orders greater than 4.

The search of higher order and more stable methods has been followed in two main directions.

The first of these two directions consists of using superfuture point schemes and the second one

uses higher derivatives of the solutions. In [2, 4] Cash introduces methods using superfuture

points to solve stiff IVPs. These methods are known as extended BDF (EBDF) and modified

extended BDF (MEBDF). They use two BDF predictors and one implicit multistep corrector.

Both methods are A-stable up to order 4 and A(α)-stable up to order 9, and the class MEBDF

has better stability properties than the class EBDF. In [5] a code based on the MEBDF is

described and its performance on a set of stiff problems is discussed. In [13] Matrix free

MEBDF (MF-MEBDF) methods are introduced to optimize the computations of the EBDF.

A different variation of the BDFs was introduced by Fredebeul [8], the A-BDF method. In

this method the implicit and explicit BDF are used in the same formula, with a free parameter,

being A(α)-stable up to order 7. And in [11], a modification to the methods A-BDF and EBDF

is introduced, the method called A-EBDF, in which larger absolute stability regions than the

ones of the A-BDF and the EBDF are obtained.

Among the modifications made to the BDFs by using higher derivatives, we can find [7],

where a class of second derivative formulae A-stable for order 4 is developed. In [3], Cash

introduces another class of second derivative methods which uses the EBDF scheme. This class

is A-stable up to order 6. In more recent researches such as [12, 15], different classes of second

derivative multistep methods are derived in which very good stability properties are reached

again.

The purpose of this paper is to follow the MEBDF scheme but by substituting the BDF

predictors by the NDF formulae [17]. We did this in [1], when we changed the predictors of the

EBDFs and we obtained new classes of formulae with smaller local truncation error and better

stability properties. We have changed the predictors of the MEBDFs in three different ways:

changing only the first predictor, changing only the second one or by changing both predictors.

We have called the new methods MENBDF, MEBNDF and MENDF respectively and all of

them have better stability properties than the MEBDFs. In Section 2, we give details about the

modifications introduced in MEBDF, such as, MENDF, MENBDF and MEBNDF. In Section

3, the stability analysis is developed. Finally in Section 4, some computational aspects are

included and results of several problems are reported in Section 5.

2. The Use of NDFs as the Predictors of the MEBDF Class

In order to understand the new methods we have developed, we will start analysing the

properties of the NDF and MEBDF, to finally derive the MENDF, MENBDF and MEBNDF

algorithms.

2.1. NDF scheme

Among the codes that have been created to solve stiff problems, the most popular and

widely used are the backward differentiation formulae, BDFs [9]. These numerical methods are

A-stable only up to order 2, but they have good stability properties also when working in high
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orders. The k-step BDF can be expressed in this way using backward differences:

k
∑

j=1

1

j
∇

jyn+k = hfn+k. (2.1)

We get the well-known expression of the BDFs after developing the backward differences of

expression (2.1):
k
∑

j=0

α̂jyn+j = hfn+k. (2.2)

The leading term of the BDFs truncation error is this one:

C1h
k+1y(k+1) (xn) , (2.3)

where the error constant C1 is given by

C1 =
−1/γk
k + 1

, (2.4)

and

γk =

k
∑

j=1

1

j
=



































1, k = 1,

3/2, k = 2,

11/6, k = 3,

25/12, k = 4,

137/60, k = 5.

(2.5)

In [17], Shampine introduces a new family of formulae suitable for the solution of stiff pro-

blems. This new family called numerical differentiation formulae, NDFs, consist of anticipating

the difference of order (k+1) multiplied by the term κγk in the BDF formula of order k. These

new methods have the form:

k
∑

j=1

1

j
∇

jyn+k = hfn+k + κγk∇
k+1yn+k. (2.6)

And again, developing the backward differences of expression (2.6) an equivalent expression for

the NDFs is achieved:
k
∑

j=0

α̂jyn+j = hfn+k + κγk∇
k+1yn+k. (2.7)

Klopfenstein and Shampine introduced the scalar parameter κ, so that the angle of A(α)-

stability was maximized at the same time that the error was reduced. The NDFs are more

accurate than the BDFs, although a couple of the higher-order formulae are less stable. The

leading term of the local truncation error of the NDFs is given by:

C2h
k+1y(k+1) (xn) . (2.8)

We have called C2 to the error constant of the LTE of the method NDF (2.8):

C2 =
−1/γk
k + 1

− κ. (2.9)

