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Abstract

The geometries of many problems of practical interest are created from circular or ellip-

tic arcs. Arc boundary elements can represent these boundaries exactly, and consequently,

errors caused by representing such geometries using polynomial shape functions can be

removed. To fully utilize the geometry of circular boundary, the non-singular boundary

integral equations (BIEs) and a general nonlinear transformation technique available for

arc elements are introduced to remove or damp out the singular or nearly singular proper-

ties of the integral kernels. Several benchmark 2D elastostatic problems demonstrate that

the present algorithm can effectively handle singular and nearly singular integrals occur-

ring in the boundary element method (BEM) for boundary layer effect and thin-walled

structural problems. Owing to the employment of exact geometrical representation, only

a small number of elements need to be divided along the boundary and high accuracy can

be achieved without increasing other more computational efforts.
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1. Introduction

The BEM is a powerful and efficient computational method if boundary integrals can be

evaluated accurately. The main advantage of the BEM resulting from the reduction of the

dimension of the boundary value problem is well-known. However, it is popular as well that

the standard BEM formulations include singular and nearly singular integrals, and thus the

integrations should be performed very carefully. In the past decades, many direct and indirect

algorithms for singular integral have been developed and used successfully [1-11]. The nearly

singular integrals, however, need to be further studied, although great progresses have been

achieved for each of the existing methods. Studies show that the conventional boundary element

method (CBEM) using the standard Gaussian quadrature fails to yield reliable results for

nearly singular integrals. The major reason for this failure is that the kernels’ integration
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presents various orders of near singularities since the integrand oscillates very fiercely within

the integration interval. Therefore, although nearly singular integrals are not singular in the

sense of mathematics, it can not be calculated accurately by the standard Gaussian quadrature.

Nearly singular integrals usually occur for the thin-body problem when the thickness of

the considered domain is small, or for the case where the physical quantity is calculated at a

domain point which is very close to the boundary, or for the case where the mesh contains a

large element and a small element adjacent to each other. The usual approach to achieving high

accuracy is to use the subdivision method which is done to increase the number of subdivisions

as the source point gets close to the element where the integral is taken. However, this method

requires too much preprocessing and CPU time, especially for solving thin-body problems.

In the past decades, tremendous effort was devoted to derive convenient integral forms or

sophisticated computational techniques for calculating the nearly singular integrals. These pro-

posed methods can be divided on the whole into two categories: “indirect algorithms” and “irect

algorithms”. The indirect algorithms [4,9-11], which benefit from the regularization ideas and

techniques for the singular integrals, are mainly to calculate indirectly or avoid calculating the

nearly singular integrals by establishing new regularized boundary integral equations (BIEs).

However, the accuracy of their calculated results is not very satisfactory. The direct algorithms

are calculating the nearly singular integrals directly. They usually include, but are not limited

to, interval subdivision method [12-13], special Gaussian quadrature method [14-15], the ex-

act integration method [16-18], and nonlinear transformation method [19-23]. Although great

progresses have been achieved for each of the above methods, it should be pointed out that

the geometry of the boundary element is often depicted by using linear shape functions when

nearly singular integrals need to be calculated [22]. However, most engineering processes occur

mostly in complex geometrical domains, and obviously, higher order geometry elements are

expected to be more accurate to solve such practical problems [1-4]. Recently, two regularized

algorithms suitable for calculating the nearly singular integrals occurring on the high-order

geometry elements was proposed by the authors of this paper [18,23].

It is well known that the accuracy is a vital factor in a successful calculation, together

with minimum computer storage and CPU time. There are several sources of inaccuracy in

the boundary element method. They are the use of polynomial shape functions to represent

the boundary geometries, also to represent the variations of the physical variables over the

boundary, the numerical integrations using Gaussian quadrature, and the rounding off errors

during the evaluations.

The geometries of many problems of practical interest are created from circular or ellip-

tic arcs. Arc boundary elements can represent circular and elliptic boundaries exactly, and

consequently, errors caused by representing such geometries using polynomial shape functions

can be removed by using exact geometrical representations. Therefore, the exact geometrical

representation is expected to give more accurate results than lower-order or even high-order

boundary element analysis.

