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Abstract

In this paper, we propose a local multilevel preconditioner for the mortar finite element
approximations of the elliptic problems. With some mesh assumptions on the interface, we
prove that the condition number of the preconditioned systems is independent of the large
jump of the coefficients but depends on the mesh levels around the cross points. Some
numerical experiments are presented to confirm our theoretical results.
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1. Introduction

In this paper, we present a local multilevel preconditioner for the adaptive mortar finite
element method for the following second order elliptic problems:

1.1
u =0, on 09, (L)

{V (pVu) = f, in Q,

where p > 0 is a piecewise constant, f € L%(£2), and 2 is a polygonal domain.

The mortar finite element method is a technique for dealing with different discretization
schemes on different subdomains [1,2]. It is effective for solving problems with complicated
geometries, heterogeneous material, multi-physics, and so on. In this paper, we use the mortar
finite element method to handle the nonmatching meshes. Based on a posteriori error esti-
mators, the adaptive finite element methods are now widely used to achieve better accuracy
with minimum degrees of freedom. Combining the mortar approach and the adaptive finite
element methods, many researchers propose different a posteriori error estimators (see [7, 8]
and the references therein for details). The first author and his collaborator [23] also proposed
some residual-based a posteriori error estimators, and the analysis does not require satura-
tion assumptions or mesh restrictions on the interface which are often needed in the literature.
However, there are rather few results on developing efficient solvers for the discrete problems.
Based on quasi-uniform grids, Wohlmuth [26] and Gopalakrishnan [17] introduced V-cycle and
W-cycle multigrid methods for the mortar finite element method for elliptic problems respec-
tively. Xu and Chen [31] discussed a W-cycle multigrid algorithm for the mortar element
method for the P; nonconforming element.
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Since the mesh is refined locally in the process of adaptivity, traditional multigrid meth-
ods, in which the smoothing is performed on all nodes, may not be optimal or quasi-optimal
(see [19]). Wu and Chen [27] first proved that the local multigrid method, in which the smooth-
ing was performed on new nodes and their “immediate” neighbors of each level, was optimal
for the adaptive finite element method for the Poisson equation in two dimension. In [13,15],
Xu, etc., introduced and analyzed some local multigrid methods based on reconstructed adap-
tive grid, which was applied to the adaptive finite element methods for the elliptic problems
with discontinuous coefficients [14]. Based on the adaptive grid, Xu and Chen [11,12,30] also
proposed and analyzed some local multilevel methods for P; conforming and nonconforming
element methods for the elliptic problems. Recently, Lu, Shi and Xu [18] considered the lo-
cal multilevel methods for discontinuous Galerkin finite element method on adaptively refined
meshes.

The purpose of this paper is to present a local multilevel preconditioner for the mortar finite
element method for the second order elliptic problems with discontinuous coefficients. Since
the finite element spaces are nonnested, intergrid transfer operators, which are stable under the
weighted L? norm and energy norm, are introduced to exchange information between different
meshes. On each level, the smoothing is performed on the new free nodes and the old free nodes
associated with which the basis functions are changed. In addition, we also need to smooth on
all the mortar side nodes on the finest level. With the assumption that each mortar side edge
is the union of some whole nonmortar side edges (see Fig. 2.2 for an illustration), we prove
that the condition number of preconditioned system is independent of the large jump of the
coefficients but relies logarithmically on the mesh size around the cross points.

The remainder of the paper is organized as follows. In Section 2, we present the discrete
problem and some notations. The local multilevel preconditioner is proposed in Section 3. In
Section 4, we give the condition number estimate of the preconditioned system. Finally, we
present some numerical experiments to confirm our theoretical results.

For convenience of discussions, we usually use inequalities a < b, a ~ b to replace a < Cb
and c¢b < a < Cb with some multiplicative mesh size and coefficient independent constants
¢,C > 0 that depend only on the domain Q and the shape (e.g., through the aspect ratio) of
elements.