The better accuracy of the NDFs implies that they can achieve the same accuracy as BDFs

with a bigger step size. More properties of BDF and NDF methods are shown in Table 2.1.
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Table 2.1: The Klopfenstein-Shampine NDFs and their efficiency and A(α)-stability relative to the

BDFs [17].

k NDF coefficient Step ratio Stability angle Stability angle

κ percent BDF NDF

1 -0.1850 26% 90 90

2 -1/9 26% 90 90

3 -0.0823 26% 86 80

4 -0.0415 12% 73 66

2.2. MEBDF scheme

With the aim of increasing the stability of the BDF methods, Cash extended these methods

by introducing superfuture points [2]. The method was called EBDF (extended backward

differentiation formula) and A-stable schemes of order up to 4 were obtained. Later, in [4],

a class of modified extended backward differentiation formulae (MEBDF) is introduced where

the forth stage of the EBDF scheme was changed by the next expression:

k
∑

j=0

αjyn+j = hβ̂kfn+k + hβk+1f̄n+k+1 + h
(

βk − β̂k

)

f̄n+k, (2.10)

where the coefficients βk are the ones that correspond to the method EBDF and β̂k are the

coefficients of the method BDF. A table of coefficients βk and β̂k can be found in [2] and [9]

respectively.

Assuming that the solutions yn, yn+1, ..., yn+k−1 are available, the way in which the formula

(2.10) is used is by carrying out the following steps:

1. Compute the first predictor ȳn+k as the solution of the conventional k-step backward

differentiation formula:

yn+k +

k−1
∑

j=0

α̂jyn+j = hβ̂kfn+k , (yn+k := ȳn+k). (2.11)

2. Compute the second predictor ȳn+k+1 advancing a new step with the same k-step BDF

formula:

yn+k+1 +

k−1
∑

j=0

α̂jyn+j+1 = hβ̂kfn+k+1 , (yn+k+1 := ȳn+k+1). (2.12)

3. Evaluate f̄n+k=f (xn+k, ȳn+k) and f̄n+k+1=f (xn+k+1, ȳn+k+1).

4. Insert f̄n+k and f̄n+k+1 in (2.10) and solve for a new yn+k which will be the numerical

solution of the MEBDF method.

The local truncation error of the MEBDF method is given by the expression:

LTEk = hk+2

[

C1

(

βk+1

(

1−
α̂k−1

α̂k

)

+ (βk − β̂k)

)

∂f

∂y
y(k+1)

+C3y
(k+2)

]

(xn) +O
(

hk+3
)

, (2.13)

where C1 is the error constant of the local truncation error of the BDF method given by (2.4),

and C3 is the error constant of the local truncation error for the formula (2.10).
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Lemma 2.1. Given that the formula (2.10) is of order (k + 1) and the BDF/NDF used in

(2.11) and (2.12) are of order k, the predictor-corrector algorithm (1)-(4) has order (k + 1).

The demonstration of this lemma can be found in reference [10].

2.3. MENDF, MENBDF, MEBNDF methods’ scheme

2.3.1. MENDF

The MENDF method consists of applying the NDF method as the predictor in stages 1 and 2

of the MEBDF method. Next, we follow the same steps as in the MEBDF scheme: we evaluate

f̄n+k=f (xn+k, ȳn+k) and f̄n+k+1=f (xn+k+1, ȳn+k+1) and we insert the terms f̄n+k, f̄n+k+1 in

the expression (2.10).

First predictor: The first time we apply the predictor NDF, the value ȳn+k is obtained.

The difference between the exact value and the calculated is given by this expression:

y(xn+k)− ȳn+k = C2h
k+1y(k+1) (xn) +O

(

hk+2
)

, (2.14)

where C2 is the error constant of the method NDF given by (2.9).

Second predictor: The second time we use the predictor NDF we get the value ȳn+k+1,

and the difference between the exact and the calculated value is this:

y(xn+k+1)− ȳn+k+1 = C2

(

1−
α̂k−1

α̂k

−
κγk(k + 1)

α̂k

)

hk+1y(k+1) (xn) +O
(

hk+2
)

. (2.15)

In [1] we verified for k = 2 that the local truncation error of the method after applying the

second predictor NDF, is the one proposed by the expression (2.15).

Corrector: Eventually, we apply the corrector (expression (2.10)) and the local truncation

error of the overall method is obtained:

LTEk = hk+2

[

(

βk+1Ak + C2(βk − β̂k)
) ∂f

∂y
y(k+1) + C3y

(k+2)

]

(xn) +O
(

hk+3
)

, (2.16)

where: Ak = C2

(

1− α̂k−1

α̂k

−
κγk(k+1)

α̂k

)

.

