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Abstract

In scientific applications from plasma to chemical kinetics, a wide range of temporal

scales can present in a system of differential equations. A major difficulty is encountered

due to the stiffness of the system and it is required to develop fast numerical schemes that

are able to access previously unattainable parameter regimes. In this work, we consider

an initial-final value problem for a multi-scale singularly perturbed system of linear ordi-

nary differential equations with discontinuous coefficients. We construct a tailored finite

point method, which yields approximate solutions that converge in the maximum norm,

uniformly with respect to the singular perturbation parameters, to the exact solution. A

parameter-uniform error estimate in the maximum norm is also proved. The results of

numerical experiments, that support the theoretical results, are reported.
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1. Introduction

We consider the following initial-final value problem for a system of linear ordinary differ-

ential equations with discontinuous coefficients

Eu′(t) +A(t)u(t) = f(t), ∀t ∈ (pk, pk+1), k = 0, . . . ,K, (1.1)

u(pk + 0)− u(pk − 0) = 0, k = 1, . . . ,K, (1.2)

Bεu(0) + (I− Bε)u(1) = d, (1.3)

where E , Bε are n × n matrices, d is a vector, A(t) is an n × n matrix function and f(t) is a

vector function on the interval [0, 1] such that

A(t) =
(

ai,j(t)
)

n×n
, (1.4)

f(t) = (f1(t), f2(t), . . . , fn(t))
T , (1.5)
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and {pk}
K+1
0 are some numbers which satisfy

0 = p0 < p1 < · · · < pK < pK+1 = 1.

The given functions ai,j(t), fi(t) (1 ≤ i, j ≤ n) may not be continuous on the whole in-

terval [0, 1]. Here, we consider the case when they are piecewise continuous. More pre-

cisely, we assume that the functions ai,j(t), fi(t) (1 ≤ i, j ≤ n) have K points of discon-

tinuity of the first kind, t = pk, (0 < pk < 1; k = 1, . . . ,K), so that on each subinterval

(pk, pk+1), (k = 0, . . . ,K; p0 = 0, pK+1 = 1) the functions are smooth and satisfy the conditions

ai,i(t)−

n
∑

j=1,j 6=i

|ai,j(t)| ≥ β > 0, ∀t ∈ [0, 1]. (1.6)

Furthermore, we assume that the matrices Eε = diag(ε1, ε2, . . . , εn) and Bε = diag(b1, b2, . . . , bn)

are diagonal and satisfy the conditions

|εi| > 0, 1 ≤ i ≤ n, (1.7)

bi =

{

1, εi > 0,

0, εi < 0.
(1.8)

We also suppose that there exists at least one εj (1 ≤ j ≤ n) such that

0 < |εj | ≪ 1. (1.9)

Problem (1.1)-(1.3) is then an initial-final value problem for a multi-scale singularly perturbed

system of linear ordinary differential equations with discontinuous coefficients. The solution

of problem (1.1)-(1.3) may contain initial, final and interior layers at any of the points pk
(k = 1, . . . ,K). The main goal in this paper is to develop a class of numerical methods, which

yield approximate solutions that converge in the maximum norm, uniformly with respect to the

singular perturbation parameters, to the exact solution of this problem.

When all of the parameters (εj , j = 1, . . . , n) are positive, problem (1.1)-(1.3) reduces to

the initial value singularly perturbed problem

Lu(t) ≡ Eu′(t) +A(t)u(t) = f(t), ∀t ∈ (pk, pk+1), k = 0, . . . ,K, (1.10)

u(pk + 0)− u(pk − 0) = 0, k = 1, . . . ,K, (1.11)

u(0) = d, (1.12)

which has been studied in [23].They proposed a Shishkin piecewise uniform mesh with a classical

finite difference scheme to obtain numerical solutions of this problem; a parameter-uniform error

estimate was also given.

To motivate the study of the more general initial-final value problem in the paper, it should

be noted that a semi-discretization, with respect to variable x, of the following forward-backward

parabolic problem

sign(x)|x|p
∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
− σ(x)u(x) + q(x, t), −1 < x < 2, 0 < t < T, (1.13)

u
∣

∣

x=−1
= f(t), u

∣

∣

x=2
= g(t), 0 < t < T, (1.14)

u
∣

∣

t=0
= s(x), 0 < x < 2, u

∣

∣

t=1
= γ(x), −1 < x < 0, (1.15)
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with p > 1, σ(x) > 0 can lead to the initial-final singularly perturbed problem (1.1)-(1.3). This

is because |x|p ∈ (0, 2p) ranges from very small to 2p.

In this paper we construct a parameter-uniform scheme for the initial-final multi-scale singu-

larly perturbed problem(1.1)-(1.3) using the tailored finite point method (TFPM). The TFPM

was proposed by Han, Huang and Kellogg in [9] for the numerical solution of singular pertur-

bation problems. The basic idea of the TFPM is to choose, at each mesh point, suitable basis

functions based on the local properties of the solutions of the given problem; then to approxi-

mate the solution using these basis functions. At each point, the numerical scheme is tailored

to the given problem. The TFPM was successfully applied by Han, Huang ,and Kellogg to solve

the Hemker problem [9, 11]; they won the Hemker prize at the international conference BAIL

2008. Later the TFPM was developed to solve the second-order elliptic singular pertubation

problem [6, 21], the first order wave equation [13], the one-dimension Helmholtz equation with

high wave number [5], second order elliptic equations with rough or highly oscillatory coeffi-

cients [10] and so on [7,8]. For the one dimensional singular perturbation problem the TFPM is

close to the method of “exponential fitting” discussed in [1,3,16,20]. The TFPM is also applied

to the one-dimensional discrete-ordinate transport equations in [17].

The TFPM uses the functions that exactly satisfy the PDE as the bases. For the linear

ordinary differential equations system under consideration, the bases are exponential functions.