To fully utilize the geometry of circular boundary, the approach used in this paper is ex-

act geometrical representation for circular and elliptic boundaries. Both singular and nearly

singular integrals are reconstructed and calculated under such geometrical representation. To

verify the method developed in this paper, both boundary layer effect and thin body prob-

lems are considered. For boundary layer effect, the stresses at the interior points very close to

boundary are evaluated. For thin body problems, very promising results are obtained when

the thickness-to-length ratios is in the orders from 10−1 to 10−9, which is sufficient for mod-
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eling most thin-walled structures in the micro- or nano- scales. Owing to the employment of

exact geometrical representation, only a small number of elements need to be divided along

the boundary and high accuracy can be achieved without increasing other more computational

efforts.

2. Non-Singular BIEs for 2D Elastic Problems

It is well known that the domain variables can be computed by integral equations only

after all the boundary quantities have been obtained, and the accuracy of boundary quantities

directly affects the validity of the interior quantities. However, when calculating the boundary

quantities, we have to deal with the singular boundary integrals, and a good choice is using

the regularized Boundary Integral Equations(BIEs). In this paper, we always assume that is a

bounded domain in , is its open complement, and denotes the boundary. and (or and ) are the

unit tangent and outward normal vectors of to the domain at the point , respectively. For 2-D

elastic problems, the non-singular BIEs with indirect variables can be found in [5]. Without

regard to the rigid body displacement and the body forces, the regularized BIEs excluding the

CPV and HFP integrals, on can be expressed as

ui(y) =

∫

Γ

φk(x)u
∗
ik(y,x)dΓ, y ∈ Γ, (2.1)

∇ui(y) =
∫

Γ

[φk(x)− φk(y)]∇u∗ik(y,x)dΓ− φk(y)

{
∫

Γ

[t(x)− t(y)]
∂u∗ik(y,x)

∂t
dΓ

+

∫

Γ

[n(x)− n(y)]
∂u∗ik(y,x)

∂n
dΓ +

k0
G
n(y)

(
∫

Γ

[nk(x)− nk(y)]
∂ ln r

∂xi
dΓ (2.2)

+ nk(y)

∫

Γ

[ti(x)− ti(y)]
∂ ln r

∂t
dΓnk(y)

∫

Γ

[ni(x)− ni(y)]
∂ ln r

∂n
dΓ

)}

, y ∈ Γ,

where i, k = 1, 2; k0 = 1/4π(1− v); G is the shear modulus; φk(x) is the density function to be

determined; r is the distance between load point and field point.

For the domain Ω, the regularized BIEs excluding the CPV and HFP integrals, are given as

ui(y) =

∫

Γ

φk(x)u
∗
ik(x,y)dΓ, y ∈ Γ, (2.3)

∇ui(y) = φk(y)n(y)
1

G
[δik − nk(y)ni(y)

2(1− v)
] +

∫

Γ

[φk(x)− φk(y)]∇u∗ik(y,x)dΓ

− φk(y)

{
∫

Γ

[t(x)− t(y)]
∂u∗ik(y,x)

∂t
dΓ +

∫

Γ

[n(x)− n(y)]
∂u∗ik(y,x)

∂n
dΓ

+
k0
G
n(y)

(
∫

Γ

[nk(x)− nk(y)]
∂ ln r

∂xi
dΓ + nk(y)

∫

Γ

[ti(x)− ti(y)]
∂ ln r

∂t
dΓ

+ nk(y)

∫

Γ

[ni(x)− ni(y)]
∂ ln r

∂n
dΓ

)}

, y ∈ Γ. (2.4)

For the internal point y, the integral equations can be written as

ui(y) =

∫

Γ

φk(x)u
∗
ik(y,x)dΓ, y ∈ Ω̂, (2.5)

∇ui(y) =
∫

Γ

φk(x)∇u∗ik(y,x)dΓ, y ∈ Ω̂, (2.6)
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where Ω̂ = Ω or Ωc.