2.3.2. MENBDF, MEBNDF

In the previous Section we have used the NDF as the predictor of the MEBDF algorithm in

stages 1 and 2. But the option of using NDFs in the predicting stages of the MEBDF is not the

unique option. We can also apply the NDF as the first predictor and the BDF as the second one

or the BDF as the first predictor and the NDF as the second one. Hence, the options available

for the predictors are the following: BDF-BDF, NDF-NDF, NDF-BDF, BDF-NDF. In all the

cases the local truncation error can be expressed in this way:

hk+2

[

(

βk+1Ak + Ci(βk − β̂k)
) ∂f

∂y
y(k+1) + C3y

(k+2)

]

(xn) +O
(

hk+3
)

. (2.17)

The value of the constants Ak and Ci is different depending on the predictors:
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• Case MEBDF (BDF-BDF-MEBDF):

Ak = C1

(

−
α̂k−1

α̂k

+ 1

)

, Ci = C1. (2.18)

• Case MENDF (NDF-NDF-MEBDF):

Ak = C2

(

−
α̂k−1

α̂k

− κ(k + 1)γk
1

α̂k

+ 1

)

, Ci = C2. (2.19)

• Case MENBDF (NDF-BDF-MEBDF):

Ak =

(

−C2
α̂k−1

α̂k

+ C1

)

, Ci = C2. (2.20)

• Case MEBNDF (BDF-NDF-MEBDF):

Ak =

(

−C1
α̂k−1

α̂k

− C1κ(k + 1)γk
1

α̂k

+ C2

)

, Ci = C1. (2.21)

The values of Ak depend on the predictors used in the general scheme of the MEBDFs. The

same occured in the case of the EBDFs. And in both families, EBDF and MEBDF, the value

of the constant Ak is the same when the same predictors are used. Values of Ak for EBDF,

EBNDF, ENBDF and ENDF can be found in [1].

3. Stability Analysis

3.1. Stability function of MENDF

We now examine the stability behaviour of our new methods. The region of absolute stability

of the overall method MENDF is found using Schur’s theorem, see [16]. To do this, we will apply

the method MENDF to the test equation y′ = λy. That is to say, hfj = hλyj is introduced in

expression (2.10) and expression (2.7) is used as the first and the second predictor. We will set

yn−1=1, ..., yn+k−1=rk, the algorithm will be computed in order to obtain yn+k=rk+1 and the

characteristic equation will be achieved, being ĥ = hλ:

Aĥ3 +Bĥ2 + Cĥ+D = 0, (3.1)

where






















A = −β̂kr
k+1, D = (α̂k − κγk)

2
T,

B = 2 (α̂k − κγk) β̂kr
k+1 + T − βk+1S + (βk − β̂k)R,

C = −β̂k (α̂k − κγk)
2
rk+1

− 2 (α̂k − κγk)T + (α̂k − κγk)βk+1S

−βk+1 (−α̂k−1 − (k + 1)κγk)R− (βk − β̂k)R(α̂k − κγk),

(3.2)

with










































R = (−1)k+1

(

k + 1

0

)

κγk +
k
∑

j=1

rj

(

−α̂j−1 + (−1)k+1−j

(

k + 1

j

)

κγk

)

,

S = (−1)krκγk −

k−1
∑

j=1

rj+1

(

−α̂j−1 + (−1)k+1−j

(

k + 1

j

)

κγk

)

,

T =
k
∑

j=0

αjr
j+1.

(3.3)
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Fig. 3.1. Regions of stability of the methods MENDF and MEBDF. The stability regions are the

outside of the plotted curves.

In Fig. 3.1 the stability regions of the MEBDF and MENDF methods are shown.

We will include the calculations done for the case k = 2:

2
∑

j=0

α̂jyn+j = hf̄n+2 + κγ2∇
3ȳn+2. (3.4)

Developing ∇
3ȳn+2 and applying the method given by (3.4) to the test equation, we can work

out ȳn+2:

ȳn+2 =
yn+1 (−α̂1 − 3κγ2) + yn (−α̂0 + 3κγ2)− κγ2yn−1

(

α̂2 − κγ2 − ĥ
) . (3.5)

NDF is used again as the second predictor to get ȳn+3:

ȳn+3 =
ȳn+2 (−α̂1 − 3κγ2) + yn+1 (−α̂0 + 3κγ2)− κγ2yn

(

α̂2 − κγ2 − ĥ
) . (3.6)

Substituting (3.5) into (3.6) we have ȳn+3:

ȳn+3 =







(yn+1 (−α̂1 − 3κγ2) + yn (−α̂0 + 3κγ2)− κγ2yn−1) (−α̂1 − 3κγ2)
(

α̂2 − κγ2 − ĥ
)2

+
(yn+1 (−α̂0 + 3κγ2)− κγ2yn)

(

α̂2 − κγ2 − ĥ
)

(

α̂2 − κγ2 − ĥ
)2






.

