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Abstract. We consider an (n−k+1)-out-of-n system with component lifetimes being
correlated. The main objective of this paper is to study the conditional residual life-
time of an (n−k+1)-out-of-n system, given that at a fixed time a certain number of
components have failed, assuming that the component lifetimes follow a multivariate
Erlang mixture. Comparison studies of the stochastic ordering of the (n−k+1)-out-of-
n system are presented. Several examples are presented to illustrate and confirm our
results.
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1 Introduction

An (n−k+1)-out-of-n system is a system such that it consists of n components and works
if and only if at least (n−k+1) out of the n components are operating (k≤n). Thus, this
system fails if k or more of its components fail. If k = 1 the system is a series system,
and if k=n the system is a parallel system. The system is often considered in the indus-
trial and survival analysis context. Denote the lifetimes of the individual components by
X1,X2,··· ,Xn and let X1:n ≤ X2:n ≤ ··· ≤ Xn:n be the corresponding order statistics. Then
the lifetime of the (n−k+1)-out-of-n system will be represented by the kth order statistic
Xk:n. Let X denote the lifetime of a component of a system. Then Xt=(X−t|X>t) may be
interpreted as the residual lifetime of the system at time t, given that the system is alive
at time t.
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In recent years, the residual lifetime of an (n−k+1)-out-of-n system has been studied
extensively. [2] considered the residual lifetime of an (n−k+1)-out-of-n system under the
condition that at most (l−1) components have failed at time t, i.e., (Xk:n−t|Xl:n > t),1≤
l≤ k≤n. [14] extended the concept to an (n−k+1)-out-of-n system under the condition
that at least j components have failed but the lth failure has not occurred yet at time t,
i.e., (Xk:n−t|Xj:n ≤ t<Xl:n),1≤ j< l≤ k≤n. Similar research can be found in [1], [3], [13],
and [22].

The research in this area in general focuses on the distribution function, the mean
residual lifetime (MRL) and stochastic ordering properties of residual lifetimes under the
assumption that the components of a system are independent. See [8], [9], [18], and ref-
erences therein. In many real situations however, there may be a structural dependence
among components of the system. As a result, there are several recent studies considering
the dependence among the components. For example, [15] adopted Archimedean copula
to reflect the dependence among the components. Others may be found in [7], [17], [18]
and references therein.

In this paper, we study the conditional mean residual lifetime function and stochastic
ordering properties of an (n−k+1)-out-of-n system with assumption that the lifetimes
have a multivariate Erlang mixture. The multivariate Erlang mixture is a useful model
as it can capture the dependence structure of a large number of multiple variables well.
Compared with copula method that is a dominant choice to model multivariate data
these days, a multivariate Erlang mixture is more flexible in terms of dependence struc-
ture and has a wide range of dependence. Furthermore, it is easy to deal with high
dimensional data with a multivariate Erlang mixture, while a copula approach may be-
come much more difficult to use for higher dimensional data. See [12], [19], [20] and
references therein. Hence the results in this paper may be useful when the components
of a system are of strong dependency and the number of components is high.

Each marginal of a multivariate Erlang mixtures can be viewed as a compound expo-
nential distribution. In this paper, we show that if the counting random variables satisfy
the multivariate totally positive of order 2 (MTP2) property, then the conditional residual
lifetime Xt

k,j,l,n=(Xk:n−t|Xj:n≤t<Xl:n),1≤j<l≤k≤n is stochastically non-decreasing with

respect to j and k and non-increasing with respect to l. These properties are consistent
with the results when the component lifetimes are independent.

This paper is organized as follows. In Section 2, we present some properties of ex-
changeable variables with the joint distribution being a multivariate Erlang mixture. The
purpose of the section is to simplify the proofs in following sections. In Section 3, we
study the conditional mean residual lifetime of an (n−k+1)-out-of-n system under the
assumption that the lifetimes of the components follow an Erlang mixture. In Section
4, we stochastically compare the conditional residual lifetimes of the (n−k+1)-out-of-n
system with respect to its various parameters. We conclude Section 5 with some remarks.
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2 Properties of exchangeable mixed Erlang variables

[12] introduces the class of multivariate Erlang mixtures and shows that the class has
many desirable properties. A multivariate Erlang mixture is defined as a random vector
X=(X1,X2,··· ,Xn) with probability density function (pdf)

h(x)=h(x1,··· ,xn)=
∞

∑
m1=1

···
∞

∑
mn=1

αm

{

n

∏
j=1

β(βxj)
m j−1e−βxj

(mj−1)!