2. Preliminary
The weak form of the problem (1.1) is to find u € Hg(Q) satisfying
alu,0) £ (5Vu, Vo) = (f,0), Vo € H(®). (2.1)

Let € be partitioned into non-overlapping polygonal subdomains {Q2;}}*,. We only consider
the geometrically conforming case, i.e., the intersection between the closure of two different sub-
domains is empty, a vertex, or an edge. The coefficient p is a constant when restricted to each
subdomain §2;. We use I';; to denote the common open edge of Q; and Q;, I' = Uij I';;. Given
an initial shape regular triangulation 77(£2), which is conforming in each subdomain, {7;(Q),
2 <1 < L} is a set of triangulations generated by the adaptive finite element procedure [23].
We note that the resulting triangulation 7;(Q2) can be non-matched across adjacent subdomain
interfaces, so each I';; can be regarded as two sides corresponding to the two subdomains €2;
and ;. We call one of the sides of I';; as the mortar side and the other one as the nonmortar
side. For each interface, we choose the side of the subdomain on which the coefficient is larger
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as the mortar side, and the other side as the nonmortar side. If there is no jump in the
coefficient across the interface, the choice is arbitrary. This can always be done in practice for
the geometrically conforming domain decomposition.

For each T';;, we usually denote the mortar and nonmortar sides of I';; by 7,5 and d,,(j)
respectively. Here the subscript m represents the index of I';;, and the subscripts 4, j indicate
that the mortar and nonmortar sides are parts of boundaries of €2; and ; respectively. The
two sets Ti(Ym(;)) and Ti(dy,(j)) are the 1D triangulations inherited from 7;(2;) and 7;(€;)
respectively (see Fig. 2.1), where 7;(£2;) and 7;(€2;) are the restrictions of 7;(€2) to ; and Q.
We use v and 4 to denote the mortar and nonmortar sides of T, i.e.,

Y =UnYm@), 0= Undm()-

Accordingly, Ti(v) = UnTi(Vm@)) and Ti(6) = U Ti(0m(;)) are the sets of edges of the Ith level
mesh on mortar and nonmortar sides respectively.

Fig. 2.1. An illustration of the set T;(dm(;)) and Ti(Ym())-

For any geometry element G, V;(G) denotes the set of nodes in G of the triangulation 7;(2),
and N;(G) denotes the set of corresponding nodes in G. Specially, we use N;(Q2) to denote the
set of the nodes of 7;(2) which are in 2 but not on the interface. The notation h¢g indicates
the diameter of G, and pg denotes the restriction of p to G.

Let X;(€2;) be the P; conforming element space defined on 7;(€;), X;(2) = Hf\il X1 ().
For each nonmortar side 0,5y, Mi(6m(;)) = span{i/ffn(j)} denotes the dual Lagrange multiplier
space defined on 7;(d,,(;)), where wﬁl(j) is the dual function associated with the interior node
pr of Ti(0m(;)) and satisfying (see [25])

s ¢k(.)|5 Jdo, ifk=s,
U5y Oy s = § 2m O o (2:2)
/6,”0) (@7 m(3)1ome) 0, otherwise,
with @7, ) € Xi(2) the basis function associated with the node ps.
Next, we introduce the mortar finite element space on T;(€2) as follows:
1
Vi= {U € Xi(Q): (U|’)’nz(i) v 5m(j)) € Hgo (L), /6 (U|’Ym(i> —-v 67n(j))¢do. =0,
m()

YY) = Om@) =Lijy ¥ € Mz(Jm(j))}- (2.3)
Here |, ,, and |5, denote the restrictions from the mortar side and nonmortar side subdo-

mains €; and ; to the interface respectively, and we will omit them if there is no confusion.
The condition in (2.3) for each interface is called mortar condition, through which the basis
functions in V; are associated with the nodes in NV; = N (€) UN;(7) UC, where C is set of cross
points. We call these nodes in J\7l as free nodes.
The mortar finite element approximation to the original problem (2.1) is to find uy, € Vp,
such that
aL(uL,vL) = (f, ’UL), Vo eV, (24&)
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where
N
ar(ur,vy) = Z/ pVup - Vopdz. (2.4b)
=17

By the definition, the bilinear form ay(-,-) is also well-defined on the space V;, and we denote
it by a;(-,-) with the corresponding norm || - ||, = v/ai(-,-). We use (-,-)o,p,¢ to denote the
weighted L? inner product on G, i.e., (-,-)o,p.c = (p,-)r2(c)s || - lo,p,c is the induced norm. We
usually omit the subscript when G = Q2.