We calculate the derivatives of ȳn+2 and ȳn+3:

f (ȳn+2) = λ
yn+1 (−α̂1 − 3κγ2) + yn (−α̂0 + 3κγ2)− κγ2yn−1

(

α̂2 − κγ2 − ĥ
) , (3.7)
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f (ȳn+3) = λ







(yn+1 (−α̂1 − 3κγ2) + yn (−α̂0 + 3κγ2)− κγ2yn−1) (−α̂1 − 3κγ2)
(

α̂2 − κγ2 − ĥ
)2

+
(yn+1 (−α̂0 + 3κγ2)− κγ2yn)

(

α̂2 − κγ2 − ĥ
)

(

α̂2 − κγ2 − ĥ
)2






. (3.8)

Finally yn+2 is obtained using expression (2.10):

α0yn + α1yn+1 + α2yn+2 − ĥβ̂2yn+2

− ĥβ3







(yn+1 (−α̂1 − 3κγ2) + yn (−α̂0 + 3κγ2)− κγ2yn−1) (−α̂1 − 3κγ2)
(

α̂2 − κγ2 − ĥ
)2

+
(yn+1 (−α̂0 + 3κγ2)− κγ2yn)

(

α̂2 − κγ2 − ĥ
)

(

α̂2 − κγ2 − ĥ
)2







− ĥ
(

β2 − β̂2

) yn+1 (−α̂1 − 3κγ2) + yn (−α̂0 + 3κγ2)− κγ2yn−1
(

α̂2 − κγ2 − ĥ
) = 0.

Substituting yn+j = rj+1 the following equation is obtained:

(

α0r + α1r
2 + α2r

3
− ĥβ̂2r

3
)(

α̂2 − κγ2 − ĥ
)2

− ĥβ3

[(

r2 (−α̂1 − 3κγ2) + r (−α̂0 + 3κγ2)− κγ2
)

(−α̂1 − 3κγ2)

+
(

r2 (−α̂0 + 3κγ2)− κγ2r
)

(

α̂2 − κγ2 − ĥ
)]

− ĥ
(

β2 − β̂2

)

[

r2 (−α̂1 − 3κγ2) + r (−α̂0 + 3κγ2)− κγ2
]

(

α̂2 − κγ2 − ĥ
)

= 0.

And the coefficients of the polynomial in ĥn are given by:






































ĥ3 : A = −β̂2r
3,

ĥ2 : B = 2 (α̂2 − κγ2) β̂2r
3 + T − β3S +

(

β2 − β̂2

)

R,

ĥ : C = −β̂2 (α̂2 − κγ2)
2 r3 − 2 (α̂2 − κγ2)T + (α̂2 − κγ2)β3S

− β3 (−α̂1 − 3κγ2)R−

(

β2 − β̂2

)

R (α̂2 − κγ2) ,

ĥ0 : D = (α̂2 − κγ2)
2
T,

where










R = r2 (−α̂1 − 3κγ2) + r (−α̂0 + 3κγ2)− κγ2,

S = rκγ2 − r2 (−α̂0 + 3κγ2) , T =
2
∑

j=0

αjr
j+1.

The stability angles of the method MENDF can be found in Table 3.1.

3.2. Stability function of MENBDF

We will apply the MENBDF method to the test equation y′ = λy. The NDF will be used as

the first predictor and the BDF as the second one. We will substitute hfj = ĥyj in expression
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Table 3.1: A(α)-stability of the methods MEBDF, MEBNDF, MENBDF, MENDF.

k p (order) A(α) MEBDF A(α) MEBNDF A(α) MENBDF A(α) MENDF

1 2 90 90 90 90

2 3 90 90 90 90

3 4 90 90 90 90

4 5 88.36 88.41 88.88 88.93

(2.10), where ĥ = hλ. Setting yn−1=1, ..., yn+k−1=rk and computing the method, we will reach

the solution yn+k=rk+1 as well as the characteristic equation:

Aĥ3 +Bĥ2 + Cĥ+D = 0. (3.9)

Coefficients of the polynomial in ĥn:























A = −β̂kr
k+1, D = α̂k (α̂k − κγk)T,

B = (2α̂k − κγk) β̂kr
k+1 + T − βk+1S + (βk − β̂k)R,

C = −β̂kα̂k (α̂k − κγk) r
k+1

− (2α̂k − κγk)T

+ (α̂k − κγk)βk+1S + βk+1α̂k−1R− (βk − β̂k)Rα̂k,

(3.10)

where



















R = (−1)k+1

(

k + 1

0

)

κγk +
k
∑

j=1

rj

(

−α̂j−1 + (−1)k+1−j

(

k + 1

j

)

κγk

)

,

S =
k−2
∑

j=0

α̂jr
j+2, T =

k
∑

j=0

αjr
j+1.