In Eqs. (2.1) - (2.6), u∗ik(y,x) denotes the Kelvin displacement fundamental solution and

can be expressed as

u∗ik(y,x) =
1

8πG(1− µ)

[

(3 − 4µ)δik ln
1

r
+

∂r

∂xi

∂r

∂xk

]

. (2.7)

3. Numerical Implementation

3.1. Exact geometrical representation

The quintessence of the BEM is to discretize the boundary into a finite number of segments,

not necessarily equal, which are called boundary elements. Two approximations are made over

each of these elements. One is about the geometry of the boundary, while the other has to

do with the variation of the unknown boundary quantity over the element. The linear ele-

ment is not an ideal one as it can not approximate with sufficient accuracy for the geometry of

curvilinear boundaries. For this reason, it is recommended to use higher order elements, and

most often, using isoparametric quadratic elements in most applications. Since a substantial

proportion of domains of interest in practice are created from circular or elliptic arcs, exact

geometrical representations for such geometries can greatly improve the accuracies of the nu-

merical analyses. However, for thin body structural problems, the advantage of using exact

geometrical representation is not only concerning its power to improve the calculation accu-

racy. More importantly, computational models of these structures demand a higher level of the

geometry approximation, and the usage of exact geometrical representation in computational

models can meet this requirement. For example, if the boundary geometry is depicted by using

the straight line, the linear element of the outer surface will attach or even pass through the

inner boundary if the thickness of the considered structure is very small, as shown in Fig. 3.1.

Consequently, the actual geometry of considered domain can not be described lively, and thus

lower-order geometry approximation will fail to yield reliable results for such problems. In order

to avoid this phenomenon, very fine meshes mush be used in this situation, but this yields too

much preprocessing and CPU time.

Fig. 3.1. A thin-walled structure with illogical geometry element.

The exact geometrical representation, namely “arc element”, for circular and elliptic bound-

aries has been proposed by Zhang [5]. Consider a circular arc element of radius of curvature R

with its centre of curvature located at (x′1, x
′
2) as in Fig. 3.2. Suppose (R, θ1), (R, θ2), are the

coordinates of the two extreme points of the arc element Γj , respectively.

The exact boundary elements can be expressed as

{

x1 = x′1 +R cos θξ,

x2 = x′2 +R sin θξ,
(3.1)
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Fig. 3.2. An element on a circular boundary segment.

where θξ =
1−ξ
2 θ1 +

1+ξ
2 θ2, (−1 ≤ ξ ≤ 1).

The Jacobian of transformation from arc element to intrinsic coordinate ξ reduces to

J(ξ) =
1

2

√

(x21 − x11)
2 + (x22 − x12)

2 = R
θ2 − θ1

2
. (3.2)

When the collocation point y locates on the boundary Γ, its coordinates can be expressed as

(for simplicity, suppose (x′1, x
′
2) = (0, 0) )

y1 = R cos θη, y2 = R sin θη, (3.3)

where θη = 1−η
2 θ1 +

1+η
2 θ2, η ∈ (−1, 1) is the local coordinate of the point y.

3.2. Numerical Implementation for singular integrals

In boundary element analysis, the discretized boundary integrals would present various

orders of singularity when the source point and the field point coincide and the distance r

equals zero. An effective technique to handle these singular integrals is critical to achieve

efficient, accurate boundary element analysis. In section 2, an effective non-singular boundary

integral equations for 2D elastic problems is introduced, herein we will discuss its numerical

implementations on arc elements.

If the boundary of the solution domain is divided into a total of N elements, Eqs. (2.1) and

(2.3) become

ui(y) =

N
∑

m=1

3
∑

s=1

φk(x(m,c))

∫ 1

−1

J(ξ)Ns(ξ)u
∗
ik(y,x)dξ, (3.4)

where J(ξ) = R θ2−θ1
2 , N1(ξ) =

1
2ξ(ξ − 1), N2(ξ) = 1− ξ2, N3(ξ) =

1
2ξ(ξ + 1).

When the load point does not lie on the element over which the integration is being per-

formed, the standard Gaussian quadrature technique can be used to evaluate the integrals.

However, when the load point does lie on the element, special treatments of the integrals are

needed. The right hand of Eq. (3.4) can be expressed as follows
∫ 1

−1

J(ξ)Ns(ξ)u
∗
ik(y,x)dξ

=
1

8πG(1− µ)

{

(3− 4µ)δik

∫ 1

−1

J(ξ)Ns(ξ) ln
1

r
dξ +

∫ 1

−1

J(ξ)Ns(ξ)
∂r

∂xi

∂r

∂xk
dξ

}

. (3.5)
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Obviously, there is no singularity in the second right hand side integral, it therefore can be

evaluated using standard Gaussian quadrature. The first hand side integral, however, requires

special treatment because of the singularity when the load point lies on the element. There are

several methods available to evaluate this kind of integral in boundary element implementations,

most of which fall into the categories of either coordinate transformation or interval splitting.