In this paper, we assume that each edge element on the mortar side is the union of a number
of whole elements on the nonmortar side (see Fig. 2.2 for an illustration). Consequently, V;
includes a conforming finite element subspace W; £ V; N H}(Q), which is the space defined on
the triangulation with hanging nodes (see [9] for example). For each mortar side edge e € T;(7y),
N denotes the number of corresponding nonmortar side edges, and J? = pq,/ pe, indicates
the rate of coefficients on mortar and nonmortar side subdomains €2; and §2; associated with e.
It is known by the rule choosing the mortar side that J# > 1.

SAVAVAVAVAVA

Yme(d)

Fig. 2.2. An illustration of the mesh on the mortar and nonmortar sides.

Remark 2.1. We note that the constraint (v, —vls,. ) € H)/?(Ty;) in (2.3) is to ensure
that the functions in V; are continuous at the cross points. Therefore, we do not need treating the
cross points specially when designing intergrid transfer operators. If the constraint is omitted,
since the finite element function is discontinuous at the cross points, we should carefully choose
suitable prolongation operator which is stable under the weighted L? norm and the energy
norm.

3. The Local Multilevel Preconditioner

In this section, we shall propose our local multilevel preconditioner.
We first introduce a transfer operator from V;_; to V. Since X;_1(;) C Xi(€), let
I | X;-1(94) — Xi(€;) be the natural prolongation operator. Then for any v € V,_1, we
define I;_1v € W, C V} by its nodal values. For the non-interface node p € N;(Q;) UN;(9Q)UC,
let
(1i10) () = v(p), (3.1)

while for the interface node p € Ni(Ym(i)) UNi(0m(j)) (see Fig. 3.1), we take the corresponding
mortar side nodal value, i.e.,

(Ii-1v) (p) = (L{_1v) (p)- (3.2)
By the mesh assumption on the mortar and nonmortar sides and the fact that I li_lv is piecewise
linear and continuous on I';;, the definition (3.2) ensures that I;_;v is continuous across the
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Q;

m(5)

Ym(i)

£l

Fig. 3.1. Nodes on mortar and nonmortar sides

interface. Obviously, I;_iu is a function in V;. Due to W; C W C Vp, it is also a function in
the finest space V. Thus the operator I;_; defines an extension from V;_; to V.

Next, we will define the set of the nodes of T;(2), 2 <1 < L, on which local smoothers are
carried out. Let S; be the set of new free nodes of 7;(Q2) and the nodes associated with which
the basis functions are modified, i.e.,

S = {p :p e NP\ Ni_1 or p e N; N Ni_; satisfying QNS? # %11}7

where af eV, (%:1 € Vj_; are the basis functions corresponding to the node p. On the finest
level, the set Sy, is enlarged to include all the mortar side nodes, i.e., Sy := S UNL (7). We
denote ‘N/l C V] the space spanned by the basis functions associated with the nodes in &, i.e.,
V= span{q?ﬁf,p € §;}. Correspondingly, V7, admits a decomposition (see (4.17))
L ~
Ve =nLVi+)Y IV, (3.3)
1=2

where I, is the identical operator. We also denote ‘71 = V4 for convenience.
On each subspace V;,2 <1 < L, let R; : V; — V| be a symmetric positive definite smoothing
operator. We assume that R; satisfies the following equivalence

(Rl_lv,v)om ~ (hf2v,v)07p, Yo € ‘71, (3.4)

where h;l is a piecewise constant defined by the reciprocal of the diameters of the elements in
Ti(£2). On the coarsest level, we use the exact solver, i.e., Ry = Al_l. Here A, is the operator
satisfying (Ajw,v) = a1 (w,v) for any w,v in V;.