The exponential integrator appears for a long time, see the review paper [19]. The new idea in

TFPM is to approximate all the coefficientsA(t) and f(t) by piecewise contants. Compared with

previous magnus integrators [12] and adiabatic integrators [18] developed for the stiff problem

or highly oscillatory problems, our approach is simple and proved to possess parameter uniform

convergence. More precisely, we can use time steps much larger than the parameters ǫi in (1.7)

and achieve stable and accurate results.

The main contribution of this paper is that we construct a tailored finite point method for

(1.1)-(1.3), which yields approximate solutions that converge in the maximum norm, uniformly

with respect to the singular perturbation parameters, to the exact solution. The parameter-

uniform error estimate in the maximum norm is proved analytically as stated in Theorem 4.1.

Some numerical experiments that support the theoretical results are presented in section 5.

2. Existence and Uniqueness of Solutions to(1.1)-(1.3)

In this section we discuss the existence and uniqueness of solutions to the problem (1.1)-

(1.3). On [0, 1] we introduce the following function spaces

C
(0)
∗,∗[0, 1] =

{

v(t)
∣

∣v|(pk,pk+1) ∈ C(0)(pk, pk+1), k = 0, 1, . . . ,K
}

, (2.1)

C
(1)
∗ [0, 1],=

{

v(t)
∣

∣v(t) ∈ C(0)[0, 1], and v′(t) ∈ C
(0)
∗∗ [0, 1]

}

, (2.2)

C
(1)
∗,∗[0, 1] =

{

v(t)
∣

∣v(t), v′(t) ∈ C
(0)
∗∗ [0, 1]

}

. (2.3)

Note that the space C(0)[0, 1] is a subspace of C
(0)
∗∗ [0, 1] and that, for any v(t) ∈ C

(0)
∗,∗[0, 1], v(t)

may have discontinuity points of the first kind t = pk (k = 1, . . . ,K). On each subinterval

[pk, pk+1] we adopt the conventions that v(pk) = limt→p+

k
v(pk), v(pk+1) = limt∈p−

k+1

v(pk+1).

The space C
(1)
∗ [0, 1] is a subspace of C

(1)
∗,∗[0, 1].
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For any v(t) ∈ C
(0)
∗,∗[0, 1], we define the norm

‖v‖∞ = max
0≤k≤K

{

max
pk≤t≤pk+1

|v(t)|
}

, (2.4)

and for any v(t) ∈ C
(1)
∗,∗[0, 1], we define the norms

|v|1,∞ = max
0≤k≤,K

{

max
pk≤t≤pk+1

|v′(t)|
}

, (2.5)

‖v‖1,∞ = max
{

‖v‖∞, |v|1,∞
}

. (2.6)

Furthermore, we introduce the following function vector and matrix spaces

C
(1)
∗ [0, 1] =

(

C
(1)
∗ [0, 1]

)n
, (2.7)

C
(1)
∗,∗[0, 1] =

(

C
(1)
∗,∗[0, 1]

)n
, (2.8)

C
(1)
∗,∗[0, 1] =

(

C
(1)
∗,∗[0, 1]

)n×n
. (2.9)

Note that C
(1)
∗ [0, 1] is a subspace of C

(1)
∗,∗[0, 1]. For any v(t) ∈ C

(1)
∗,∗[0, 1], we define the norms

‖ · ‖∞, | · |1,∞, ‖ · ‖1,∞

‖v‖∞ = max
0≤k≤K

(

max
pk≤t≤Pk+1

‖v(t)‖∞
)

, (2.10)

|v|1,∞ = ‖v′‖∞, (2.11)

‖v‖1,∞ = max
(

‖v‖∞, ‖v′‖∞
)

, (2.12)

where the norm ‖v(t)‖∞ is the norm in the vector space Rn for fixed t ∈ [0, 1]. Similarly we

define the norms ‖ · ‖∞, | · |1,∞, ‖ · ‖1,∞ in the space C
(1)
∗,∗[0, 1].

For problem (1.1)-(1.3), we then have the following theorem.

Theorem 2.1. Suppose that A(t) ∈ C
(0)
∗,∗[0, 1], f(t) ∈ C

(0)
∗,∗[0, 1] and A(t), f(t) satisfy the condi-

tions (1.4)-(1.9). Then, for problem (1.1)-(1.3) there exists a unique solution uε(t), uε(t) ∈

C
(1)
∗ [0, 1], and the following estimate holds

‖uε‖∞ ≤ max
{

‖d‖∞,
‖f‖∞
β

}

. (2.13)

Proof. We first establish the estimate (2.13). Suppose that uε(t) = (uε
1(t), . . . , u

ε
n(t))

T ∈

C
(1)
∗ [0, 1] is a solution of problem (1.1)-(1.3). Let

M = ‖uε‖∞. (2.14)

By the continuity of uε(t) on the interval [0, 1], we can find a point tm ∈ [0, 1], such that

M = |uε
i (tm)|,

for some integer i , 1 ≤ i ≤ n. If M = 0, the estimate follows directly. Otherwise, we consider

the case uε
i (tm) > 0 ( for the case uε

i (tm) < 0, the proof is similar ). Then we know that

|uε
j(t)| ≤ uε

i (tm) = M, ∀t ∈ [0, 1], 1 ≤ j ≤ n. (2.15)

(i) If tm 6= pk, k = 0, 1, . . . ,K + 1, the inequality (2.15) yields

uε
i
′(tm) = 0. (2.16)
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From system (1.1), we obtain

ai,i(tm)uε
i (tm) +

∑

1≤j≤n,j 6=i

ai,j(tm)uε
j(tm) = fi(tm), (2.17)

and the estimate follows immediately from (1.6).