}

, (2.1)

where m=(m1,··· ,mn), αm’s are the mixing weights satisfying αm≥0 and

∞

∑
m1=1

···
∞

∑
mn=1

αm=1

and β is the common rate parameter (θ=1/β is called scale parameter).
It is shown in [12] that each marginal random variable Xp of a multivariate Erlang

mixture has a compound exponential distribution, i.e.,

Xp=
Np

∑
i=1

Eip, p=1,···n, (2.2)

where Eip,i=1,··· ;p=1,··· ,n are iid (independent identical distributed) exponential ran-
dom variables with mean 1/β and the weights αm form a joint probability function of a
multivariate counting random vector N=(N1,N2,··· ,Nn), that is,

αm=P(N1=m1,N2=m2,··· ,Nn =mn). (2.3)

We denote the density of an Erlang distribution with shape parameter m and rate
parameter β as

f (x|m,β)=
β(βx)m−1e−βx

(m−1)!
. (2.4)

Thus, the survival function is given by

F(x|m,β)=
m−1

∑
r=0

(βx)re−βx

r!
. (2.5)

The distribution function F(x|m,β)=1−F(x|m,β).
For any permutation {π1,··· ,πn} of {1,··· ,n}, if

(Xπ1
,··· ,Xπn)

d
=(X1,··· ,Xn), (2.6)

namely, (Xπ1
,··· ,Xπn) and (X1,··· ,Xn) have the same distribution, then we call X1,··· ,Xn

exchangeable variables. The vector (X1,··· ,Xn) or its distribution is said to be exchange-
able as well.
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We will study the properties of the conditional residual lifetime of an (n−k+1)-out-
of-n system. The proofs of the results in next sections are presented under the assumption
that (X1,··· ,Xn) is exchangeable. We now present some properties of exchangeable vari-
ables with the joint distribution being a multivariate Erlang mixture.

First, by Corollary 2.1 of [12] and the property of exchangeable random vector we
immediately have the following property.

Property 2.1. If (X1,··· ,Xn) is exchangeable with joint distribution being a multivariate
Erlang mixture, then the marginal distribution of Xj, j = 1,··· ,n is a univariate Erlang
mixture and X1,··· ,Xn are identical.

In fact, any p-variate marginal (Xi1 ,··· ,Xip
), is a p-variate exchangeable Erlang mix-

ture, {i1,··· ,ip} is any subset of {1,··· ,n} with cardinality p(p≤n).

Property 2.2. If the joint distribution of X1,··· ,Xn is a multivariate Erlang mixture, then
(X1,··· ,Xn) is exchangeable if and only if (N1,··· ,Nn) is exchangeable.

Proof. (1) If (N1,··· ,Nn) is exchangeable, that is, for any permutation {π1,··· ,πn} of {1,··· ,n},
αmπ =αm, mπ =(mπ1

,··· ,mπn), then

h(xπ1
,··· ,xπn)=

∞

∑
m1=1

···
∞

∑
mn=1

αm

n

∏
j=1

f (xπj
|mj,β)

=
∞

∑
mπ1

=1

···
∞

∑
mπn=1

αmπ

n

∏
j=1

f (xπj
|mπj

,β)=
∞

∑
m1=1

···
∞

∑
mn=1

αmπ

n

∏
j=1

f (xj|mj,β)

=
∞

∑
m1=1

···
∞

∑
mn=1

αm

n

∏
j=1

f (xj|mj,β)=h(x1,··· ,xn). (2.7)

Hence we conclude that (X1,··· ,Xn) is exchangeable.