Remark 3.1. The standard smoothers, both Jacobi and symmetric Gauss-Seidel smoothers,
satisfy the equivalence (3.4) (see [14, (5.1)]). This can be obtained by the property of the basis
function. Taking the Jacobi smoother for an example, we have

~ - ap q _ S
Rfl P 4 — al( la¢[)7 p q € oy, 3.5
(B0t @1)or { 0, p,q €S and p # g. 3:9)

Then, for any v =3 s vpgf € V,, it holds that

(R 0)o, = Y (BP0, 07000, = > ai(vP ey, vP¢))

P,4€S PES:

= Z (hl_2vp$f7vp$§))0,p = (hl_2v7v)0,p7

PES,
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where in the third equality we have used (V&f, v%f)(]’pﬂ- o~ (h;%ﬁﬁ aﬁ))o,p,r on each 7.
Let A : ‘71 — ‘71 (1 <1< L) be the operator induced by a,(+,) on ‘71, ie.,
(fllw,v)o,p =aq(w,v), Yw,v € Vi,
and P, PO : V, — V,(1 <1< L) be defined by
ai(Pw,v) = ar,(u, jv), (Plow,v)om = (u, [1v)o,p, Yw e VL, vE V.

It follows from the above definitions that A, P, = PIOAL7 where Ay, is the operator induced by
ar(-,-) on V.
Then the local multilevel preconditioner By, for the mortar finite element method can be

stated as
L

L
By =Y LRAPA;'=> LRP. (3.6)
=1 =1
Remark 3.2. Here, we only introduce the local additive multilevel preconditioner. If we choose
a suitable parameter g, such that there exists w; (0 < w; < 2), which is independent of the
jump in the coefficient, the mesh size and the mesh level, satisfying the stability of the local
smoother:
ar (L, Livy) < wl(,ulRl_lvl,vl)ow Vv €V,

we may also define an efficient local multiplicative multilevel preconditioner.

4. Analysis

In this section, we shall estimate the condition number of the preconditioned system. The
following Poincaré type inequality (see [16, Theorem 3.1.1] or [24, Theroem 2.7.1]) is needed in
the analysis.

[vllo,e S CuhrlVollo.z + , (4.1)

Lemma 4.1. Let L be a segment, pu be a piecewise linear function with non-vanishing average
1
|/} o
where C), = I luldo

over L, then it holds for any v in H'(L) that
/ pvdo
L
w1, pdol

Proof. By density, it suffices to consider v € C°°(L) N H'(L). The triangle inequality and
the fundamental theorem of calculus yield

/Lv2d0§2/L (v— jfL’jL”dci8>2da+2/L <ffLL‘;fdis)2da
_QW/L </Lu(v(a)v(s))ds> dUH(ILZU)Z </L;wdo—>
g2<%) h (/L|Vv|da) +2ULZZU)2 (/L,Lwda)

1 2
S Cﬁh%/ VPdo + ——— </ uvda) .
L (J; ndo) L
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This completes the proof of the lemma. O

We show that the intergrid transfer operator is stable under the weighted L? norm and the
energy norm.

Lemma 4.2. For any v € Vi, the following inequalities hold:

[ iv]lo,p S lIvll0,ps (4.2)
1llar,, S lvlla- (4.3)

Proof. By the definition of I;, we note that I;v # v only on the element 7 € 7,11 () whose
boundary has nonempty intersection with the nonmortar side. We just need to discuss the
stability on these elements.

& ()

nfrr{ii,::

2 P
€

Fig. 4.1. Elements associated with the nonmortar and mortar sides.

The intersection of the boundary of 7 and the nonmortar side may be an edge, a node, two
edges, or an edge and its opposite node (see Fig. 4.1 for an illustration). If the intersection is

the edge denoted by e, i.e., 97 N § = & = P1pz, we denote ps the vertex opposite to e, é = pip?
the mortar side edge associated with e, and 77" the mortar side element which takes € as an
edge.

It follows from the norm equivalence, the scaling argument and the definition of I; that

3
||IlU||(2),p,T =~ p‘rh’72- Z(Ilv<pk))2

k=1
_ h2 7 2 I?, 2 Ii 2
prhz( (v (p3))” + (Liv(p1))” + (fjv(p2))
S 0ll5 .- + prhZ (v (2))* + (0'(92))?), (4.4)
where v’ = v|g,, v/ = v|g, associated with the corresponding mortar and nonmortar side

subdomains §2; and ;. For the other cases, we can obtain similar inequalities by the same
arguments.