When the load point is the first node of the element, r = 2R sin [(1 + ξ)(θ2 − θ1)/4], the first

right hand side integral of Eq. (3.5) becomes

I = −
∫ 1

−1

J(ξ)Ns(ξ) ln

[

2R sin
(1 + ξ)(θ2 − θ1)

4

]

dξ

=

∫ 1

−1

J(ξ)Ns(ξ) ln

[

(1 + ξ)/2

2R sin (1+ξ)(θ2−θ1)
4

]

dξ +

∫ 1

−1

J(ξ)Ns(ξ) ln
2

1 + ξ
dξ. (3.6)

The first right hand side integral can now be evaluated by using standard Gaussian quadrature.

Transformed second integral via ξ = 2η − 1, then this part can be evaluated using logarithmic

schemes.

Similar treatment is needed for the case where the load point is the middle or third node of

the element [24].

When considering the Eqs. (2.2) and (2.4), the unit tangent and outward normal vectors of

Γ to the domain Ω can be expressed as follows

t1(x) =
1

J(ξ)

dx1
dξ

= − sin(θξ), t2(x) =
1

J(ξ)

dx2
dξ

= cos(θξ), (3.7a)

t1(y) =
1

J(η)

dy1
dξ

∣

∣

∣

∣

ξ=η

= − sin(θη), t2(y) =
1

J(η)

dy2
dξ

∣

∣

∣

∣

ξ=η

= cos(θη), (3.7b)

n1(x) =
1

J(ξ)

dx2
dξ

= cos(θξ), n2(x) = − 1

J(ξ)

dx1
dξ

= sin(θξ), (3.8a)

n1(y) =
1

J(η)

dy2
dξ

∣

∣

∣

∣

ξ=η

= cos(θη), n2(y) = − 1

J(η)

dy1
dξ

∣

∣

∣

∣

ξ=η

= sin(θη). (3.8b)

The integral kernels of the discretized equations (2.2) and (2.4) contain the following forms















∂u∗ik(x,y)

∂t
= sin−1

[

(θ2 − θ1)
(η − ξ)

4

]

fik,

∂u∗ik(x,y)

∂n
= sin−1

[

(θ2 − θ1)
(η − ξ)

4

]

gik,

(i, k = 1, 2), (3.9)

where fik and gik are regular functions which will not present (near)singularities. Clearly, the

above functions would present singularity when ξ → η.

If φ(x),n(x) and t(x) satisfies the Hölder condition, viz. φ(x) ∈ C0,α1 ,n(x) ∈ C0,α2 , t(x) ∈
C0,α3 . There are

|φ(x)− φ(y)| ≤M1 |x− y|α1 , (3.10a)

|n(x)− n(y)| ≤M2 |x− y|α2 , (3.10b)

|t(x)− t(y)| ≤M3 |x− y|α3 , (3.10c)

where 0 < αi ≤ 1,Mi are all constant. Therefore, the singularity of the (2.2) and (2.4) can be

removed and easily calculated by using the conventional Gaussian quadrature.
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3.3. Numerical Implementation for nearly singular integrals

For boundary layer effect problems, if the interior points y are very close to the integral

elements, the distance r between the interior point and the integral element tends to zero. The

integrals in Eqs. (2.5) and (2.6) will behave various orders of near singularity, which can not

be calculated accurately by using the conventional boundary element analysis.

For thin body problems, the domain of such structure is thin, and some boundaries will

be very close to each other. Thus, the distance r between some boundary nodes and bound-

ary integral elements probably approaches zero. This causes the integrals in discretized Eqs.

(2.1) (2.4) nearly singular, and the results of the Gaussian quadrature become invalid. There-

fore, the density functions cannot be calculated accurately, needless to say, to calculate the

physical quantities at interior points. On the other hand, almost all the interior points are very

close to the integral elements for thin body problems. Therefore, there also exist nearly singular

integrals in Eqs. (2.5) and (2.6).