(ii) If tm = pk, k = 0, 1, . . . ,K + 1, suppose that εi > 0 ( for the case εi < 0 , the proof is

similar ), If k = 0, then tm = 0, and so, from the initial- final condition (1.3 ), we know that

M = uε
i (tm) = di, which yields the estimate (2.13). Otherwise, if 0 < k ≤ K + 1, note that, on

the interval [pk−1, pk], the function uε
i (t) satisfies system (1.1) at the the point t = pk, and so

ai,i(tm − 0)uε
i (tm) +

∑

1≤j≤n,j 6=i

ai,j(tm − 0)uε
j(tm) ≤ fj(tm − 0). (2.18)

This completes the proof of the estimate (2.13).

Using estimate (2.13), we can now show that Problem (1.1)-(1.3) has a unique solution. To

see this we note that the following homogeneous initial-final value problem

Eu′(t) +A(t)u(t) = 0, ∀t ∈ (pk, pk+1), k = 0, . . . ,K, (2.19)
[

u(pk + 0)− u(pk − 0)
]

= 0, k = 1, . . . ,K, (2.20)

Bεu(0) + (I− Bε)u(1) = 0, (2.21)

has a unique solution uε(t) = 0.

To prove the existence of a solution to problem (1.1)-(1.3), we introduce the following

auxiliary initial value problems

Eu′(t) +A(t)u(t) = f(t), ∀t ∈ (pk, pk+1), k = 0, . . . ,K, (2.22)

u(pk + 0)− u(pk − 0) = 0, k = 1, . . . ,K, (2.23)

u(0) = 0 (2.24)

and

Eu′(t) +A(t)u(t) = 0, ∀t ∈ (pk, pk+1), k = 0, . . . ,K, (2.25)

u(pk + 0)− u(pk − 0) = 0, k = 1, . . . ,K, (2.26)

u(0) = ej , (2.27)

for each integer j (1 ≤ j ≤ n).

By the existence theorem for the initial value problem for the linear ODE system, we know

that for problem (2.22)-(2.24) there exists a unique solution vε
f (t) = (vε1,f (t), . . . , v

ε
n,f (t))

T ∈

C
(1)
∗ [0, 1] , and for each integer 1 ≤ j ≤ n, for problem (2.25)-(2.27) there exists a unique

solution vε
j(t) = (vεj,1(t), . . . , v

ε
j,n(t))

T ∈ C
(1)
∗ [0, 1] . The general solutions of system (1.1) are

given by

uε(t) =
∑

j=1,...,n

cjv
ε
j(t) + vε

f (t), (2.28)

for arbitrary constants cj , (j = 1, . . . , n). Let c = (c1, . . . , cn)
T and

Vε(t) = (vε
1(t), . . . ,v

ε
n(t)), (2.29)
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where Vε(t) is an n× n matrix function. Then equality (2.28) can be rewritten as follows

uε(t) = Vε(t)c + vε
f (t). (2.30)

The vector-valued function uε(t) given by (2.30) satisfies system (1.1) and the continuity con-

dition (1.2) for any constant vector c. Thus, if we can find a vector c ∈ Rn, such that uε(t)

satisfies the initial-final condition (1.3), the existence of a solution to problem (1.1)-(1.3) has

been proved. The initial-final condition (1.3) yields

[

BεVε(0) + (I− Bε)Vε(1)
]

c = d−
[

Bεvε
f (0) + (I− Bε)Vε

f (1)
]

. (2.31)

The uniqueness of the solution of problem (1.1)-(1.3) leads to

det
(

BεVε(0) + (I− Bε)Vε(1)
)

6= 0. (2.32)

This implies that for system (2.31) there exists a unique solution c ∈ Rn. Then, from (2.30),

we obtain a solution of problem (1.1)-(1.3). 2

3. An Approximation to Problem (1.1)-(1.3)

In this section we construct an approximation to problem (1.1)-(1.3). The interval [0, 1] is

divided into subintervals by

0 = t0 < t1 < · · · < tL = 1, (3.1)

such that, for each pk ∈ [0, 1], we can find a tl such that pk = tl. Furthermore, let

hl = tl − tl−1, ∀ l = 1, . . . , L; h = max
l=1,...,L

(hl). (3.2)

On each subinterval (tl−1, tl) the functions ai,j(t), fi(t) are approximated by the constants

ai,j(t
∗
l ), and fi(t

∗
l ) with tl−1 ≤ t∗l ≤ tl. Then we introduce the matrix and vector

Al =
(

ai,j(t
∗
l )
)

n×n
, (3.3)

f l = (f1(t
∗
l ), f2(t

∗
l ), . . . , fn(t

∗
l ))

T . (3.4)

We also define the approximating matrix and vector functions

Ah(t) = Al, ∀t ∈ (tl−1, tl), (3.5)

fh(t) = f l, ∀t ∈ (tl−1, tl). (3.6)

It is easy to see that for these approximating functions, the following estimates hold

‖fh‖∞ ≤ ‖f‖∞, (3.7)

‖f − fh‖∞ ≡ max
l=0,1,...,L

max
tl−1≤t≤tl

‖f(t)− fh(t)‖∞ ≤ ‖f ′‖∞h, (3.8)

‖A−Ah‖∞ ≡ max
l=0,1,...,L

max
tl−1≤t≤tl

‖A(t)−Ah(t)‖∞ ≤ c‖A′‖∞h, (3.9)

where c is a constant, independent of h.
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Now consider the approximate problem

Euε
h
′(t) +Ah(t)u

ε
h(t) = fh(t), ∀t ∈ (tl−1, tl), l = 1, . . . ,K, (3.10)

uε
h(tl + 0)− uε

h(tl − 0) = 0, l = 1, . . . , L− 1, (3.11)

Bεuε
h(0) + (I− Bε)uε

h(1) = d. (3.12)