Consequently, summing (4.4) over all the nonmortar side elements associated with the mor-
tar side edge €, we have

SO0l S D e+ D promh2 (0 (1) + (0 (02))?)

eCeé

(2),p,T + ||’UH%,p;ré"7 (45)

< S Wl pr + o b2 (0 01 + (0 (02)2) S 3 o]
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where 7' denotes the nonmortar side element taking e as an edge, and in the second inequality
we have used the fact that the coefficient on the mortar side subdomain is larger than the one
on the nonmortar side subdomain. Then the inequality (4.2) follows form (4.5).

For the inequality (4.3), similarly, as the proof of (4.2), we consider the case that the edge e
is the intersection of the boundary of the element 7 and the nonmortar side § (see Fig. 4.1 for
example). By the norm equivalence, the definition of I; and the triangle inequality, we derive
that

IV L0l .- = pr ((0(p1) = Lv(p2))? + (Liv(ps) = Lrv(p1))? + (Lrv(ps) — Lrv(p2))?)

= Pr((“i(Pl) - Ui(Pz))2 + (Uj(PS) - ”i(Pl))z + (”j(PS) - Ui(Pz))2>

. 2 . . 2 3 _ _ 2
S Pl VO 22 4 o 3 (Vo) = 0 0k) + D pr (v om) — 7 (01))
k=1 m,k=1
< pr| VO + prh M (07 = )R + Vol (4.6)

Let s, be the union of the edges in 7;(0,,(;)) sharing at least one node with e, and 1. € M;(6,,(5))
be the Lagrange multiplier basis function associated with one of the endpoints of e. Then, by
the mortar condition, we have

/ (v) — v)pedo = 0,

which, together with Poincaré type inequality (4.1) ( C, = 3), yields
he 1@ = )5 e S he(IVO'I 5, + IVV7I3 4,)-
Consequently, we get

IVL0lE , - < pehe(IVON3 o, + V27115 5,) + 190115, -
2

h
5 ||VU||g,p,7‘ + é||vv||g,p,¢g
é

he

< ||V’U||8 + Envv”%,p,‘ré”' (47)
é

P T

Here, we have used the fact that Vo’ and Vu' are piecewise constants. For other nonmortar
side elements, we can obtain (4.7) similarly. The proof of (4.3) is completed by summing (4.7)
over all the nonmortar side elements 7. O

To get a stable space decomposition, we introduce a quasi-interpolation from the finest space
Vi, to the coarser space V;. Let Hf be the Scott-Zhang [20] interpolation operator defined on
Miv = Z l PYvdzel, Vv e H'(Q;), (4.8)
peN(@:) 7P
where ¢ and ¢} denote the P; basis function and its dual associated with the node p, o] is an
edge of T;(€2;) defined as follows (see [10,27]):

1. If the node p € N;() N N—1(Q;) (I > 1) satisfying ¢ = ¢ |, we choose the edge

p_ P .
0 =015

2. If p is other node in N;(€;), of is an edge with one endpoint at p.
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By the definition of Hf, we introduce an operator II; : Vi, — W; C V] as follows.

ITjv) (p), if p € Ni(2) UNI(Vin(iy) U Ni(G1n ()
I _ ( l s i m(i) m(j))» 4.9
o) ) = { {08 e (4.9
Lemma 4.3. For any v € Vi, we have the following approximations
hy (v —Tw)|3 , < o ¢ 4.10
7y (v = ILw)[5,, S Jmax | T minl ) 110112, (4.10)
Nf
HU_Hlv”aL ~ ma(x) Jp a|10ghm1n| ||v||aL7 (411)

where hS . denotes the minimum size of elements around the cross points.

min

Proof. We only give the proof for the first inequality, and it is similar for the second one.
We note that II; is just the standard Scott-Zhang operator when restricted to the element
7 € Ti(Q) satisfying 07 N (§ UC) = (), and it holds for these elements that ([20])

1hy (v = T00)

Lpyws - (4.12)

Here w, denotes the union of the elements in the same subdomain which share at least a node
with 7.