(3.11)

The stability angles of the method are in Table 3.1.

3.3. Stability function of MEBNDF

Proceeding in the same way as before, the characteristic polynomial of the MEBNDF method

is obtained:

Aĥ3 +Bĥ2 + Cĥ+D = 0. (3.12)

Coefficients of the polynomial in ĥn:























A = −β̂kr
k, D = α̂k (α̂k − κγk)T,

B = (2α̂k − κγk) β̂kr
k + T − βk+1S − (βk − β̂k)R,

C = −β̂kα̂k (α̂k − κγk) r
k
− (2α̂k − κγk) T + α̂kβk+1S

+ βk+1 (−α̂k−1 − (k + 1)κγk)R+ (βk − β̂k)R(α̂k − κγk),

(3.13)

Table 3.2: A(α)-stability of the methods EBDF and MEBDF for different predictors.

k = 4 Predictors Predictors Predictors Predictors

BDF-BDF BDF-NDF NDF-BDF NDF-NDF

EBDF 87.61 87.68 87.49 87.54

MEBDF 88.36 88.41 88.88 88.93
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where


















R =
k−1
∑

j=0

α̂jr
j , T =

k
∑

j=0

αjr
j ,

S = (−1)kκγk −
k−1
∑

j=1

rj

(

−α̂j−1 + (−1)k+1−j

(

k + 1

j

)

κγk

)

.

(3.14)

3.4. Comparison with the stability regions of the EBDFs

When in [1] we changed the predictor of the EBDFs, we obtain methods which were A-stable

up to k = 3 and the same occurs when changing the predictor in the MEBDFs. In [1] we saw

that for k = 4 the A(α)-stability angle of the EBNDF was larger than the one corresponding to

the EBDF. We also saw, again for k = 4, that the A(α)-stability angles of the EBDF and the

EBNDF were larger than the angles corresponding to the ENDF and the ENBDF, respectively.

This time, for k = 4, when we have changed the predictors of the MEBDF scheme into

NDFs, we have obtained methods with larger stability regions than the ones corresponding to

the MEBDF. And in the same way that occured with the MEBDF, which region of stability is

bigger than the one of the EBDF, our new methods (MEBNDF, MENBDF and MENDF) have

better stability properties than the EBNDF, the ENBDF and the ENDF.

4. Algorithmic Implementation

The methods BDF and NDF used in the predicting stages, can be written using backward

differences (expressions (2.1) and (2.6)). In order to use the same scheme as the predictor

during the programming of the MEBDF, we will write the corrector of the MEBDF method

(expression (2.10)) using backward differences too:

k
∑

j=0

αjyn+j = hβ̂kfn+k + hβk+1f̄n+k+1 + h(βk − β̂k)f̄n+k

⇒

k
∑

j=1

mk,j∇
jyn+k = hβ̂kfn+k + hβk+1f̄n+k+1 + h(βk − β̂k)f̄n+k,

(4.1)

where

M = (mk,j) =























1 0 0 0

18
23

5
23 0 0

132
197

48
197

17
197 0

1500
2501

606
2501

284
2501

111
2501























. (4.2)

The coefficients corresponding to k are in the k-th row of the matrix M.

In [17], an alternative way to write the left hand side of the expressions (2.1) and (2.6),

expressions corresponding to BDFs and NDFs, is introduced:

k
∑

j=1

1

j
∇

jyn+k = γk

(

yn+k − y
(0)
n+k

)

+

k
∑

j=1

γj∇
jyn+k−1, (4.3)
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where


























γj =
j
∑

l=1

1
l
,

y
(0)
n+k =

k
∑

j=0

∇
jyn+k−1 = ∇

0yn+k−1 +∇yn+k−1 + ...+∇
kyn+k−1,

yn+k − y
(0)
n+k = ∇

k+1yn+k.

