
J. Math. Study
doi: 10.4208/jms.v50n1.17.06

Vol. 50, No. 1, pp. 84-90
March 2017
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Abstract. In this paper, we study the strong law of large numbers for a sequence of
END random variables. Our results extend the corresponding ones for independent
random variables and negatively orthant dependent (NOD, in short) random vari-
ables.
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1 Introduction

Definition 1.1. ([1]) Random variables X1,X2,··· are said to be extended negatively de-
pendent(END, in short), if there exists a constant M>0 such that both

P(X1≤ x1,...,Xn≤ xn)≤M
n

∏
i=1

P(Xi≤ xi), (1.1)

P(X1> x1,...,Xn> xn)≤M
n

∏
i=1

P(Xi> xi) (1.2)

hold for each n≥2 and all real numbers x1,··· ,xn.

The concept of END sequences was introduced by Liu [1]. When M=1, END random
variables are negatively orthant dependent (NOD, in short) random variables, which was
introduced by Joag-Dev and Proschan [2]. Some results for NOD sequences can be found
in Ko and Kim [3], Fakoor and Azarnoosh [4], Ko et al. [5], Wu [6], Kim [7], Wu and
Zhu [8]. As is mentioned in Liu [1], the END structure is substantially more comprehen-
sive than the NOD structure in that it can reflect not only a negative dependence structure
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but also a positive one, to some extent. Liu [1] pointed out that the END random vari-
ables can be taken as negatively or positively dependent and provided some interesting
examples to support this idea. Liu [1] obtained the precise large deviation results for END
sequences. Liu [9] studied sufficient and necessary conditions for moderate deviations.
Wu and Guan [10] discussed convergence properties of the partial sums for sequences
of END random variables. Qiu et al. [11] obtained complete convergence for arrays of
rowwise END random variables. For more details about strong convergence results for
dependent sequence, one can refer to Sung [12], Wang et al. [13], Yang and Hu [14], Zhou
et al. [15] and Zhou [16], and so forth.

The rest of the paper is organized as follows. In Section 2, some preliminary lemmas
are presented. In Section 3, main results and their proofs are provided. Throughout the
paper, let I(A) be the indicator function of the set A. C denotes a positive constant not
depending on n.

2 Preliminaries

The following lemmas will be needed in this paper.

Lemma 2.1 ([1]). Let {Xn,n ≥ 1} be a sequence of END random variables, let f1, f2,. . .be all
nondecreasing (or all nonincreasing) functions, then { fn(Xn),n≥ 1} is still a sequence of END
random variables.

Lemma 2.2 ([17]). Let {Xn,n≥1} be a sequence of END random variables. Assume that

∞

∑
n=1

log2nVarXn <∞, (2.1)

then ∑
∞
n=1(Xn−EXn) converges almost surely.

By Lemmas 2.1 and 2.2, we can get the following three series theorems for END se-
quences. The proof is standard, so we omit it.

Lemma 2.3. Let {Xn,n≥ 1} be a sequence of END random variables. For some c> 0, denote

X
(c)
n =−cI(Xn<−c)+XI(|Xn|≤c)+cI(Xn>c). If the following three conditions are satisfied:

∞

∑
n=1

P(|Xn|> c)<∞, (2.2)

∞

∑
n=1

EX
(c)
n converges, (2.3)

∞

∑
n=1

log2nVarX
(c)
n <∞, (2.4)

then ∑
∞
n=1 Xn converges almost surely.
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3 Main results

Theorem 3.1. Let {Xn,n≥1} be a sequence of END random variables. Assume that {gn(x),n≥
1} is a sequence of even functions defined of R, positive and nondecreasing on the half-line x>0.
Suppose that one or the other of the following conditions is satisfied for every n≥1,

(i) for some 0< r≤1, xr/gn(x) is a nondecreasing function of x on the half-line x>0;

(ii) for some 1<r≤2, x/gn(x) and gn(x)/xr are nonincreasing functions of x on the half-line
x>0, EXn =0.

For any positive number sequence {an,n≥1} with an ↑∞, if we assume that

∞

∑
n=1

log2 nEgn(Xn)/gn(an)<∞, (3.1)

then ∑
∞
n=1

Xn
an

converges almost surely and therefore

lim
n→∞

1

an

n

∑
i=1

Xi=0, a.s.

Proof. Let

Zn =
Xn

an
, Z

(1)
n =−I(Zn <−1)+Zn I(|Zn|≤1)+ I(Zn >1).

By Lemma 2.1, we can get that {Zn,n≥ 1} is a sequence of END random variables. So
by Lemma 2.3 in order to prove ∑

∞
n=1

Xn
an

converges almost surely, we need only to prove
(2.2)-(2.4), where c=1.