By Theorem 2.1, we know that for problem (3.10)-(3.12) there exists a unique solution uε
h(t),

and that the following estimate holds

‖uε
h‖∞ ≤ max

(

‖d‖∞,
‖f‖∞
β

)

. (3.13)

We introduce the error function rεh(t) = uε(t)− uε
h(t). Then rεh(t) satisfies

Erεh
′(t) +Ah(t)r

ε
h(t) = dε

h(t), ∀t ∈ (tl−1, tl), l = 1, . . . ,K, (3.14)

rεh(tl + 0)− rεh(tl − 0) = 0, l = 1, . . . , L− 1, (3.15)

Bεrεh(0) + (I− Bε) rεh(1) = 0, (3.16)

with

dε
h(t) = f(t)− fh(t) +

(

Ah(t)−A(t)
)

uε
h(t). (3.17)

Combining equality (3.17) and inequalities (3.7)-(3.9),(3.13), we arrive at

‖dε
h‖∞ ≤

(

‖f ′‖∞ + c‖A′‖∞

(

‖d‖∞ +
‖f‖∞
β

)

)

h, (3.18)

where c is a constant independent of h and ε.

Applying Theorem 2.1 to problem (3.14)-(3.16) yields the following error bound.

Theorem 3.1. The error rεh satisfies the estimate

‖rεh‖∞ ≤
1

β

{

‖f ′‖∞ + c‖A′‖∞
(

‖d‖∞ +
‖f‖∞
β

)

}

h, (3.19)

where c is a constant independent of h and E.

This shows that the approximate solution uε
h(t) converges E-uniformly to the solution uε(t)

of problem (1.1)-(1.3) on the interval [0, 1].

4. A Tailored Finite Point Method for Problem (1.1)–(1.3)

Using uε
h(t) for the solution of Problem (3.9)–(3.11), we now introduce the tailored finite

point method for problem (1.1)–(1.3). Let

uε
h(tl) = ul, l = 0, 1, . . . , L. (4.1)

Then on each subinterval [tl−1, tl],the approximate solution uε
h(t) satisfies

Euε
h
′(t) +Aluε

h(t) = f l, ∀t ∈ (tl−1, tl), (4.2)

Bεuε
h(tl−1) + (I− Bε)uε

h(tl) = Bεul−1 + (I− Bε)ul. (4.3)
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It is easy to see that the ODE system (4.2) with constant coefficients has the particular solution

vl
f =

(

Al
)−1

f l. (4.4)

We construct the general solution vǫ
h of the homogeneous ODE system corresponding to (4.2)

Evε
h
′(t) +Alvε

h(t) = 0, ∀t ∈ (tl−1, tl). (4.5)

Let

vε
h(t) = ξeλt (4.6)

be the solution of system (4.5). Then the vector ξ and number λ are the solutions of the

eigenvalue problem

Alξ = −λEξ. (4.7)

Solving the eigenvalue problem (4.7), we obtain the eigenvalues λl
1, λ

l
2, . . . , λ

l
2r, λ

l
2r+1, λ

l
n, cor-

responding to the eigenvectors ξl1, ξ
l
2, . . . , ξ

l
2r, ξ

l
2r+1, . . . , ξ

l
n. Assume that the eigenvalues λl

2r+1,

. . . , λl
n and the corresponding eigenvectors are real. The remaining eigenvalues occur in complex

conjugate pairs, so that

λl
2j = λl

2j−1, j = 1, . . . , r, (4.8)

ξl2j = ξl2j−1, j = 1, . . . , r. (4.9)

These conjugate pairs of eigenvalues λl
2j−1, λ

l
2j and eigenvectors ξl2j−1, ξ

l
2j , can be written

in the form
{

λl
2j−1 = αl

j − iβl
j, λl

2j = αl
j + iβl

j ,

ξl2j−1 = ηlj − iζlj , ξl2j = ηlj + iζlj .

Then, for each 1 ≤ j ≤ r, there are two independent solutions of the system (4.5) of the form

vl
2j−1(t) =

(

ηlj cos(β
l
jt)− ζlj sin(β

l
jt)

)

eα
l
j(t−tl), (4.10)

vl
2j(t) =

(

ηlj cos(β
l
jt) + ζlj sin(β

l
jt)

)

eα
l
j(t−tl). (4.11)

Furthermore, for each j (2r < j ≤ n), there is one solution of the system (4.5) given by

vl
j(t) = ξlje

λl
j(t−tl). (4.12)

Let

V l(t) ≡
(

vl
1(t),v

l
2(t), . . . ,v

l
n(t)

)

, (4.13)

where V l(t) is a n× n matrix function. On each interval [tl−1, tl], u
ε
h(t) is given by

uε
h(t) = V l(t)cl + vl

f , (4.14)

with cl = (cl1, . . . , c
l
n)

T , which is determined by the initial-final condition (4.3). Then we have

cl =
(

BεV l(tl−1) +
(

I− Bε
)

V l(tl)
)−1(

Bεul−1 +
(

I− Bε
)

ul − vl
f

)

≡ Dl
(

Bεul−1 +
(

I− Bε
)

ul − vl
f

)

, (4.15)
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with

Dl =
(

BεV l(tl−1) +
(

I− Bε
)

V l(tl)
)−1

.