If there is an edge e of 7 on the nonmortar side d,,(;) (see Fig. 4.1), by the triangle inequality,
the norm equivalence and the definition of II;, we deduce that

1 (v = TG, - < Niby (0 = TG, - + 1 (0w — Thw) Jo,p.r
2

. 2
SN2+ or > (Holor) — op) ) (4.13)

k=1

We next estimate the second term of (4.13). If pr € Ni(d(;)) is a nonmortar side node, it

holds for the corresponding Lagrange multiplier basis function wm(J) € M;(6ym(;)) that

Up,, é/@ ijm(j)dSZ/ v ()48 (4.14)

Spy Spy,

where s, is the union of the edges in 7;(d,,(;)) sharing py as an endpoint. Using the Schwarz
inequality, the scaling argument, and the Poincaré type inequality (4.1), we have

(I v(pr) — Mo (pr))* S (v (pr) = 0p,)% + (% — v (pr))?

. 2
< (Wolon) ~ ) + Z ()
S hf_2||H§U — Up, ||0,T +hg 2||Up;c - Hl“”o,rgn
= 2 [ (v = 0, )[5,7 + b [0} (B, = )57
SVl +1Vol5e, (4.15)

where pZ, s = 1,2, are the endpoints of the mortar side edge € associated with e.
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If pr, € C is a cross point, v := ﬁ fT vds, by the triangle inequality, the Sobolev inequality
(see [24, Lemma 10.1.1]), the Poincaré inequality and the scaling argument, we obtain

(o =)o) % ((Fetm) =)+ (@ = o)
< b2~ ol + o - o,

S IVllg., + Nog hil V0I5 - (4.16)

Then, the inequality (4.10) follows from (4.12), (4.15) and (4.16). O

Lemma 4.4. For any v € VL, there exists one decomposition of v

L
v = Zfzvu v €V, (4.17)
1=1
satisfying
L
i3, + D (R o, w0, S Allvll2, (4.18)
1=2

where A =  max (%,Hoghc |)

min
e€UITi(v)

Proof. For any v € Vi, we choose a decomposition satisfying vy, = v — II_jv € Vg,
u=>04 -1 1)v e W,2<I<L-1,v, =Iljv € W;. Since W; C W, C Vp, it is true that

UZZU[ ZZ[ﬂ}l. (4.19)

By the definition of II;, we have
() (p) = (_10) (p), VpEN\S, 2<1<L,
(Mz-10) (p) = v(p), ¥p € N\ St

Consequently, v; € ‘71 and the decomposition (4.17) is true.
Next we show that the decomposition is stable with the constant A. By (3.4), we have

(R Moo, = Y 110 0715 s (4.20)
PES)

where o = (I, — T _1)v) (p)¢F, 1 <1 < L, and o2 = (v — I _10)(p)oh.
If pe &\ (M(y)NC) is the node in €2; on which the smoother is performed, it follows from
directly calculations that

b P12, = 1 (@0 = 1 )o) ()Pl (h;p)2 713,
~ pu, | (I = T_1)v) (p)[%, (4.21)

where w, is the union of the elements in 7;(€2;) sharing p as a vertex.
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If p € SN N;(7) is one of the mortar side nodes on which the smoother is carried out, ;
and € are the mortar and nonmortar side subdomains associated with p, then,

by P13, = 1 (T = T—1)v) (p)\Q/QPhIQI#’Ide

= | (I = I;—1)v) (p)| (PZL/Q.

h;2|$f|2dx+pgm/9 hl—?aﬂ?dx)
S (I = IL—1)o) (P) P (0 + pi ™ ni™). (4.22)

Here p;' and pp™ denote the coefficients on the mortar and nonmortar side subdomains asso-
ciated with p, and ny;"™ indicates the number of the corresponding nonmortar side edges.