(4.4)

The identity (4.3) shows that equations (2.1) and (2.6) are equivalent to:

(1− κ) γk

(

yn+k − y
(0)
n+k

)

+

k
∑

j=1

γj∇
jyn+k−1 = hfn+k. (4.5)

In the case of the BDFs, κ = 0 and for the NDFs, the values of κ are in Table 2.1. For
the predictors, we have evaluated the implicit formula (4.5) using the Newton method. The

correction to the current iterate y
(i+1)
n+k = y

(i)
n+k +∆(i) has been obtained by solving:

(

I −
h

(1− κ) γk
J

)

∆(i)

=
h

(1− κ) γk
f
(

xn+k, y
(i)
n+k

)

−
1

(1− κ) γk

k
∑

j=1

γj∇
j
yn+k−1 −

(

y
(i)
n+k − y

(0)
n+k

)

,

(4.6)

where J is the Jacobian of f(x, y).

Using the previous idea, we have developed and alternative formula of the left hand side of

(4.1). In this way we have obtained the next expression for the corrector of the MEBDF:

k
∑

j=1

mk,j∇
jyn+k = γ̃k,k

(

yn+k − y
(0)
n+k

)

+

k
∑

j=1

γ̃k,j∇
jyn+k−1, (4.7)

where

(γ̃k,j) =

(

j
∑

l=1

mk,l

)

=























1 0 0 0

18
23

1 0 0

132
197

180
197

1 0

1500
2501

2106
2501

2390
2501

1























. (4.8)

Taking into account expressions (4.7) and (4.8), expression (4.1) can be written as:

(

yn+k − y
(0)
n+k

)

+
k
∑

j=1

γ̃k,j
γ̃k,k

∇
jyn+k−1

= h
β̂k

γ̃k,k
fn+k + h

βk+1

γ̃k,k
f̄n+k+1 + h

(βk − β̂k)

γ̃k,k
f̄n+k,

(4.9)

where yn+k is computed as the solution of the implicit formula (4.9) using Newton’s method.

And the correction of the current iterate y
(i+1)
n+k = y

(i)
n+k +∆(i), is obtained by solving the next

equation:
(

I − h
β̂k

γ̃k,k
J

)

∆(i) = h
β̂k

γ̃k,k
f
(

xn+k, y
(i)
n+k

)

+ h
βk+1

γ̃k,k
f̄n+k+1 + h

(βk − β̂k)

γ̃k,k
f̄n+k

−

k
∑

j=1

γ̃k,j
γ̃k,k

∇
jyn+k−1 −

(

y
(i)
n+k − y

(0)
n+k

)

, (4.10)
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Table 5.1: Results for integration of Example 1.

x yi Exact solution Error Error Error Error

in MEBDF in MEBNDF in MENBDF in MENDF

5
y1

y2

0.673794699908547 · 10−2

0.673794699908547 · 10−2

1.1205 · 10−6

8.8475 · 10−8

6.8914 · 10−7

8.7257 · 10−7

2.6859 · 10−7

4.6561 · 10−8

1.2205 · 10−7

1.9257 · 10−7

10
y1

y2

0.453999297624848 · 10−4

0.453999297624848 · 10−4

8.1129 · 10−10

9.2483 · 10−10

8.5045 · 10−10

9.1614 · 10−10

1.2195 · 10−11

3.7448 · 10−11

3.7435 · 10−11

8.9026 · 10−11

20
y1

y2

0.206115362243856 · 10−8

0.206115362243856 · 10−8

5.7370 · 10−15

1.8692 · 10−15

3.3317 · 10−15

1.2429 · 10−15

2.0302 · 10−15

3.4064 · 10−15

2.3632 · 10−15

9.9083 · 10−16

Table 5.2: Results for integration of Example 2.

x yi Exact solution Error Error Error Error

in MEBDF in MEBNDF in MENBDF in MENDF

1

y1

y2

y3

0.303265331217737 · 100

0.303265330376617 · 100

−0.303265329336016 · 100

7.0144 · 10−5

6.4172 · 10−4

2.4834 · 10−4

1.8023 · 10−5

4.5880 · 10−4

1.0859 · 10−4

1.5822 · 10−3

3.6462 · 10−4

3.2916 · 10−5

1.3052 · 10−3

2.1813 · 10−4

1.2826 · 10−4

5

y1

y2

y3

0.410424993119494 · 10−1

0.410424993119494 · 10−1

−0.410424993119494 · 10−1

2.7327 · 10−5

2.7327 · 10−5

2.7327 · 10−5

2.4341 · 10−5

2.4341 · 10−5

2.4341 · 10−5

2.7694 · 10−5

2.7694 · 10−5

2.7694 · 10−5

2.4149 · 10−5

2.4149 · 10−5

2.4149 · 10−5

10

y1

y2

y3

0.336897349954273 · 10−2

0.336897349954273 · 10−2

−0.336897349954273 · 10−2

2.3204 · 10−6

2.3204 · 10−6

2.3204 · 10−6

2.0679 · 10−6

2.0679 · 10−6

2.0679 · 10−6

2.3595 · 10−6

2.3595 · 10−6

2.3595 · 10−6

2.0593 · 10−6

2.0593 · 10−6

2.0593 · 10−6

where J is the Jacobian of f(x, y).