The above mentioned nearly singular integrals can be expressed as the following generalized

integrals















I1 =

∫

Γe

ψ(x) ln r2dΓ,

I2 =

∫

Γe

ψ(x)
1

r2α
dΓ,

(3.11)

where α > 0, ψ(x) denotes a well-behaved function including the Jacobian, the shape func-

tions and ones which arise from taking the derivative of the integral kernels. Under such a

circumstance, either a very fine mesh with massive integration points or a special integration

technique needs to be adopted. In the last two decades, numerous research works have been

published on this subject in the BEM literature. Most of the work has been focused on the

numerical approaches, such as subdivisions of the element of integration, adaptive integration

schemes, exact integration methods and so on. However, most of these earlier methods are

either inefficient or can not provide accurate results when the thickness of the thin structure is

smaller than 1.0E-06.

In this section, a general nonlinear transformation, based on the idea of diminishing the

difference of the orders of magnitude or the scale of change of operational factors, is introduced

in order to remove or damp out the nearly singular properties of the Eq. (3.11).

When the collocation point y locates in the domain Ω (or Ωc for exterior problems), then

we have

y1 = R0 cos θ0, y2 = R0 sin θ0, (3.12)

where θ0 = 1−η
2 θ1 +

1+η
2 θ2 (−1 < η < 1).

Using the procedure described in section 3.1, the distance r between the source point and

the field point can be expressed as

r2 = |x− y|2 = 4RR0

{

sin2 γ + d2
}

, (3.13)

where γ = β(ξ − η), β = θ2−θ1
4 , d = R−R0

4
√
RR0

. The coefficients γ, β and d are determined by the

coordinates of the nodes of the element and the collocation point y.

Substituting r2 in Eq. (3.13) into Eq. (3.11), then the integrals I1 and I2 can be divided
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into two parts at point η as follows


















I1 =

{
∫ η

−1

+

∫ 1

η

}

g(ξ) ln(sin2 γ + d2)dξ + lnL2

∫ 1

−1

g(ξ)dξ,

I2 =
1

L2α

{
∫ η

−1

+

∫ 1

η

}

g(ξ)

(sin2 γ + d2)α
dξ,

(3.14)

where L = 2
√
RR0 and g(·) is a regular function that consists of shape function, the Jacobian

and a finite sum of polynomials divided by rn .

It can be seen from Eq. (3.13) that the minimum value of r2 equals d2 when ξ = η . If

an interior point gets close to the integral element (R0 → R ), the minimum distance d2 will

trend to zero. It is obvious that the integrals in Eqs. (3.14) would present various orders of

near singularity if d is very small, which can not be calculated accurately by using the standard

Gaussian quadrature. The key to achieving high accuracy is to find an algorithm to calculate

these integrals accurately for a small value of d.

By using some simple deduction, the integrals in Eq. (3.14) can be rewritten as follows


















I1 =

∫ t1

0

g1(t) ln(t
2 + d2)dt+

∫ t2

0

g2(t) ln(t
2 + d2)dt+ lnL2

∫ 1

−1

g(ξ)dξ,

I2 =
1

L2α

[
∫ t1

0

g1(t)

(t2 + d2)α
dt+

∫ t2

0

g2(t)

(t2 + d2)α
dt

]

,

(3.15)

where

t1 = sin[β(1 + η)], t2 = sin[β(1 − η)],

g1(t) =
1

β
√
1− t2

g
(

η − 1

β
arcsin t

)

, g2(t) =
1

β
√
1− t2

g
(

η +
1

β
arcsin t

)

.

As long as θ2 − θ1 ≤ π
4 , we have

|β(1 + η)| =
∣

∣

∣

∣

θ0 − θ1
2

∣

∣

∣

∣

≤ π

8
, |β(1 − η)| =

∣

∣

∣

∣

θ0 − θ2
2

∣

∣

∣

∣

≤ π

8
, (3.16)

according to (3.16), there should be |t1| , |t2| = |sin[β(1 ± η)]| < sin π
8 ≈ 0.3826834 ≪ 1 .

Therefore, g1(t), g2(t) are regular functions.

Introducing the following nonlinear transformation

t = d(eki(1+ξ) − 1), i = 1, 2, (3.17)

where k1 = ln
√

1 + t1/d, k2 = ln
√

1 + t2/d . Substituting (3.17) into (3.15), then the integrals

I1 and I2 can be rewritten as follows


























































I1 = dk1 ln d
2

∫ 1

−1

g1(ξ)e
k1(1+ξ)dξ + dk1

∫ 1

−1

g1(ξ) ln[1 + (ek1(1+ξ) − 1)2]ek1(1+ξ)dξ

+ dk2 ln d
2

∫ 1

−1

g2(ξ)e
k2(1+ξ)dξ + dk2

∫ 1

−1

g2(ξ) ln[1 + (ek2(1+ξ) − 1)2]ek2(1+ξ)dξ,

+ lnL2

∫ 1

−1

g(ξ)dξ,

I2 =
1

L2αd2α−1

{
∫ 1

−1

k1g1(ξ)e
k1(1+ξ)

[(ek1(1+ξ) − 1)2 + 1]α
dξ +

∫ 1

−1

k2g2(ξ)e
k2(1+ξ)

[(ek2(1+ξ) − 1)2 + 1]α
dξ

}

.