(2) If (X1,··· ,Xn) is exchangeable, that is, for any permutation {π1,··· ,πn} of {1,··· ,n},
h(xπ1

,··· ,xπn)=h(x1,··· ,xn), then similar to the above procedure, we have

∞

∑
m1=1

···
∞

∑
mn=1

αmπ

n

∏
j=1

f (xj|mj,β)=
∞

∑
m1=1

···
∞

∑
mn=1

αm

n

∏
j=1

f (xj|mj,β). (2.8)

According to the identifiability property of the multivariate Erlang mixture, we have
αmπ =αm, that is, (N1,··· ,Nn) is exchangeable.

Property 2 provides us an idea to construct a set of exchangeable Erlang mixture vari-
ables. The dependence of X1,··· ,Xn relies on the dependence of N1,··· ,Nn.

Example 2.1. Let U=N−1 and (U1,··· ,Un)∼ Multn(M−n; 1
n ,··· , 1

n ), that is (U1,··· ,Un)
is from a multinomial distribution with number of trials M−n and event probabilities
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( 1
n ,··· , 1

n ), then

αm=P(N1=m1,··· ,Nn =mn)

=P(U1=m1−1,··· ,Un=mn−1)

=

(

M−n
m1−1,··· ,mn−1

)

(
1

n
)M−n,if m1+···+mn =M,

and the rest mixing weights are set to be 0. It is obvious that (N1,··· ,Nn) is a random
vector with exchangeable distribution and hence (X1,··· ,Xn) is exchangeable.

The next property provides a method to obtain more discrete exchangeable variables.

Property 2.3. If variables Y1,··· ,Yn are exchangeable and another variable Y is indepen-
dent with Y1,··· ,Yn, then Ni =Yi+Y,i=1,··· ,n are exchangeable variables.

Proof. For any permutation {π1,··· ,πn} of {1,··· ,n},

P(Nπ1
=m1,··· ,Nπn =mn)=E[P(Yπ1

+Y=m1,··· ,Yπn+Y=mn)|Y]

=
∞

∑
k=0

P(Yπ1
+k=m1,··· ,Yπn+k=mn)P(Y= k)

=
∞

∑
k=0

P(Y1+k=m1,··· ,Yn+k=mn)P(Y= k)=P(N1 =m1,··· ,Nn =mn). (2.9)

Hence, the result holds.

Remark 2.1. In practice, we often extend a certain univariate distribution to multivariate
case as described above. If we set variables Y1,··· ,Yn to be identical independent, then
from Property 2 we know the corresponding multivariate distribution is exchangeable
because it is easily to know that identical independent variables are also exchangeable.

3 Conditional residual lifetime of (n−k+1)-out-of-n system

We will study the conditional residual lifetime of an (n−k+1)-out-of-n system, given
that at least j components have failed but the lth failure has not occurred yet at time t:

Xt
k,j,l,n =(Xk:n−t|Xj:n ≤ t<Xl:n), 1≤ j< l≤ k≤n.

Let X= (X1,··· ,Xn) be the vector of the components’ lifetimes having joint density
function h(x). In order to simplify the notation, we denote

∞

∑
m=1

△
=

∞

∑
m1=1

···
∞

∑
mn=1
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in next sections and we suppress the common rate parameter β.

For the conditional residual lifetime Xt
k,j,l,n =(Xk:n−t|Xj:n ≤ t<Xl:n) of an (n−k+1)-

out-of-n system, the distribution function is denoted by

Ft
k,j,l,n(x)=P(Xk:n−t≤ x|Xj:n ≤ t<Xl:n) for x>0

and the survival function F
t
k,j,l,n(x)=1−Ft

k,j,l,n(x).

First we derive the survival function F
t
k,j,l,n(x) and then calculate the conditional mean

residual lifetime which will be defined later. To simplify the calculation, the results in this
section are under the assumption that the lifetimes of the components are exchangeable.
The corresponding results when the joint distribution is an arbitrary multivariate Erlang
mixture are presented in appendix.