5. Numerical Results

In this section we present some numerical results to compare the performance of the methods

MEBNDF, MENBDF and MENDF with that of MEBDF method.

Example 1. We consider the following stiff system as considered by Cash in [2]:
{

y′1 = −αy1 − βy2 + (α+ β − 1)e−x,

y′2 = βy1 − αy2 + (α− β − 1)e−x,
with initial value y(0) = (1, 1)T .

The eigenvalues of the Jacobian matrix are −α ± βi, and its exact solution is this one:

y1(x) = y2(x) = e−x. We have solved the problem for α = 1, β = 15. In Table 5.1 we show

the results obtained for the integration of this problem. We have taken 200 steps and k = 3 to

integrate Example 1. It can be seen that the results obtained by the new methods are superior

or similar to the ones obtained by the MEBDF. The MENDF method is the one with the

smallest error at the end of the interval of integration, and the MEBNDF is the next. Methods

MENBDF and MEBDF show similar errors at the end of the interval of integration.

Example 2. Consider the system of differential equations considered in [11]:














y′1 = −20y1 − 0.25y2 − 19.75y3,

y′2 = 20y1 − 20.25y2 + 0.25y3,

y′3 = 20y1 − 19.75y2 − 0.25y3,

with initial value y(0) = (1, 0,−1)T .
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Table 5.3: Results for integration of Example 3.

x yi Exact solution Error Error Error Error

in MEBDF in MEBNDF in MENBDF in MENDF

0.1

y1

y2

y3

0.996787780748254 · 100

0.673794699908547 · 10−2

0.674409121143880 · 10−2

2.0504 · 10−3

2.0503 · 10−3

1.9529 · 10−3

1.8468 · 10−3

1.8468 · 10−3

1.6577 · 10−3

2.2934 · 10−3

2.2934 · 10−3

2.2008 · 10−3

2.0479 · 10−3

2.0479 · 10−3

1.8026 · 10−3

0.5

y1

y2

y3

0.951229424514602 · 100

0.138879438649640 · 10−10

0.138879438649640 · 10−10

6.2063 · 10−9

1.6818 · 10−11

3.2927 · 10−11

5.4726 · 10−9

6.8684 · 10−12

1.5989 · 10−11

6.2242 · 10−9

1.8554 · 10−11

7.4311 · 10−11

5.3693 · 10−9

9.3807 · 10−12

5.7377 · 10−11

1

y1

y2

y3

0.904837418035960 · 100

0.192874984796392 · 10−21

0.192874984796392 · 10−21

5.8876 · 10−9

2.5275 · 10−20

2.5179 · 10−20

5.1992 · 10−9

1.5331 · 10−20

1.4970 · 10−20

5.9030 · 10−9

1.5831 · 10−20

6.3200 · 10−20

5.0985 · 10−9

9.5993 · 10−21

3.7731 · 10−20

Table 5.4: Results for integration of Example 4.

x yi Exact solution Error Error Error Error

in MEBDF in MEBNDF in MENBDF in MENDF

5

y1

y2

y3

0.673794699908547 · 10−2

0.673794699908547 · 10−2

5

4.3118 · 10−5

9.0623 · 10−5

8.8818 · 10−16

8.0532 · 10−5

3.5681 · 10−5

8.8818 · 10−16

1.2225 · 10−6

4.6216 · 10−5

8.8818 · 10−16

2.2914 · 10−5

2.2964 · 10−5

8.8818 · 10−16

10

y1

y2

y3

0.453999297624848 · 10−4

0.453999297624848 · 10−4

10

1.4443 · 10−5

4.5723 · 10−6

1.7764 · 10−14

3.3460 · 10−6

1.1982 · 10−5

1.7764 · 10−14

2.9658 · 10−6

7.5281 · 10−7

1.7764 · 10−14

1.3461 · 10−6

1.5005 · 10−6

1.7764 · 10−14

20

y1

y2

y3

0.206115362243856 · 10−8

0.206115362243856 · 10−8

20

3.4504 · 10−7

1.0910 · 10−8

1.7764 · 10−14

4.2692 · 10−9

2.4810 · 10−7

1.7764 · 10−14

9.3518 · 10−9

9.6023 · 10−9

1.7764 · 10−14

4.5262 · 10−9

6.3324 · 10−9

1.7764 · 10−14

The exact solution of this problem is:














y1(x) =
1
2

(

e−0.5x + e−20x (cos 20x+ sin 20x)
)