Furthermore, on each interval [tl−1, tl], the expression (4.14) can be written as

uε
h(t) = V l(t)Dl

(

Bεul−1 +
(

I− Bε
)

ul − vl
f

)

+ vl
f . (4.16)

The continuity condition (3.12) yields

(

I− Bε
)

ul−1 =
(

I− Bε
)

{

V l(tl−1)D
l
(

Bεul−1 +
(

I− Bε
)

ul − vl
f

)

+ vl
f

}

, (4.17)

Bεul = Bε
{

V l(tl)D
l
(

Bεul−1 +
(

I− Bε
)

ul − vl
f

)

+ vl
f

}

. (4.18)

We then obtain the following tailored finite point scheme

ul =
(

I− Bε
)

{

V l+1(tl)D
l+1

(

Bεul +
(

I− Bε
)

ul+1 − vl+1
f

)

+ vl+1
f

}

(4.19)

+Bε
{

V l(tl)D
l
(

Bεul−1 +
(

I− Bε
)

ul − vl
f

)

+ vl
f

}

, l = 1, 2, . . . , L− 1,

u0 = Bεd+
(

I− Bε
)

{

V1(t0)D
1
(

Bεd+
(

I− Bε
)

u1 − v1
f

)

+ v1
f

}

, (4.20)

uL =
(

I− Bε
)

d+ Bε
{

VL(tL)D
L
(

BεuL−1 +
(

I− Bε
)

d− vL
f

)

+ vL
f

}

. (4.21)

In the special case when the {εj, j = 1. . . . , n} are all positive, we have Bε = I and the method

(4.19)-(4.21), for finding the numerical solution of problem (1.10)-(1.12), is reduced to the

following method

ul = V l(tl)D
l
(

ul−1 − vl
f

)

+ vl
f , l = 1, 2, . . . , L, (4.22)

u0 = d. (4.23)

This is a one step explicit scheme, which is unconditionally stable.

Since the discrete scheme (4.19)-(4.21) is equivalent to the approximate problem (3.9)-(3.11),

we attain the following result.

Theorem 4.1. Suppose that A(t) ∈ C
(1)
∗,∗[0, 1], f(t) ∈ C

(1)
∗,∗[0, 1] and that A(t), f(t) satisfy the

conditions (1.3)-(1.9). Then there exists a unique solution {ul l = 0, 1, . . . , L} to problem

(4.19)-(4.21) and the following parameter-uniform error estimate holds

max
l=0,1,...,L

‖u(tl)− ul‖∞ ≤
1

β

(

‖f ′‖∞ + c‖A′‖∞

(

‖d‖∞ +
‖f‖∞
β

)

)

h. (4.24)

This shows that the tailored finite point method yields approximate solutions that are

parameter-uniformly convergent with respect to {0 < |εj | ≤ 1, ∀j = 1. . . . , n} to the solution

of the multi-scale singularly perturbed problem (1.1)-(1.3).

Solving the algebraic equation (4.19)-(4.21) gives the numerical solution {ul, l = 0, 1, . . . , L}.

Combining this with the expressions (4.15), (4.14) then yields the required continuous approx-

imate solution uε
h(t).
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5. Numerical Examples

In this section three problems are solved numerically using a tailored finite point method.

The first is an initial value problem and the second an initial-final value problem for a singularly

perturbed system of ordinary differential equations. The third problem arises from a semi-

discretization of a forward-backward parabolic problem. The errors in the numerical solutions

for the first two problems, as well as numerical estimates of the parameter-uniform rates of

convergence and the parameter-uniform error constants, are given in five tables. In Tables 5.1,

5.3, 5.5 the errors of the numerical solutions are first calculated by comparing the numerical

solutions with the “exact” solutions that are obtained with the finest mesh ∆t = 1/4096. On

the other hand, in Tables 5.2, 5.4 parameter-uniform estimates of the convergence rates and

error constants are computed using the methodology described in [4]. Graphs of the solutions

of all three problems are presented in the figures.

Example 1. For t ∈ (0, 1), we solve

ε1u
′
1(t) + 4u1(t)− u2(t)− u3(t) = t,

ε2u
′
2(t)− u1(t) + 4u2(t)− u3(t) = 1,

ε3u
′
3 − u1(t)− u2(t) + 4u3(t) = 1 + t2,

u1(0) = 0, u2(0) = 0, u3(0) = 0.

for different values of ε1, ε2 and ε3. This example appears in [23] and we compare our tailored

finite point method with the classical finite difference discretization using a Shishkin piecewise

uniform mesh. Both methods are seen to be first order parameter-uniform. Similarly to [23],

let ε1 = r/16, ε2 = r/4, ε3 = r. The numerical solutions of u1(t) for different r are displayed

in Fig. 5.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.5

0.6

0.7

t

u 1

 

 

r=1/128

r=1/32

r=1/8

r=1/2

Fig. 5.1. Example 1. u1(t) for r = 1/2, 1/8, 1/32, 1/128.

The L∞ norm of the numerical errors for different r and time step are given in Table 5.1,

where we have used t∗l = tl−1 in the formulas (3.3) and (3.4). Parameter-uniform first order

convergence for all r can be observed in this table,
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Table 5.1: Example 1. L∞ norm of the numerical errors, for different r and time steps, when t∗l = tl−1