Theorem 3.1. If the lifetimes of X=(X1,··· ,Xn) have joint density function h(x). For 1≤ j<
l≤ k≤n, the survival function of the conditional residual lifetime is given by

F
t
k,j,l,n(x)=

∞

∑
m=1

αmwm

l−1

∑
i=j

∑
Ci

φi(t)F
(Cc

i )
k−i,n−i(x,t|m)

∞

∑
m=1

αmwm

l−1

∑
i=j

∑
Ci

φi(t)

, (3.1)

where

wm=
n

∏
i=1

F(t|mi), φi(t)= ∏
s∈Ci

F(t|ms)

F(t|ms)
,

Ci is any subset of {1,··· ,n} with cardinality i, ϕ(x,t|m)=
F(x+t|m)

F(t|m)
and

F
(Cc

i )
k−i,n−i(x,t|m)=

k−i−1

∑
p=0

∑
Ci(p)

∏
s∈Ci(p)

(1−ϕ(x,t|ms)) ∏
s∈C′

i(p)

ϕ(x,t|ms), (3.2)

where Cc
i is the complementary of Ci, Ci(p) is any subset of Cc

i with cardinality p and C′
i(p)=

Cc
i −Ci(p).

Proof. When the multivariate Erlang mixture is exchangeable, we have

F
t
k,j,l,n(x)=P(Xk:n−t> x|Xl:n > t≥Xj:n)=

P(Xk:n > t+x,Xl:n > t≥Xj:n)

P(Xl:n> t≥Xj:n)
,
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and

P(Xk:n > t+x,Xl:n > t≥Xj:n)

=
l−1

∑
i=j

k−i−1

∑
p=0

P(exactly i of X′s are < t,t< exactly p of X′s are ≤ t+x)

=
l−1

∑
i=j

k−i−1

∑
p=0

n!

i!p!(n−i−p)!

∞

∑
m=1

αm

i

∏
s=1

F(t|ms)
i+p

∏
s=i+1

(F(t+x|ms)−F(t|ms))
n

∏
s=i+p+1

F(t+x|ms)

=
l−1

∑
i=j

k−i−1

∑
p=0

n!

i!p!(n−i−p)!

∞

∑
m=1

αm

n

∏
s=1

F(t|ms)φi(t)
i+p

∏
s=i+1

(1−ϕ(x,t|ms))
n

∏
s=i+p+1

ϕ(x,t|ms)

=
∞

∑
m=1

αmwm

l−1

∑
i=j

(

n
i

)

φi(t)ψi,k(x,t), (3.3)

where Ci={1,··· ,i} and

ψi,k(x,t)=
k−i−1

∑
p=0

(

n−i
p

) i+p

∏
s=i+1

(1−ϕ(x,t|ms))
n

∏
s=i+p+1

ϕ(x,t|ms).

Similarly, we can obtain that

P(Xj:n≤ t<Xl:n)=
∞

∑
m=1

αmwm

l−1

∑
i=j

(

n
i

)

φi(t). (3.4)

the result follows immediately and it is obvious a special case of (3.1).

Remark 3.1. For exchangeable variables with a joint distribution being a multivariate
Erlang mixture, the survival function of the residual lifetime can also be written as (see
[18])

F
t
k,j,l,n(x)=

l−1

∑
i=j

(

n
i

)

Gi,n(t)G
(Cc

i )
k−i,n−i(x,t)

l−1

∑
i=j

(

n
i

)

Gi,n(t)

, (3.5)

where Gi,n(t)= P{At
i,n}= P(X1 ≤ t,··· ,Xi ≤ t,Xi+1 > t,··· ,Xn > t) and G

(Cc
i )

k−i,n−i(x,t) is the
survival function of the (k−i)th order statistic of conditional random vector (Xi+1−
t,··· ,Xn−t|At

i,n), At
i,n denotes event [X1≤ t,··· ,Xi ≤ t,Xi+1> t,··· ,Xn > t].

Example 3.1. (Example 2.1 continued)
We set M=4 and n=3 in Example 2.1, then the joint distribution of the components

is given by (with the common rate parameter β=1)

h(x1,x2,x3)=
1

3

[

f (x1|1) f (x2|1) f (x3|2)+ f (x1|1) f (x2|2) f (x3|1)+ f (x1|2) f (x2|1) f (x3|1)
]

.
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Figure 1 shows the survival curves for different time points for j=1,l=2,k=3.
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Figure 1: Survival curves for different times.

