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Abstract

X-ray computed tomography (CT) is one of widely used diagnostic tools for medical

and dental tomographic imaging of the human body. However, the standard filtered back-

projection reconstruction method requires the complete knowledge of the projection data.

In the case of limited data, the inverse problem of CT becomes more ill-posed, which

makes the reconstructed image deteriorated by the artifacts. In this paper, we consider

two dimensional CT reconstruction using the projections truncated along the spatial direc-

tion in the Radon domain. Over the decades, the numerous results including the sparsity

model based approach has enabled the reconstruction of the image inside the region of

interest (ROI) from the limited knowledge of the data. However, unlike these existing

methods, we try to reconstruct the entire CT image from the limited knowledge of the

sinogram via the tight frame regularization and the simultaneous sinogram extrapolation.

Our proposed model shows more promising numerical simulation results compared with

the existing sparsity model based approach.

Mathematics subject classification: 65N20, 65N21, 94A08.
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1. Introduction

X-ray computed tomography (CT) is a widely used diagnostic tool for medical and dental

tomographic imaging of the human body. It provides tomographic images of the human body

by assigning an X-ray attenuation coefficient to each pixel [1]. Let u denote the (unknown)

image to be reconstructed. We further assume that u is supported in the unit ball B(0, 1) in

R2. In the case of two dimensional parallel beam CT, the projection data (or sinogram) f for

each φ ∈ [0, 2π) and s ∈ R is obtained via the following Radon transform [2]:

f(φ, s) = Pu(φ, s) =

∫ ∞

−∞
u(sθ + tθ⊥)dt (1.1)
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where θ = (cosφ, sinφ) and θ⊥ = (− sinφ, cosφ). Then the tomographic image u is recon-

structed via the following Radon inversion formula [3, 4]:

u(x) =
1

2π2

∫ π

0

∫ ∞

−∞

1

x · θ − s

[
∂

∂s
Pu(φ, s)

]
dsdφ (1.2)

with x = (x1, x2) ∈ R2.

However, the limitation of (1.2) lies in the fact that it requires so-called complete data [5–7],

which means that the measured projection data should cover at least the range (φ, s) ∈ [0, π)×R.
In the case of limited data where the sinogram f(φ, s) is measured only on a subset of [0, π)×R
due to the reduced size of detector [8–10] and/or the reduced number of projections [11–13],

the reconstruction is more ill-posed than the complete data case [5, 14]. In particular, if the

projection data is available only on Λµ ⊆ [0, π)× R given as

Λµ =
{
(φ, s) ∈ [0, π)× R : |s| < µ < 1

}
, (1.3)

then there exists a nontrivial function g called the amgibuity of P [9], i.e. Pg = 0 in Λµ [9,15].

Since it has been proven that g is nonconstant in the region of interest (ROI) B(0, µ) [4,9], the

reconstructed image via (1.2) with the projection data f restricted on Λµ will be deteriorated

by this ambiguity, as shown in Fig. 1.1.

(a) (b) (c) (d)

Fig. 1.1. The challenging issues in the limited tomography which is illustrated by (a) the original

phantom image, (b) the full projection data covering [0, π)×R, (c) the limited data due to the detector

size, and (d) the reconstructed image by (1.2) with the limited data. As we can see, the reconstructed

image is corrupted by the ambiguity of P .

During the past decades, the development of CT theories has enabled the unique and stable

reconstruction of CT image from the limited knowledge of the sinogram [8, 10, 15–20]. These

existing reconstruction methods mainly focus on the reconstruction of the image inside B(0, µ).

However, since the sinogram restricted to Λµ may not necessarily agree with the projection of
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the ROI part of image due to the integral geometry of the Radon transform [21], we may have

to solve another inverse problem to remove the projections of the external contribution for the

reconstruction of image inside the ROI.

In this paper, we propose a new image reconstruction method for the limited tomography.

We note that with the advent of compressed sensing theory [22–25], the sparsity model based

reconstruction methods are proposed to reconstruct the image on the ROI from the knowledge

of limited projection data [15,17,20]. Unlike these existing sparsity model based methods that

aim to reconstruct the image on the ROI only, our proposed method aims to reconstruct the

entire CT image from the knowledge of the projection data given only on Λµ. Motivated by the

idea of sinogram inpainting in [26], our method is based on the reconstruction of CT image and

the simultaneous extrapolation of the sinogram. Since both the CT images and the proejection

data are discrete in practice, we use the tight frames (wavelet frame and data-driven tight frame)

as the tool of limited tomography image reconstruction. The numerical simulation shows that

our proposed method has a possibility to recover the image outside ROI, which is believed to

be difficult to reconstruct by FBP (1.2) and existing methods.