If p € § NC is a cross point, we note that ((II; — IT;_1)v) (p) vanishes by the definition of
II;. Then it follows from the inequalities (4.20)-(4.22) that

L—1
Z(Rl_lvlavl)o,p
=2
L—-1
= Z IRy 715, + Z (oAl
=2 \peS\N.(v) PESINN(7)
L—1
< Z Pu, | (I = TL,—1)v) (p)[?
=2 pes ()
L—1 pnm
Yy (p;”<1+nzm%n>|<<nl 1) <p>|2)
=2 peS;NN(v) Pp
< max (1+ ) Zpg Z ST ) ) (423)
eeU; Ti(7) JéE
1= pESINN(Q;)

On each subdomain €2;, using the standard stability of space decomposition on local mul-

tilevel methods for the P; conforming element method (see, e.g., Theorem 3.5 in [10]), we
have

L—-1
Yo > NI =1 )P S IVelia, (4.24)

1=2 peSiNN(Q)

and consequently obtain

L—1 N,
Ry, < 1+ -4 : 4.25
> (e, 5 e (14 55) IR, (4.25)
which, together with Lemma 4.3 and the definition of Ry, yields (4.18). O

Lemma 4.5. We have the following global strengthened Cauchy-Schwarz inequality

L -1 % L % N N
ZZCLL Ilvl,lkwk (Z ||IlUlH ) <Z Ik’wknik) ., Yy eV, wg € V. (4.26)
k=1

1=1k=1
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Proof. The main idea of the proof is to classify the elements according to the mesh size,
and to use the technique of the strengthened Cauchy-Schwarz inequality on uniform grid.

For each element 7 € T7;(Q), let g(7) be the refined times of 7 from Ty € T1(Q2). It is
reasonable to assume that there exists #, 0 < 6 < 1, which only depends on the shape regularity
of the mesh, satisfying ([13])

hr, 09 < by < by, 097, (4.27)

Let N;(7) C N, be the set of the free nodes associated with 7, i.e., Ni(r)={pe N7 C supp(;f}
(see Fig. 4.2 for an illustration). We note that v; € V; can be rewritten as the summation of
the functions associated with each node in S, i.e., vy = Z[)esl vy, v) € span {¢}'}. v; can also
be rewritten as the summation of the functions corresponding to the refined times, that is

v = Z Z Z 6?’
m=0 7T (Q)\Ti—1(Q) peN ()

g(r)=m

where
P = v /Ni(p), ifpe S,
! 0, else,

with N;(p) the number of the elements in 7;(2) \ 7;_1(2) and the support of 5;

Fig. 4.2. An illustration of /(7).

Similarly, we rewrite wy, as

wy = Z Z Z Y.
n=0 k€ TR (W\Th_1(Q) ¢ENk (r)

g(r)=n
Without loss of generality, we assume m < n. Let
-1
n-Y Y X nal
k=1 neﬁ(f(?)}n_l(ﬂ) qENK(K)
g(k)=n

For each p € N;(7) NN () with 7 € T(Q;) \ T-1(Q;) and g(7) = m, using (3.2.16) in [10], we
have
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/ V(L) - Vi,dae
Q

i

-1
PV lowr, [ 2 S VRl | . (429

k=1 €Tk (Qi)\Tk-1(Q:) gENK (K)NNL(Q:)

g(k)=n
with wp; = supp(L;07) N and wf ; = supp(Ixw)) N Q;. It is derived by multiplying p both

sides of the above inequality and summing over all 2; that

ar, (v}, wy)

-1
SO VI lopr | D > > IV 15,0 | (4.29)
k=1 k€T (Q\Te-1(2)) ¢ENk (x)
g(k)=n
where w]’ = supp(I;0}) and w{ = supp(w}). Then the proof is completed by summing (4.29)
over all p in N;(7), 7, and the refined times m, and using the fact that the spectral radius of
{glm=nl/2} . is bounded. O

By the stable decomposition Lemma 4.4, the strengthened Cauchy-Schwarz inequality (4.26),
and using the classical Schwarz framework, we have the following bound of the condition number
of the preconditioned system.

Theorem 4.1. For any v € V,, the inequalities

(ALv,v)o, S (Bglv,v)oﬁp, (BL v,0)0,p S A(ALY,v)o,p (4.30)

~

are true, consequently, the condition number of the preconditioned system By Ay, can be bounded
as
H(BLAL) 5 A, (431)

where A is the parameter defined in (4.18).