[5] investigated the MRL functions of parallel systems and [8] considered systems
with independent but nonidentical components. Here we consider a system consisting of
dependent components with lifetimes having a multivariate Erlang mixture. The condi-
tional mean residual life function is defined as the expectation of the conditional residual
lifetime,

µt
k,j,l,n =E[Xt

k,j,l,n]=E[Xk:n−t|Xj:n ≤ t<Xl:n]. (3.6)

Generally speaking, it is difficult to obtain an explicit expression for an MRL. It is an
advantage to use a multivariate Erlang mixture in this situation as an explicit expression
for an MRL is available.

The following result from [10] will be used to derive the MRL in this section.

Lemma 3.1. Let X1,··· ,Xn be independent random variables where Xp,p=1,··· ,n has pdf

fp(x)=
∞

∑
m=1

q
(p)
m f (x|m,β).

Then the pdf of rth order statistic is given by

fr:n(x)=
∞

∑
m=1

qm f (x|m,nβ), (3.7)
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where

qm =
1

nm ∑
Am,n

(

m−1
m1−1,··· ,mn−1

)

1

(r−1)!(n−r)! ∑P

q
(pr)
mr

r−1

∏
j=1

Q
(pj)
m j

n

∏
j=r+1

Q
(pj)
m j

,

Am,n=

{

(m1,··· ,mn)|
n

∑
i=1

mi=m+n−1,mi,i=1,··· ,n are positive integers

}

,

∑P denotes the sum over all n! permutations {p1,p2,··· ,pn} of {1,2,··· ,n},

Q
(pj)
m j

=
m j

∑
i=1

q
(pj)

i and Q
(pj)
m j

=1−Q
(pj)
m j

.

Theorem 3.2. For 1≤ j< l≤ k≤n and t>0, the conditional mean residual lifetime is given by

µk,j,l,n(t)=

∞

∑
m=1

αmwm

l−1

∑
i=j

∑
Ci

φi(t)µ
(Cc

i )
k−i,n−i(t|m)

∞

∑
m=1

αmwm

l−1

∑
i=j

∑
Ci

φi(t)

, (3.8)

where µ
(Cc

i )
k−i,n−i(t|m) is the mean function of the (k−i)th order statistic from independent variables

(Zp)t=(Zp−t|Zp > t),p∈Cc
i , where Zp has an Erlang distribution with shape parameter mp.

Proof : Note that

µk,j,l,n(t)=E[Xt
k,j,l,n]=

∫ ∞

0
F

t
k,j,l,n(x)dx. (3.9)

We notice that we only need to calculate the term

µ
(Cc

i )
k−i,n−i(t)=

∫ ∞

0
F
(Cc

i )
k−i,n−i(x,t|m)dx. (3.10)

Let random variables Zp,p∈Cc
i be independent variables with Xp has an Erlang distri-

bution with shape parameter mp,p∈Cc
i . Then the residual lifetime of Zp at time t denoted

by (Zp)t has an Erlang mixture distribution with pdf

hp(x)=
e−tβ

F(t|mp)

mp

∑
m=1

(tβ)mp−m

(mp−m)!
f (x|m)=

∞

∑
m=1

q
(p)
m f (x|m), (3.11)

where

q
(p)
m =







e−tβ

F(t|mp)

(tβ)mp−m

(mp−m)!
, m≤mp,

0, m>mp,

Hence, (Xp)t,p∈Cc
i are independent but nonidentical Erlang mixture variables.