in (3.3) and (3.4), ε1 = r/16, ε2 = r/4, ε3 = r

r \ ∆t 1/128 1/256 1/512 1/1024 1/2048

2−1 2.311 ∗ 10−3 1.115 ∗ 10−3 5.194 ∗ 10−4 2.224 ∗ 10−4 7.412 ∗ 10−5

2−2 2.507 ∗ 10−3 1.205 ∗ 10−3 5.605 ∗ 10−4 2.398 ∗ 10−4 7.987 ∗ 10−5

2−3 2.638 ∗ 10−3 1.258 ∗ 10−3 5.829 ∗ 10−4 2.489 ∗ 10−4 8.283 ∗ 10−5

2−4 2.768 ∗ 10−3 1.300 ∗ 10−3 5.979 ∗ 10−4 2.544 ∗ 10−4 8.449 ∗ 10−5

2−5 2.967 ∗ 10−3 1.354 ∗ 10−3 6.132 ∗ 10−4 2.589 ∗ 10−4 8.568 ∗ 10−5

2−6 3.315 ∗ 10−3 1.448 ∗ 10−3 6.373 ∗ 10−4 2.649 ∗ 10−4 8.700 ∗ 10−5

2−7 3.877 ∗ 10−3 1.619 ∗ 10−3 6.820 ∗ 10−4 2.757 ∗ 10−4 8.917 ∗ 10−5

2−10 5.139 ∗ 10−3 2.418 ∗ 10−3 1.057 ∗ 10−3 4.010 ∗ 10−4 1.174 ∗ 10−4

2−15 5.280 ∗ 10−3 2.559 ∗ 10−3 1.195 ∗ 10−3 5.124 ∗ 10−4 1.708 ∗ 10−4

2−16 5.280 ∗ 10−3 2.559 ∗ 10−3 1.195 ∗ 10−3 5.124 ∗ 10−4 1.708 ∗ 10−4

2−17 5.280 ∗ 10−3 2.559 ∗ 10−3 1.195 ∗ 10−3 5.124 ∗ 10−4 1.708 ∗ 10−4

The parameter-uniform error parameters p∗ and C∗
p∗ are given by the well-established two-

mesh procedure for numerically finding a parameter-uniform error bound of the form

‖U∆t
ǫ − uǫ‖∞ ≤ C∗

p∗∆tp
∗

,

which is described in [4]. The technique uses the two-mesh method, which involves the quantities

D∆t
ǫ = ‖U∆t

ǫ − U∆t/2
ǫ ‖∞, D∆t = max

ǫ
{D∆t

ǫ },

p∆t = log2
D∆t

D∆t/2
, p∗ = min

∆t
p∆t,

C∆t
p∗ =

D∆t

∆tp∗(1− 2−p∗)
, C∗

p∗ = max
∆t

C∆t
p∗ .

Table 5.2: Example 1. Values of D∆t
ǫ , D∆t, p∆t and C∆t

p∗ with ε1 = r/16, ε2 = r/4, ε3 = r for various

r and ∆t. We find p∗ = min∆t p
∆t = 0.996 and C∗

p∗ = max∆t C
∆t
p∗ = 0.685. Here t∗l = tl−1 in (3.3) and

(3.4).

r \ ∆t 1/128 1/256 1/512 1/1024 1/2048

2−1 1.196 ∗ 10−3 5.953 ∗ 10−4 2.970 ∗ 10−4 1.483 ∗ 10−4 7.412 ∗ 10−5

2−2 1.302 ∗ 10−3 6.446 ∗ 10−4 3.207 ∗ 10−4 1.599 ∗ 10−4 7.987 ∗ 10−5

2−3 1.380 ∗ 10−3 6.751 ∗ 10−4 3.340 ∗ 10−4 1.6610 ∗ 10−4 8.283 ∗ 10−5

2−4 1.468 ∗ 10−3 7.024 ∗ 10−4 3.435 ∗ 10−4 1.699 ∗ 10−4 8.449 ∗ 10−5

2−5 1.612 ∗ 10−3 7.411 ∗ 10−4 3.543 ∗ 10−4 1.733 ∗ 10−4 8.568 ∗ 10−5

2−6 1.867 ∗ 10−3 8.104 ∗ 10−4 3.723 ∗ 10−4 1.779 ∗ 10−4 8.700 ∗ 10−5

2−7 2.258 ∗ 10−3 9.366 ∗ 10−4 4.063 ∗ 10−4 1.866 ∗ 10−4 8.917 ∗ 10−5

2−10 2.721 ∗ 10−3 1.361 ∗ 10−3 6.556 ∗ 10−4 2.836 ∗ 10−4 1.174 ∗ 10−4

2−15 2.721 ∗ 10−3 1.364 ∗ 10−3 6.827 ∗ 10−4 3.416 ∗ 10−4 1.708 ∗ 10−4

2−16 2.721 ∗ 10−3 1.364 ∗ 10−3 6.827 ∗ 10−4 3.416 ∗ 10−4 1.708 ∗ 10−4

2−17 2.721 ∗ 10−3 1.364 ∗ 10−3 6.827 ∗ 10−4 3.416 ∗ 10−4 1.708 ∗ 10−4

D∆t 2.721 ∗ 10−3 1.364 ∗ 10−3 6.827 ∗ 10−4 3.416 ∗ 10−4 1.708 ∗ 10−4

p∆t 0.996 0.998 0.999 1.000 p∗ = 0.996

C∆t
p∗ 0.685 0.685 0.684 0.682 0.680
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Table 5.3: Example 1. L∞ norm of the numerical errors for different r and time steps, when Al and

f
l are as in (5.1) and (5.2), and ε1 = r/16, ε2 = r/4, ε3 = r. The last column displays the numerical

convergence order by fitting the log-log plot of the errors.