Firstly, observe that {gn(x),n≥1} is a sequence of even functions defined of R, posi-
tive and nondecreasing on the half-line x>0, gn(Xn)≥ gn(an) as |Zn|≥1. Then

P(|Zn|≥1)≤P(gn(Xn)≥ gn(an))≤
Egn(Xn)

gn(an)
,

so by (3.1) we can get that

∞

∑
n=1

P(|Zn|≥1)<∞. (3.2)

Secondly, if the function gn(x) satisfies condition (i), when |x|≤ an , we have

|x|r

gn(x)
≤

ar
n

gn(an)
.

Then
|x|r

ar
n

≤
gn(x)

gn(an)
,

x2

a2
n

≤
(gn(x))2/r

(gn(an))2/r
.
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Observe that {gn(x),n≥ 1} is a sequence of even functions, positive and nondecreasing
on the half-line x>0, so

0≤
gn(x)

gn(an)
≤1, for |x|≤ an .

Consequently,

x2

a2
n

≤
(gn(x))2/r

(gn(an))2/r
≤

gn(x)

gn(an)
, for 0< r≤1.

If the function gn(x) satisfies condition (ii), when |x|≤ an , we have
gn(x)
|x|r

≥ gn(an)
ar

n
. Then

|x|r

ar
n

≤
gn(x)

gn(an)
,

x2

a2
n

≤
(gn(x))2/r

(gn(an))2/r
.

Notice that when |x|≤ an , 0<
gn(x)
gn(an)

≤1. So

x2

a2
n

≤
(gn(x))2/r

(gn(an))2/r
≤

gn(x)

gn(an)
, for 1< r≤2.

Therefore, whether even function gn(x) satisfies condition (i) or condition (ii), we can
obtain

VarZ
(1)
n ≤ E(Z

(1)
n )2

= E

(

X2
n

a2
n

I(|Xn|≤ an)

)

+EI(|Xn|> an)

≤ E

(

gn(Xn)

gn(an)
I(|Xn|≤ an)

)

+E

(

gn(Xn)

gn(an)
I(|Xn|> an)

)

=
Egn(Xn)

gn(an)
.

Consequently,
∞

∑
n=1

log2nVarZ
(1)
n ≤

∞

∑
n=1

log2n
Egn(Xn)

gn(an)
<∞. (3.3)

Finally, if condition (i) is satisfied, when |x| ≤ an, we have |x|
an
≤ |x|r

ar
n

, for 0< r≤ 1. By

the fact that xr

gn(x)
(0< r≤1) is a nondecreasing function of x on the half-line x>0, then

|EZ
(1)
n |≤ E(|Zn|I(|Zn|≤1))+EI(|Zn |>1)

≤ E

(

|Xn|r

ar
n

I(|Xn|≤ an)

)

+E

(

gn(Xn)

gn(an)
I(|Xn|> an)

)

≤ E

(

gn(Xn)

gn(an)
I(|Xn|≤ an)

)

+E

(

gn(Xn)

gn(an)
I(|Xn|> an)

)

=
Egn(Xn)

gn(an)
,
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which implies that
∞

∑
n=1

|EZ
(1)
n |≤

∞

∑
n=1

Egn(Xn)

gn(an)
<∞.

If condition (ii) is satisfied, then by the facts that EXn =0 and x/gn(x) is a nonincreasing
function of x on the half-line x>0, we have

|EZ
(1)
n |≤ E(|Zn|I(|Zn|>1))+EI(|Zn|>1)

≤ E

(

gn(Xn)

gn(an)
I(|Xn|> an)

)

+E

(

gn(Xn)

gn(an)
I(|Xn|> an)

)

≤ 2
Egn(Xn)

gn(an)
,

which implies that
∞

∑
n=1

|EZ
(1)
n |≤2

∞

∑
n=1

Egn(Xn)

gn(an)
<∞.

Therefore, whether gn(x) satisfies condition (i) or condition (ii), we have

∞

∑
n=1

|EZ
(1)
n |<∞.

Consequently,
∞

∑
n=1

EZ
(1)
n converges. (3.4)

By (3.2)-(3.4), we can get that ∑
∞
n=1

Xn
an

converges almost surely.

If we take gn(x)= |x|p in Theorem 3.1, we can get Corollary 3.1.

Corollary 3.1. Let {Xn,n ≥ 1} be a sequence of END random variables and {an,n ≥ 1} be a
sequence of positive numbers with an ↑∞. There exists some 0< p≤2 such that

∞

∑
n=1

log2n
E|Xn|p

a
p
n

<∞.

If 1< p≤2, we further assume that EXn =0. Then

lim
n→∞

1

an

n

∑
i=1

Xi=0, a.s. (3.5)

If taking an(x)=n1/p in Corollary 3.1, then we can obtain Corollary 3.2.
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Corollary 3.2. Let {Xn,n≥1} be a sequence of END random variables. There exist some 0<p≤2
and δ>0 such that

E|Xn|
p ≤C(logn)−3−δ.

If 1< p≤2, we further assume that EXn =0. Then

lim
n→∞

n−1/p
n

∑
i=1

Xi =0, a.s. (3.6)
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