According to (3.2), F
(Cc

i )
k−i,n−i,t is exactly the survival function of the (k−i)th order statis-

tic from independent variables (Zp)t,p∈Cc
i and thus µ

(Cc
i )

k−i,n−i(t) is exactly the mean func-

tion of the (k−i)th order statistic.
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From Lemma 3.1, the pdf of (k−i)th order statistic of (Zp)t,p∈Cc
i is given by

fk−i,n−i(x)=
∞

∑
m=1

qm f (x|m,(n−i)β), (3.12)

where the mixing weights qm,m= 1,2,··· can be seen in Lemma 3.1 with n replaced by
n−i and k replaced by k−i. Then we have

µ
(Cc

i )
k−i,n−i(t)=

1

(n−i)β

∞

∑
m=1

mqm. (3.13)

This completes the proof. �

Remark 3.2. The mean function of the (k−i)th order statistic of (Zp)t,p∈Cc
i can be ob-

tained by calculating the following integral expression directly:

µ
(Cc

i )
k−i,n−i(t)=

k−i−1

∑
p=0

∑
Ci(p)

∫ ∞

0
∏

s∈Ci(p)

(1−ϕ(x,t|ms)) ∏
s∈C′

i(p)

ϕ(x,t|ms)dx, (3.14)

where the notations Ci(p) and C′
i(p) are the same as what presented in Theorem 3.2. We

can also obtain an analytic expression, but it is tedious and is omitted here.

Example 3.2. (Example 3.1 continued)
The conditional mean residual lifetime of the system given in Example 3.1 can be

easily computed through expression (3.8). Here we set the time t=10, then it follows that

µ3,1,2,3(10)=1.5652.

4 Stochastic orders of (n−k+1)-out-of-n system

In this section, we examine some stochastic orders of the conditional residual lifetime of
an (n−k+1)-out-of-n system.

Definition 4.1. Let X and Y be two random variables with distribution functions F and G and
survival functions F= 1−F and G= 1−G, respectively. Then random variable X is said to be
smaller than random variable Y in the usual stochastic order (denoted by X≤st Y) if F(x)≤G(x)
for all x.

Definition 4.2. Let X and Y be two n-dimensional random vectors with joint density function f
and g. Then X is said to be smaller than Y in the multivariate likelihood ratio order (denoted by
X≤lr Y) if for all (x1,··· ,xn) and (y1,··· ,yn) in R

n,

f (x1,··· ,xn)g(y1,··· ,yn)≤ f (x1∧y1,··· ,xn∧yn)g(x1∨y1,··· ,xn∨yn), (4.1)

where x∧y=min{x,y} and x∨y=max{x,y}. If X≤lrX, then X is said to satisfy the multivariate
totally positive of order 2 (MTP2) property.
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Some common distributions have the MTP2 property such as multivariate gamma
distribution, multivariate logistic distribution and negative multinomial distribution. Other
examples and properties about multivariate totally positive distributions can be found
in [6].

The following results will be used in our derivation.

Lemma 4.1. If X=(X1,··· ,Xn) has a multivariate Erlang mixture and N=(N1,··· ,Nn) is the
corresponding counting random vector as defined in Section 2. Then

N≤lr N⇒X≤lr X. (4.2)

Proof. It is known that each marginal of X = (X1,··· ,Xn) has a compound exponential
distribution as in (2.2) and it is obvious that the density function of Eip,p = 1,··· ,n is
logconcave. Under the assumption that N satisfies the MTP2 property, it follows from
Theorem 6.E.5 in [16] that we have

(

N1

∑
i=1

Ei1,··· ,
Nn

∑
i=1

Ein

)

≤lr

(

N1

∑
i=1

Ei1,··· ,
Nn

∑
i=1

Ein

)

, (4.3)

namely,

(X1,··· ,Xn)≤lr (X1,··· ,Xn), (4.4)

which means X also satisfies MTP2 property.

The following lemma from [16] will also be used in our derivation.

Lemma 4.2. Let X1,X2,··· ,Xm and Y1,Y2,··· ,Yn be two positively correlated sets of continuous
random variables. Then

Xi≤st Yi for all i⇒Xi:m ≤st Yj:n, i≤ j, m−i≥n− j. (4.5)

Next we study the stochastic orders of the conditional residual lifetime with respect
to k, j,l,n. The proofs in this section are under the assumption that the lifetimes of the
components are exchangeable. The corresponding results when the joint distribution is
an arbitrary multivariate Erlang mixture are presented in appendix.

First, according to the definition of order statistics, we can immediately obtain the
result that Xt

k,j,l,n is stochastically non-decreasing with respect to k.