In [27], simultaneous total variation regularization on the image space and sinogram is also

adopted for PET reconstruction. An interpolation method for sinogram data is also proposed

in [28]. More recently, a joint spatial-Radon domain CT image reconstruction model based

on data-driven tight frames (SRD-DDTF) was proposed in [29]. It should be noted that the

simultaneous regularization on both CT image and sinogram is proposed in [26,29] in the limited

angle tomography problem. However, the use of this simultaneous regularization is so far as we

know the first try in the limited tomography problem to reconstruct the entire CT image.

We would like to mention that our proposed model is different from the ones for the limited

angle tomography proposed in [26, 29]. Our proposed model aims to generalize the existing

sparsity based methods for the reconstruction of entire CT image, and we use a constrained

optimization model instead of penalized model in [26,29], which makes the algorithm different as

well. In addition, limited view is more challenging than limited angle due to larger connected

inpainting regions in Radon domain, rather than smaller connected regions that are evenly

spread out in Radon domain for limited angle tomography. Hence, even though the idea of

using data driven tight frame for CT reconstruction is similar to [29], the application is different.

Finally, we perform one step of learning tight frames and the iterations of our proposed model

until the stopping criterion is met, unlike [29] which updates tight frames at each iteration.

The rest of this paper is organized as follows: in the following section, we briefly introduce

the existing methods on the limited tomography, most of which are given in the continuous

setting. In Section 3, we introduce our tight frame based reconstruction algorithm for the

limited tomography in the discrete setting. Then the numerical simulation results are presented

in Section 4.

2. Preliminaries and Existing Methods

In this section, we briefly introduce existing results on the limited tomography. For more

details, the readers may refer to [9] and the references therein.

In the past decades, numerous extensive studies have been introduced to remove the ambi-

guity caused by the limited knowledge of the projection data [9]. These studies mainly focus on

the reconstruction of u in the ROI B(0, µ) from the knowledge of the projection data f in the

region Λµ. Their results can be classified into the following two classes: the known subregion
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based approach [16,18,19] and the sparsity model based approach [8,10,15,17,20]. The known

subregion based approach is based on the following identity

Hθ0u(x) = − 1

2π
P ∗
θ0

[
∂

∂s
Pu

]
(x), (2.1)

where θ0 = (cosφ0, sinφ0) for some fixed angle φ0. Here, P
∗
θ0

and Hθ0 respectively denote the

backprojection operator and the directional Hilbert transform which are defined by

P ∗
θ0
f(x) =

∫ φ0+π/2

φ0−π/2

f(φ,x · θ)dφ, (2.2)

Hθ0u(x) =
1

π
pv

∫ ∞

−∞

u(x− sθ0)

s
ds, (2.3)

with pv denoting the Cauchy principal value [30].

From the above identities, the problem is reduced to reconstruct u in the ROI B(0, µ)

from the knowledge of Hθ0u in B(0, µ). Since the directional Hilbert transform is equivalent

to one dimensional Hilbert transforms along the straight lines [10], this reduces the problem

to the reconstruction of one dimensional function F on the interval [a, b] from the knowledge

of its Hilbert transform on this interval. Then the known subregion based approach adopts

the analyticity of the ambiguity of Hilbert transform H on (a, b) [16, 18, 19]; from the given

knowledge of F in an open interval contained in (a, b), we can remove the ambiguity by the

analytic continuation. However, due to the numerical unstability of analytic continuation, the

numerical implementation mostly relies on the projection onto convex sets method [31], whose

computational cost is relatively expensive [9, 32].

Even though the unique reconstruction by known subregion based approach is guaranteed

mathematically, this approach may not be practically applicable since there would be situations

where no precise prior information is provided on any subregion [9]. Sparsity model based

approach is using a regularization term that enforces the regularity of u: for a given limited

projection f , the best image u is found using the following constraints:

min R(u) s.t. Pu = f in Λµ. (2.4)

For example, we can choose the total variation as a regularization term R(u) to capture the

discontinuities [9]. The authors in [15] proposed a general model by using the following higher

order total variation as R(u):

HOTk(u) =
m∑
i=1

∑
j>i,j∈Ni

∫
Γi,j

|ui − uj |ds

+

∫
B(0,µ)

min


√√√√k+1∑

r=0

(
∂k+1u

∂xr1∂x
k+1−r
2

)2

,

√(
∂u

∂x1

)2

+

(
∂u

∂x2

)2
 dx.

Here, m is the number of subregions, Γi,j is the piecewise smooth boundaries between ith and

jth subregions, ui is the trace of u from the ith subregion to Γi,j , and Ni is the neighborhood

regions of the ith subregion [15]. Under this setting, it has been shown that u in B(0, µ) can

be uniquely and stably reconstructed by solving (2.4) with R(u) = HOTk(u) provided that it

is piecewise polynomial in B(0, µ) [15,33].



Tight Frame based Limited Tomography 579

Fig. 2.1. Integral geometry of limited tomography for two dimensional parallel beam CT case. Even

though the projection data is limited due to the size of detector, the data can contain the outside ROI

contribution.