Proof. Our proof is based on the following equivalence (see Lemma 2.5 in [21]):

v EV]
U:ZZL:I Livy
The second inequality of (4.30) follows from (4.32) and (4.18). We next prove the first inequality
of (4.30). For any decomposition v = Zl D, v € Vl, by Lemma 4.5, the inverse inequality,
and the stability of I;, we deduce that

(lev, 1})07,) = inﬁ ( |1}1H Z vl,vl > . (432)

L

L l
aL(v,v) = aL(IlUbIk'Uk 22 aL(Ilvl,Ikvk)
k,l=1 =1 k=1

L L
S YoMl S Loz, + 37 1k Luls,
=2

=1

L L
1(v1,01) + g vl,vl 0,p ~ a1(vi,v1) + E vl,vl 0,p- (4.33)
1=2 =2
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Due to the arbitrariness of the decomposition and (4.32), we obtain

L

ar(v,v) < inf Z(Rl_lvl,vl)o,p = (B 'v,v)0,p. (4.34)
v EV] —
=, I

5. Numerical Experiments

In this section we present a numerical result to illustrate the performance of our local
multilevel preconditioner. The implementation is based on the FFW toolbox [6].

Fig. 5.1. The domain §2.

The test problem is posed on the domain Q = [0, 1]? with the piecewise constant coefficient.
We choose the solution

u(z,y) = %@ — )1 - — y)( — 0.5)2(y — 0.5)%,

with the corresponding right-hand side f and the Dirichlet boundary condition imposed on 052,
where p equals 1 on = {(z,9) € Qz <y <1—z} and Q3 := {(z,y) € Yy <z <1 -z},

Grid on Level 12

TRI=T ]
08

08

a7

e £ o

08

04 ~

03

02

o1

o LA Za ! . ; el NN

0 0.1 02 03 B 07 08 09 1

0.4 05 0.
Nr of Nodes 11078

Fig. 5.2. The adaptive mesh after 12 refinements.
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and takes different values p = 10° on Qy := {(z,y) € Qlz >y > 1 — 2} and Q4 := {(z,y) €
Q1 —y <z <y} (see Fig. 5.1).

In the adaptive algorithm, we start with the initial triangulation 77 (Q2) = {Q;}, and use the
newest vertex bisection algorithm in each subdomain based on the error estimator introduced
n [23]. We note that the mesh is not required to match across the subdomains interface. In

Fig. 5.2, we draw the adaptive mesh after 12 refinements when the jump of the coefficient is
10%.

Table 5.1: The iteration number and the condition number.

L [i=2 i=4 i=6 i=8

8 | 25(10.42) | 23(10.62) | 23 (10.61) | 23 (10.62)
9 | 25(10.5) | 24(10.73) | 23 (10.57) | 23(10.61)
10 | 26(10.48) | 23(10.57) | 24 (10.61) | 23 (10.57)
11 | 26(10.5) | 27(10.7) | 29 (10.74) | 24(10.61)
12 | 27(10.52) | 27(10.69) 29 (10.74) | 33(10.78)
13 | 27(10.57) | 27(10.67) | 29 (10.7) | 30(10.76)
14 | 27(10.59) | 24(10.56) | 24 (10.56) | 33 (10.79)
15 | 27(10.53) | 28(10.7) | 32 (10.79 | 33(10.8))
16 | 27(10.51) | 28(10.63) | 32 (10.78) | 33(10.8)
17 | 27(10.48) | 28(10.67) | 32 (10.79) | 25(10.55)
18 | 27(10.46) | 28(10.65) | 32 (10.79) | 34(10.81)
19 | 29(10.49) | 28(10.63) | 32 (10.78) | 33(10.8)
20 | 27(10.42) | 30(10.69) | 32 (10.77) | 33(10.8)

For the local multilevel preconditioner, we use one symmetric Gauss-Seidel iteration as the
smoother on each fine level, and the exact solver on the coarsest level. In Tables 5.1, we list the
number of iterations, the condition numbers k(B Ay) with different jumps and mesh levels.
From the table, we can see that the method is quite robust with respect to the jump in the
coefficient, the mesh level, and the mesh size. This is consistent with our theoretical results.
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