Theorem 4.1. Under the assumptions of Theorem 3.1, for 1≤ j< l≤ k≤n and t>0, we have

Xt
k,j,l,n ≤st Xt

k+1,j,l,n. (4.6)

Now we consider Xt
k,j,l,n with respect to j and l. The following theorem shows that if

N satisfies the MTP2 property, then Xt
k,j,l,n is non-increasing in l and non-decreasing in j.
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Theorem 4.2. Under the assumptions of Theorem 3.1, for 1≤ j< l≤k≤n and t>0, if N satisfies
the MTP2 property, we have

(1)Xt
k,j,l+1,n ≤st Xt

k,j,l,n; (2)Xt
k,j,l,n ≤st Xt

k,j+1,l,n. (4.7)

Proof. Using (3.5), F
t
k,j,l,n−F

t
k,j,l+1,n has the same sign as

l−1

∑
i=j

(

n
i

)

P{At
i,n}{G

(Cc
i )

k−i,n−i(x,t)−G
(Cc

l )

k−l,n−l(x,t)}. (4.8)

If N satisfies the MTP2 property, from Lemma 4.1, we have X satisfies the MTP2 prop-

erty. [4] showed that G
(Cc

i )
k−i,n−i(x,t)−G

(Cc
l )

k−l,n−l(x,t)>0 when X is exchangeable and satisfies

the MTP2 property and hence F
t
k,j,l,n(x)> F

t
k,j,l+1,n(x) . So we complete the proof of part

(1) and part (2) can be proved in a similar way.

Example 4.1. We consider a 3-out-of-3 system with the lifetimes of components having
an Erlang mixture. The shape parameters of the joint distribution are all permutations
with repetition of the vector (3,7,12). Then the number of the components of the joint
distribution is 27 and all mixing weights are set to be a same value 1

27 . It is obvious that
the corresponding primary counting random variables N satisfies the MTP2 property.

We compare the random variables Xt
k,j,l,n(x) and Xt

k,j,l+1,n(x). According to the above

theorem, Xt
3,1,3,3 ≤st Xt

3,1,2,3. Figure 2 shows the survival curves for Xt
3,1,3,3 and Xt

3,1,2,3 at
time t=5.

0 5 10 15
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Figure 2: Survival curves for l=2,3.
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Theorem 4.3. Under the assumptions of Theorem 3.1, if N satisfies the MTP2 property, we have

Xt
k−1,k,k,n ≤st Xt

k−1,k,k,n−1 (4.9)

Proof. It follows from (3.5) that F
t
k−1,k,k,n−1(x)−F

t
k−1,k,k,n(x) has the same sign as

P{At
k−1,n−1}P{At

k−1,n}{G
(Cc

k−1)

1,n−1−k,t(x)−G
(Cc

k−1)

1,n−k,t(x)}, (4.10)

where G
(Cc

k−1)

1,n−1−k,t(x) is the survival function of minimum of conditional random vector

(Xk−t,··· ,Xn−1−t|At
k−1,n−1) and G

(Cc
k−1)

1,n−k,t(x) is the survival function of minimum of con-

ditional random vector (Xk−t,··· ,Xn−t|At
k−1,n).

Let x = (x1,··· ,xn), A = {x : x1 ≤ t,··· ,xk−1 ≤ t,xk > t,··· ,xn−1 > t} and B = {x : x1 ≤
t,··· ,xk−1≤ t,xk > t,··· ,xn > t,xn > t}. We can easily obtain that

A∨B={x∨y :x∈A,y∈B}=A, A∧B={x∧y :x∈A,y∈B}=B.

If N satisfies the MTP2 property, from Lemma 4.1, we have X satisfies the MTP2 property.
Then we obtain (see [4])

(Xn−t,··· ,Xk−t|X∈B)≤st (Xn−t,··· ,Xk−t|X∈A) (4.11)

From Lemma 4.2, we have G
(Cc

k−1)

1,n−1−k,t(x)>G
(Cc

k−1)

1,n−k,t(x), and hence Xt
k−1,k,k,n≤stX

t
k−1,k,k,n−1.

This completes the proof of the theorem.

A Conditional residual lifetime

The following proofs are under the assumption that the joint distribution of the lifetimes
is an arbitrary Erlang mixture.