(3.18)
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It is obvious that ln[1 + (ek1(1+ξ) − 1)2] is regular even if the value of d is very small.

By following the procedures described above, the near singularities of boundary integrals

have been fully regularized. The final integral formulations over arc element are obtained as

shown in Eq. (3.18), which can now be computed straightforward by using standard Gaussian

quadrature.

4. Numerical Examples

In this section, both boundary layer effect and thin-body problems are given to test the

proposed algorithm. The present algorithm applies the new nonlinear transformation to treat

the nearly singular integrals. If the integral has no singularity, Gaussian quadrature is still kept

in use.

4.1. Boundary layer effect

Example 4.1. In the first test case, which is depicted in Fig. 4.1, an infinite plate with a

circular hole subjected to a uniform radial pressure p = 10 is considered. The radius of the

circle is r = 2; the elastic shear modulus is G = 807692.3N/cm2 ; the Poisson’s ratio is v = 0.3.

There are 26 uniformly arc elements divided along the boundary, and quadratic discontinuous

interpolation is adopted to approximate the boundary functions.

For the interior points increasingly close to the boundary, the results of the radial and

tangential stresses σr and σθ on the line x2 = 0 are listed in Table 4.1 and Table 4.2, respectively.

Both the CBEM and the proposed method are employed for the purpose of comparison. The

convergence rates of the radial and tangential stresses σr and σθ at the point (2.0000001, 0) are

shown in Fig. 4.2.

It can be seen from Table 4.1 and Table 4.2 that the results of stresses σr and σθ can be

accurately calculated by using the CBEM and the present method when the computed points

are not very close to the boundary (x1 ≥ 2.1 ). However, when the distance between the interior

point and the boundary is equal to or less than 0.01, the results calculated by the CBEM become

less satisfactory or even invalid. In contrast with the CBEM, the present method can be used

1
x

2
x

p

Fig. 4.1. An infinite plate with a circular hole subjected to a uniform radial pressure.
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Table 4.1: Radial stresses σr at interior points on the line x2 = 0.

x1 Exact CBEM Present Relative error (%)

2.1 -0.907029E+01 -0.906871E+01 -0.906974E+01 0.604962E-02

2.01 -0.990074E+01 0.269400E+01 -0.990064E+01 0.102934E-02

2.001 -0.999000E+01 0.715932E+01 -0.998999E+01 0.100013E-03

2.0001 -0.999900E+01 0.746507E+01 -0.999900E+01 -0.623558E-04

2.00001 -0.999990E+01 0.749544E+01 -0.999986E+01 0.382442E-03

2.000001 -0.999999E+01 0.749847E+01 -0.100000E+02 -0.408402E-03

2.0000001 -0.999999E+01 0.749878E+01 -0.999950E+01 0.491882E-02

2.00000001 -0.100000E+02 0.749881E+01 -0.100022E+02 -0.228409E-01

2.000000001 -0.100000E+02 0.749881E+01 -0.999848E+01 0.151787E-01

2.0000000001 -0.100000E+02 0.749881E+01 -0.999231E+01 0.768667E-01

Table 4.2: Tangential stresses σθ at interior points on the line x2 = 0.

x1 Exact CBEM Present Relative error (%)

2.1 0.907029E+01 0.907065E+01 0.907076E+01 -0.514525E-02

2.01 0.990074E+01 0.747504E+01 0.990319E+01 -0.246910E-01

2.001 0.999000E+01 0.161345E+02 0.999271E+01 -0.271056E-01

2.0001 0.999900E+01 0.173662E+02 0.100017E+02 -0.274185E-01

2.00001 0.999990E+01 0.174899E+02 0.100026E+02 -0.271072E-01

2.000001 0.999999E+01 0.175023E+02 0.100027E+02 -0.270789E-01

2.0000001 0.999999E+01 0.175035E+02 0.100024E+02 -0.244594E-01

2.00000001 0.100000E+02 0.175036E+02 0.100049E+02 -0.492739E-01

2.000000001 0.100000E+02 0.175036E+02 0.100023E+02 -0.229866E-01

2.0000000001 0.100000E+02 0.175037E+02 0.999581E+01 0.418176E-01
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Fig. 4.2. Convergence curves of the stresses σr and σθ at the point (2.0000001, 0).

to obtain accurate results, with the largest percentage error less than 0.08%, even when the

distance between the interior point and the boundary reaches 1E-10.