r \ ∆t 1/128 1/256 1/512 1/1024 1/2048 order

2−1 1.590 ∗ 10−4 4.011 ∗ 10−5 9.941 ∗ 10−6 2.369 ∗ 10−6 4.738 ∗ 10−7 2.09

2−2 3.047 ∗ 10−4 7.950 ∗ 10−5 1.988 ∗ 10−5 4.748 ∗ 10−6 9.504 ∗ 10−7 2.07

2−3 5.261 ∗ 10−4 1.521 ∗ 10−4 3.934 ∗ 10−5 9.480 ∗ 10−6 1.902 ∗ 10−6 2.02

2−4 7.520 ∗ 10−4 2.624 ∗ 10−4 7.517 ∗ 10−5 1.873 ∗ 10−5 3.792 ∗ 10−6 1.91

2−5 9.316 ∗ 10−4 3.744 ∗ 10−4 1.293 ∗ 10−4 3.570 ∗ 10−5 7.473 ∗ 10−6 1.73

2−6 1.116 ∗ 10−3 4.623 ∗ 10−4 1.835 ∗ 10−4 6.095 ∗ 10−5 1.412 ∗ 10−5 1.55

2−7 1.352 ∗ 10−3 5.512 ∗ 10−4 2.242 ∗ 10−4 8.470 ∗ 10−5 2.342 ∗ 10−5 1.44

2−10 2.502 ∗ 10−3 1.139 ∗ 10−3 4.593 ∗ 10−4 1.449 ∗ 10−4 4.091 ∗ 10−5 1.48

2−15 2.643 ∗ 10−3 1.280 ∗ 10−3 5.978 ∗ 10−4 2.563 ∗ 10−4 8.543 ∗ 10−5 1.22

2−16 2.643 ∗ 10−3 1.280 ∗ 10−3 5.978 ∗ 10−4 2.563 ∗ 10−4 8.543 ∗ 10−5 1.22

2−17 2.643 ∗ 10−3 1.280 ∗ 10−3 5.978 ∗ 10−4 2.563 ∗ 10−4 8.543 ∗ 10−5 1.22

For this example the results are given in Table 5.2, where it is seen that p∗ = 0.996 and

C∗
p∗ = 0.685.

If we use

Al =
1

tl − tl−1

(

∫ tl

tl−1

ai,j(t) dt
)

n×n
, (5.1)

f l =
1

tl − tl−1

(

∫ tl

tl−1

f1(t) dt,

∫ tl

tl−1

f2(t) dt, . . . ,

∫ tl

tl−1

fn(t) dt
)T

, (5.2)

instead of t∗l = tl−1, the corresponding errors are displayed in Table 5.3. It can be seen that

parameter-uniform first order convergence is achieved. However, second order convergence

occurs when r is large, while when r decreases, only first order convergence is attained. This is

different from the one dimensional neutron transport equation, where with cell averaging of the

coefficients, parameter-uniform second order convergence is obtained [17]. The second order

parameter-uniform convergence for the neutron transport equation is due to the specific scales

of its coefficients. For the general form of problem (1.1)-(1.3), we can achieve only first order

parameter-uniform convergence by using piecewise constant approximations of the coefficients.

The computed parameter-uniform error parameters using the two-mesh method are given in

Table 5.3.

Example 2. For a negative εi, a final value must be imposed in order to preserve the maximum

principle. In this example, we solve a system with discontinuous coefficients such that for

t ∈ [0, 0.5],

−ε1u
′
1(t) + (5 + e−t)u1(t)− tu2(t)− u3(t)− u4(t) = t,

ε2u
′
2(t)− u1(t) + (4 + t2)u2(t)− u3(t)− u4(t) = 1,

−ε3u
′
3 − u1(t)− u2(t) + 5u3(t)− (1 + t)u4(t) = 1 + t,

ε3u
′
3 − u1(t)− tu2(t)− u3(t) + 5u4(t) = 1− t2,
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and for t ∈ [(0.5, 1],

−ε1u
′
1(t) + (4 + e−t)u1(t)− tu2(t)− u3(t)− u4(t) = 1,

ε2u
′
2(t)− u1(t) + (4 + t2)u2(t)− u3(t)− u4(t) = 1− t,

−ε3u
′
3 − u1(t)− u2(t) + (5 + t2)u3(t)− (2 + t)u4(t) = 1− t2,

ε3u
′
3 − tu1(t)− (1 + t)u2(t)− u3(t) + (4 + e−t)u4(t) = 1 + t,

with the boundary conditions

u1(1) = 0, u2(0) = 0, u3(1) = 0, u4(0) = 0.

This system exhibits initial, final and interface layers, when the |εi| are small. Similarly to [23],

let ε1 = r/64, ε2 = r/16, ε3 = r/4, ε4 = r. The numerical solutions of uε
1(t) for different r are

shown in Fig. 5.2. The results are consistent with first order parameter-uniform convergence,

as expected from the theory.
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Fig. 5.2. Example 2. u1(t) for r = 1, 1/4, 1/16, 1/64.

In Table 5.4, we present the L∞ norm of the numerical errors for different r and time

steps, where we have used t∗l = tl−1 in (3.3) and (3.4). Uniform first order convergence can be

observed.

To look at the uniform convergence order, we present in Table 5.5 the values of D∆t
ǫ , D∆t,

p∆t and C∆t
p∗ .

Example 3. In this example, we consider the following semi-discretization of the forward-

backward parabolic problem

sign(xi)|xi|
p ∂ui(t)

∂t
=

ui+1(t)− 2ui(t) + ui−1(t)

∆x2
− ui(t) + qi(t), 0 < t < T, (5.3)

i = 1, 2, · · · , N − 1,

u0(t) = f(t), uN (t) = g(t), 0 < t < T, (5.4)

ui(1) = γ(x), −1 < xi < 0, ui(0) = s(xi), 0 < xi < 2, (5.5)
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Table 5.4: Example 2. L∞ norm of the numerical errors for different r and time steps, when t∗l = tl−1

in (3.3) and (3.4), ε1 = r/64, ε2 = r/16, ε3 = r/4, ε4 = r.