Proof of Theorem 3.1. Note that for 1≤ j< l≤ k≤n and t,x>0,

F
t
k,j,l,n(x)=P(Xk:n−t> x|Xl:n > t≥Xj:n)=

P(Xk:n > t+x,Xl:n > t≥Xj:n)

P(Xl:n> t≥Xj:n)
,
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and

Pr(Xk:n > t+x,Xl:n > t≥Xj:n)

=
l−1

∑
i=j

k−i−1

∑
p=0

Pr(exactly i of X′s are < t,t< exactly p of X′s are ≤ t+x)

=
l−1

∑
i=j

k−i−1

∑
p=0

∑
Ci

∑
Ci(p)

∞

∑
m=1

αm ∏
s∈Ci

F(t|ms) ∏
s∈Ci(p)

(F(t+x|ms)−F(t|ms)) ∏
s∈C′

i(p)

F(t+x|ms)

=
l−1

∑
i=j

k−i−1

∑
p=0

∑
Ci

∑
Ci(p)

∞

∑
m=1

αm

n

∏
s=1

F(t|ms)φi(t) ∏
s∈Ci(p)

(1−ϕ(x,t|ms)) ∏
s∈C′

i(p)

ϕ(x,t|ms)

=
∞

∑
m=1

αmwm

l−1

∑
i=j

∑
Ci

φi(t)F
(Cc

i )
k−i,n−i(x,t|m).

which is the numerator of (3.1). Similarly, we can obtain that

Pr(Xj:n ≤ t<Xl:n)=
∞

∑
m=1

αmwm

l−1

∑
i=j

∑
Ci

φi(t).

the result follows immediately.

Remark A.1. Similar to (3.5), we have another version about the conditional residual
lifetime (also see [18]):

F
t
k,j,l,n(x)=

l−1

∑
i=j

∑
Ci

P(Ci)(t)G
(Cc

i )
k−i,n−i(x,t)

l−1

∑
i=j

∑
Ci

P(Ci)(t)

(A.1)

where Ci={c1,··· ,ci} is the set of all permutations of {1,2,··· ,n} satisfies c1 ≤ c2≤···≤ ci

and ci+1≤···≤ cn,

P(Ci)(t)=Pr(Xc1
< t,··· ,Xci

< t,Xci+1
≥ t,··· ,Xcn > t),

we denote event [Xc1
<t,··· ,Xci

<t,Xci+1
≥t,··· ,Xcn>t] by A(t,Ci) and G

(Cc
i )

k−i,n−i(x,t) is the sur-
vival function of (k−i)th order statistic of conditional random vector (Xci+1

−t,··· ,Xcn−

t|A(t,Ci)).

Proof of Theorem. Theorem4.2 Using (A.1), F
t
k,j,l,n−F

t
k,j,l+1,n has the same sign as

l−1

∑
i=j

∑
Ci

∑
Cl

P(Ci)(t)P(Cl)(t)G
(Cc

i )
k−i,n−i(x,t)−

l−1

∑
i=j

∑
Ci

∑
Cl

P(Ci)(t)P(Cl)(t)G
(Cc

l )

k−l,n−l(x,t).
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For each Ci, there exists C′
l such that Ci ⊂C′

l and Ci+Cl =C′
i+C′

l . Therefore, the above
equation could be written as

l−1

∑
i=j

∑
Ci

∑
C′

l

P(Ci)(t)P(C′
l )(t)(G

(Cc
i )

k−i,n−i(x,t)−G
(C

′c
l )

k−l,n−l(x,t)).

Let A={x:xc1
≤t,··· ,xci

≤t,xci+1
>t,··· ,xcn>t} and B={x:xc1

≤t,··· ,xcl
≤t,xcl+1

>t,··· ,xcn>

t}. Because Ci⊂C′
l , then we have A∨B=A and A∧B=B. The next procedures are similar

to the proof in Theorem 4.2 and we have Xt
k,j,l+1,n ≤st Xt

k,j,l,n.

Proof of Theorem 4.3. The proof is similar to the procedure of Theorem 4.2 and we omit it
here.
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