,

y2(x) =
1
2

(

e−0.5x
− e−20x (cos 20x− sin 20x)

)

,

y3(x) = −
1
2

(

e−0.5x + e−20x (cos 20x− sin 20x)
)

.

The system has been integrated using MEBDF, MEBNDF, MENBDF and MENDF. The

results are tabulated in Table 5.2. We have taken 50 steps and k = 3 to integrate Example

2. It can be seen that again, it is the MENDF which gets the smallest error at the end of the

interval of integration, and the MEBNDF is the next.

Example 3. We consider the following stiff system considered by Hosseini and Hojjati in [13].














y′1 = −0.1y1 − 49.9y2,

y′2 = −50y2,

y′3 = 70y2 − 120y3,

with initial value y(0) = (2, 1, 2)T ,

and with the stiffness ratio 1200. The exact solution is














y1(x) = e−50x + e−0.1x,

y2(x) = e−50x,

y3(x) = e−50x + e−120x.
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Table 5.5: Results for integration of Example 5.

x yi Exact solution Error Error Error Error

in MEBDF in MEBNDF in MENBDF in MENDF

3
y1

y2

−0.247825652536129 · 10−6

0.497870683678639 · 10−1

1.9890 · 10−10

1.9975 · 10−5

1.7682 · 10−10

1.7758 · 10−5

2.0120 · 10−10

2.0206 · 10−5

1.7511 · 10−10

1.7587 · 10−5

5
y1

y2

−0.453908515921664 · 10−8

0.673794699908547 · 10−2

3.6390 · 10−12

2.7004 · 10−6

3.2348 · 10−12

2.4006 · 10−6

3.6807 · 10−12

2.7313 · 10−6

3.2032 · 10−12

2.3770 · 10−6

In Table 5.3 we list the error of the computed solutions. We have taken 50 steps and k = 4

to integrate Example 3. We observe that the performance of the new methods is correct, not

being the results obtained by our methods inferior to the ones obtained by the MEBDF. The

MENDF is the method which gets the best results. We have to take into account that apart

from obtaining the best accuracy, the MENDF is which presents the best A(α)-stability when

k = 4.

Example 4. We consider another stiff initial value problem considered in [12]:















y′1 = −αy1 − βy2 + (α+ β − 1)e−x,

y′2 = βy1 − αy2 + (α− β − 1)e−x,

y′3 = 1,

with initial value y(0) = (1, 1, 0)T .

The exact solution is y1(x) = y2(x) = e−x, and y3(x) = x. In Table 5.4, we give the results

obtained for the solution of this problem for the case α = 1, β = 15, for 200 steps and k = 4.

Again, our new methods are superior or similar to the MEBDF method, being the MENDF the

one obtaining the most accurate results.

Example 5. Consider the non-linear system of differential equations considered in [14]:

{

y′1 = λy1 + y22 ,

y′2 = −y2,
with initial value y(0) =

(

−
1

λ+ 2
, 1

)T

,

where λ = 104. The exact solution of this problem is this one:

y1(x) =
−e−2x

(λ+ 2)
, y2(x) = e−x.

We have integrated this problem in T = [0, 5], we have taken 60 steps and k = 4. The

results are tabulated in Table 5.5 and the same conclusions as in the previous four examples

are repeated.

6. Conclusions

In this paper we have built three different new methods (MENDF, MENBDF and MEBNDF)

taking as basis the MEBDF method. This new methods follow the MEBDF scheme but they

use NDF predictors in one of the predicting stages or in both of them. The result is a set

of three methods that maintains the accuracy and the stability characteristics of the MEBDF

method in orders p = 2, 3, 4. In order p = 5, the new methods also maintain the accuracy of

the MEBDF while improving the A(α)-stability.
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We have used backward differences to program the predicting stages (BDF and NDF), as

well as the expression of the corrector. The algorithmic implementation done is the same for all

the MEBDF class (MEBDF, MENDF, MENBDF and MEBNDF), so it represents and efficient

way to program four different methods.
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