We can observe from Fig. 4.2 that the convergence rates of the present method are fast

even when the distance between the computed point and the boundary reaches 1E-07.
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Fig. 4.3. A thin-walled cylinder subjected to uniform internal pressure.

4.2. Thin body problems

Example 4.2. As shown in Fig. 4.3, a thin-walled cylinder subjected to a uniform internal

pressure p = 1 is considered. The outer and inner radii of the cylinder are a and b , respectively,

with a = 10 . The elastic shear modulus is G = 807692.3N/cm2, and the Poisson’s ratio is

v = 0.3.

There are 50 arc elements divided along the outer and inner surfaces, and quadratic dis-

continuous interpolation is adopted to approximate the boundary functions. In this example,

(a− b)/a is defined as the thickness-to-length ratio. As a is fixed as 10, the ratio reduces as b

decreases.

For different thickness-to-length ratios, the results of the unknown stresses at the boundary

Table 4.3: Radial stresses σr at interior points B.

x1 Exact CBEM Present Relative error (%)

1.0E-1 -0.460562E+00 -0.460387E+00 -0.460487E+00 0.162794E-01

1.0E-2 -0.496231E+00 0.958016E+01 -0.496300E+00 -0.139723E-01

1.0E-3 -0.499624E+00 -0.389405E+02 -0.499634E+00 -0.188091E-02

1.0E-4 -0.499962E+00 0.550044E+02 -0.499963E+00 -0.196719E-03

1.0E-5 -0.499996E+00 0.441747E+02 -0.499993E+00 0.528238E-03

1.0E-6 -0.499999E+00 0.433561E+02 -0.499328E+00 0.134177E+00

Table 4.4: Tangential stresses σθ at interior points B.

x1 Exact CBEM Present Relative error (%)

1.0E-1 0.898687E+01 0.898868E+01 0.898761E+01 -0.820917E-02

1.0E-2 0.989987E+02 0.107124E+03 0.989215E+02 0.779326E-01

1.0E-3 0.998999E+03 0.106020E+04 0.998228E+03 0.772517E-01

1.0E-4 0.999900E+04 -0.148613E+04 0.999127E+04 0.772397E-01

1.0E-5 0.999990E+05 -0.119579E+04 0.999215E+05 0.774775E-01

1.0E-6 0.999999E+06 -0.117366E+04 0.999269E+06 0.145512E+00
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Fig. 4.4. Relative errors of σθ and σr at the boundary node A.

node A(b, 0) are shown in Fig. 4.4. The computational results at the interior point B((a +

b)/2, 0) are listed in Table 4.3 and Table 4.4. Both the CBEM and the proposed method are

employed for the purpose of comparison.

We can see from Fig. 4.4 that the calculated results of stresses at the boundary node A

calculated by using the proposed method are very consistent with the exact solutions, with the

largest relative error less than 0.2%, even when the thickness-to-length ratio as small as 1E-06.

Table 4.3 and Table 4.4 show that the CBEM can only be available to calculate the accept-

able radial and tangential stresses at the interior point B for the thickness-to-length ratio down

to 1E-01, and the results are out of true with further decrease of the thickness-to-length ratio.

Nevertheless, the results obtained by using the presented schemes are excellently consistent

with the analytical solutions even when the thickness-to-length ratio equals 1E-06.

Example 4.3. In this section, the method developed in this paper will be used to solve a

problem of a shaft with a thin coating [19], as shown in Fig. 4.5. The shaft and coating

have outer radii ra and rb respectively, with their centre of curvature located at the point

o(0, 0). In this example, the coated system is loaded by a uniform pressure p = 1 , and the

shaft is considered to be rigid when compared to the coating, so the boundary conditions are

ux = uy = 0 for all nodes at the shaft/coating interface. In this example, δ = (rb − ra)/ra is

defined as the thickness to length ratio. As ra is held constant at 1, the ratio reduces as rb

Table 4.5: Radial and tangential stresses at the interior point C.