r \ ∆t 1/128 1/256 1/512 1/1024 1/2048

1 1.418 ∗ 10−3 6.920 ∗ 10−4 3.242 ∗ 10−4 1.392 ∗ 10−4 4.645 ∗ 10−5

2−1 1.627 ∗ 10−3 7.813 ∗ 10−4 3.633 ∗ 10−4 1.554 ∗ 10−4 5.176 ∗ 10−5

2−2 1.933 ∗ 10−3 9.222 ∗ 10−4 4.273 ∗ 10−4 1.824 ∗ 10−4 6.070 ∗ 10−5

2−3 2.192 ∗ 10−3 1.036 ∗ 10−3 4.775 ∗ 10−4 2.033 ∗ 10−4 6.756 ∗ 10−5

2−4 2.400 ∗ 10−3 1.118 ∗ 10−3 5.106 ∗ 10−4 2.163 ∗ 10−4 7.165 ∗ 10−5

2−5 2.627 ∗ 10−3 1.194 ∗ 10−3 5.372 ∗ 10−4 2.254 ∗ 10−4 7.428 ∗ 10−5

2−6 2.960 ∗ 10−3 1.293 ∗ 10−3 5.671 ∗ 10−4 2.345 ∗ 10−4 7.658 ∗ 10−5

2−7 3.468 ∗ 10−3 1.451 ∗ 10−3 6.120 ∗ 10−4 2.469 ∗ 10−4 7.949 ∗ 10−5

2−10 4.609 ∗ 10−3 2.166 ∗ 10−3 9.453 ∗ 10−4 3.592 ∗ 10−4 1.056 ∗ 10−4

2−15 4.736 ∗ 10−3 2.293 ∗ 10−3 1.070 ∗ 10−3 4.587 ∗ 10−4 1.529 ∗ 10−4

2−16 4.736 ∗ 10−3 2.293 ∗ 10−3 1.070 ∗ 10−3 4.587 ∗ 10−4 1.529 ∗ 10−4

2−17 4.736 ∗ 10−3 2.293 ∗ 10−4 1.070 ∗ 10−3 4.587 ∗ 10−4 1.529 ∗ 10−4

Table 5.5: Example 2. Values of Dǫ, D, p, p, C∗

p and C∗

p with ε1 = r/64, ε2 = r/16, ε3 = r/4, ε4 = r,

for various r and ∆t. We find p∗ = min∆t p
∆t = 1.000 and C∗

p∗ = max∆t C
∆t
p∗ = 0.626. Here t∗l = tl−1

in (3.3) and (3.4),

r \ ∆t 1/128 1/256 1/512 1/1024 1/2048

1 7.503 ∗ 10−4 3.678 ∗ 10−4 1.850 ∗ 10−4 9.277 ∗ 10−5 4.645 ∗ 10−5

2−1 8.452 ∗ 10−4 4.180 ∗ 10−4 2.079 ∗ 10−4 1.037 ∗ 10−4 5.176 ∗ 10−5

2−2 1.011 ∗ 10−3 4.950 ∗ 10−4 2.448 ∗ 10−4 1.217 ∗ 10−4 6.070 ∗ 10−5

2−3 1.207 ∗ 10−3 5.588 ∗ 10−4 2.742 ∗ 10−4 1.358 ∗ 10−4 6.756 ∗ 10−5

2−4 1.286 ∗ 10−3 6.140 ∗ 10−4 2.944 ∗ 10−4 1.446 ∗ 10−4 7.165 ∗ 10−5

2−5 1.434 ∗ 10−3 6.569 ∗ 10−4 3.118 ∗ 10−4 1.511 ∗ 10−4 7.428 ∗ 10−5

2−6 1.668 ∗ 10−3 7.256 ∗ 10−4 3.326 ∗ 10−4 1.578 ∗ 10−4 7.658 ∗ 10−5

2−7 2.017 ∗ 10−3 8.394 ∗ 10−4 3.652 ∗ 10−4 1.674 ∗ 10−4 7.949 ∗ 10−5

2−10 2.446 ∗ 10−3 1.221 ∗ 10−3 5.861 ∗ 10−4 2.536 ∗ 10−4 1.056 ∗ 10−4

2−15 2.446 ∗ 10−3 1.223 ∗ 10−3 6.116 ∗ 10−4 3.058 ∗ 10−4 1.529 ∗ 10−4

2−16 2.446 ∗ 10−3 1.223 ∗ 10−3 6.116 ∗ 10−4 3.058 ∗ 10−4 1.529 ∗ 10−4

2−17 2.446 ∗ 10−3 1.223 ∗ 10−3 6.116 ∗ 10−4 3.058 ∗ 10−4 1.529 ∗ 10−4

D∆t 2.446 ∗ 10−3 1.223 ∗ 10−3 6.116 ∗ 10−4 3.058 ∗ 10−4 1.529 ∗ 10−4

p∆t 1.000 1.000 1.000 1.000 p∗ = 1.000

C∆t
p∗ 0.626 0.626 0.626 0.626 0.626

with p > 0 and xi = −1 + 3 ∗ i/N 6= 0, (1 ≤ i ≤ N − 1).

In Fig. 5.3 we show the numerical results for

T = 0.5, qi(t) = 1, γ(x) = − sin(πx),

s(x) = cos2
(π

2
x
)

, f(t) = 0, g(t) = 1.

Initial and final layers in time occur for both p = 1 and p = 10. The layers become more

significant and obvious when p is large. We can capture the layers without resolving them

(using a lot of nodes in the layer).
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Fig. 5.3. Example 3. The numerical solution of the forward-backward parabolic problem. Left: ui(t)

for i = 1, · · · , N ; Right: uM where M satisfies xM < 0 and xM+1 > 0. (a) p = 1; (b) p = 10. Here

∆x = 1/40, ∆t = 1/256.

6. Conclusion

A tailored finite point method for a multi-scale singularly perturbed system of linear ordinary

differential equations is proposed in this paper. We can give either initial or final values for the

ODE system as well as use discontinuous coefficients.

The tailored finite point method yields approximate solutions that converge in the maximum

norm, uniformly with respect to the singular perturbation parameters. We prove a parameter-

uniform error estimate in the maximum norm and verify our analytical results numerically. To

show the performance of our proposed scheme, three numerical examples that exhibit initial

and final layers are considered.

In particular, the third example shows the existence of initial and final layers of the solution

of the forward-backward parabolic equation. To investigate and understand these layers will be

the subject of our future work.
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