δ
Radial stresses σr Tangential stresses σθ

Exact CBEM Present Relative error (%)

1.0E-01 -0.103232E+01 -0.103233E+01 -0.304694E+00 -0.304661E+00

1.0E-02 -0.100369E+01 -0.100361E+01 -0.255610E+00 -0.255715E+00

1.0E-03 -0.100037E+01 -0.100038E+01 -0.250562E+00 -0.250603E+00

1.0E-04 -0.100003E+01 -0.100003E+01 -0.250056E+00 -0.250172E+00

1.0E-05 -0.100000E+01 -0.100000E+01 -0.250005E+00 -0.249922E+00

1.0E-06 -0.100000E+01 -0.100000E+01 -0.250000E+00 -0.249808E+00

1.0E-07 -0.100000E+01 -0.100000E+01 -0.250000E+00 -0.249796E+00

1.0E-08 -0.100000E+01 -0.999999E+00 -0.250000E+00 -0.249795E+00

1.0E-09 -0.100000E+01 -0.100000E+01 -0.250000E+00 -0.249796E+00

1.0E-10 -0.100000E+01 -0.999998E+00 -0.250000E+00 -0.249793E+00
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Fig. 4.5. A shaft with a thin uniform coating.

decreases.

There are totally 40 “arc elements” divided along the shaft and coating surfaces, regardless

of the thickness of the structure. The elastic shear modulus is G = 8.0 × 1010 Pa, Poisson’s

ratio is v = 0.2.

In 1998, Luo et al. [19] have handled this coating system. However, in their work only

boundary unknown radial stresses σr are computed. The physical quantities at interior points

need further investigation.

For different thickness-to-length ratios, the results of the radial and tangential stresses at

interior point C((ra+rb)/2, 0) are listed in Table 4.5. For δ = 1.0E−9 , the results of tangential

and radial stresses on the line y = 0 are listed in Table 4.6 and Fig. 4.6, respectively. Both the

CBEM and the proposed method are employed for the purpose of comparison.

It is obvious that the results calculated by using the proposed method, shown in Table 4.5,

are very consistent with the exact solutions even for the thickness to length ratio as small as

1.0E-10. We can see from Table 4.6 that the results of tangential stresses calculated by using

the proposed method are very consistent with the exact solutions, with the largest relative error

less than 0.09 %, even when the thickness-to-length ratio as small as 1.0E-9.
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Fig. 4.6. Relative errors of Radial stresses σr at the interior point on the line x2 = 0.



368 Y.M. ZHANG, W.Z. QU AND Y. GU

Table 4.6: Tangential stress σθ at the interior point on the line x2 = 0.

x1 Exact CBEM Present Relative error (%)

1.0000000001 -0.25 0.205481E+01 -0.249794E+00 0.820886E-01

1.0000000002 -0.25 0.205480E+01 -0.249795E+00 0.817528E-01

1.0000000003 -0.25 0.205480E+01 -0.249796E+00 0.815571E-01

1.0000000004 -0.25 0.205480E+01 -0.249796E+00 0.814476E-01

1.0000000006 -0.25 0.205479E+01 -0.249796E+00 0.814463E-01

1.0000000007 -0.25 0.205479E+01 -0.249796E+00 0.815260E-01

1.0000000008 -0.25 0.205478E+01 -0.249795E+00 0.817607E-01

1.0000000009 -0.25 0.205478E+01 -0.249794E+00 0.820410E-01

5. Conclusions

Exact geometry representations of circular arcs are presented in this paper in order to

reduce the errors caused by representing the geometries using polynomial shape functions. Both

singular and nearly singular integrals are reconstructed and calculated under such geometrical

representation. For boundary layer effect, the stresses at the interior points very close to the

boundary can be accurately evaluated by the present method. For thin body problems with

thickness-to-length ratios from 1.0E-01 to 1.0E-09, the stresses both on the boundary nodes

and at interior points can be accurately calculated by using the presented strategy. Owing to

the employment of exact geometrical representation, only a small number of elements need to

be divided along the boundary and high accuracy can be achieved without increasing other

more computational efforts.
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