Even though the sparsity model based approach can reconstruct the image exactly without

the prior knowledge of u in a subregion of B(0, µ) [15], its major disadvantage is that (2.4) has

to be solved for the entire image, including the exterior of B(0, µ) [21]. One possible approach

to overcome this disadvantage is to reduce the columns of discrete Radon transform matrix

and consider the contribution of the tissues inside the ROI only [21,34]. However, it should be

noted that even though the projection data f is restricted on Λµ, it contains the projections

from the ROI, as well as the projections from the exterior of the ROI. This means that the

restricted projection data may not necessarily agree with the Radon transform of the ROI part

of u, as shown in Fig. 2.1.

3. Methods and Algorithms

In this section, we present our tight frame based CT reconstruction model with a given

limited projection data. The brief explanations on the wavelet tight frame and the data driven

tight frame are given in Appendix.

3.1. Tight frame based CT reconstruction models

Let us begin this subsection by introducing some notations. Let f0 be the measured pro-

jection data defined on the Ns×Np grid Λ where Ns is the number of grid points on the X-ray

detector and Np is the number of projections. Note that Λ is the discretizaiton of Λµ in the

Radon domain. We denote the extrapolated projection data as f defined on the Ms ×Np grid

Ω containing Λ. Let RΛ denote the restriction operator defined as

RΛv[k] =

{
v[k] if k ∈ Λ

0 if k /∈ Λ.
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In the noise-free case, f should satisfyRΛf = f0, which means that the extrapolated projection

data should be consistent with the measured limited projection data.

Let P denote the discrete Radon transform matrix. Since f has to be consistent with the

projection Pu of the reconstructed CT image u, this leads us to propose our limited tomography

reconstruction model as follows:

min
f≥0,0≤u≤a

λ1∥W1f∥1 + λ2∥W2u∥1

s.t. RΛf = f0, RΛPu = f0 & RΛcPu = RΛcf (3.1)

with λ1, λ2 > 0. For the noisy limited data f0, the first two equality constraints in (3.1) can be

replaced with ∥RΛf −f0∥2 ≤ ε and ∥RΛPu−f0∥2 ≤ ε respectively, where ε is the parameter

related with the standard deviation of noise.

The norm ∥ · ∥1 in (3.1) is the isotropic ℓ1 norm [26,35] defined as

∥Wu∥1 =
∑
k∈O2

L−1∑
l=0

∑
i̸=0

∣∣(Wl,iu)[k]
∣∣21/2

 , (3.2)

with the cartesian grid O2 where u is defined. Note that λ1∥W1f∥1 and λ2∥W2u∥1 are used

to guarantee the sparse representations of f and u under two different tight frames W1 and

W2 respectively.

In this paper, we will use two types of tight frames for comparison of the numerical simulation

results. One type that we will use is the wavelet frame system given in [35–37]. More precisely,

we will use the cubic B-spline framelet system with 3 levels of decomposition for W1 and the

linear B-spline framelet system with 1 level of decomposition for W2. The other type of tight

frame is the data driven frames adaptively learned from the preprocessed data [38,39]. The data

driven tight frame was adopted in [40,41] for seismic data interpolation and CT reconstruction

in [42]. In our numerical simulation, the cubic B-spline framelet and the linear B-spline framelet

are chosen as initial W1 and W2 respectively.

We note that (3.1) is more general than the analysis based approach for the limited tomog-

raphy without Radon domain extrapolation:

min
0≤u≤a

∥Wu∥1 s.t. RΛPu = f0. (3.3)

When W is a B-spline framelet, then by [36], (3.3) can be viewed as a finite difference approxi-

mation of sparse model based approach (2.4) with HOTk(u) for some k ∈ N. In this context, we

refer to (3.3) with a B-spline framelet W as a sparsity model based method in the rest of this

paper. In addition, we will refer to the model (3.1) with B-spline framelet systems as wavelet

frame based model, and (3.1) with data driven tight frames as data driven frame based model.

3.2. Bregmanized operator splitting algorithms

To solve our model (3.1), we note that the problem (3.1) is of the form

min
x

J(x) s.t. Ax = y0 (3.4)

where x = [ f u d1 d2 ]T , and J(x), A, and y0 are respectively defined as

J(x) = χf≥0(f) + χ0≤u≤a(u) + λ1∥d1∥1 + λ2∥d2∥1,
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where χ(·) is the convex set indicator function and

A =


RΛ 0 0 0

0 RΛP 0 0

RΛc −RΛcP 0 0

W1 0 −I 0

0 W2 0 −I

 , y0 =


f0

f0

0

0

0

 .
To solve the problem, we may use e.g. the split Bregman algorithm [43, 44] or the augmented

Lagrangian method [45]. We use the Bregmanized operator splitting (BOS) method which is

also known as split inexact Uzawa method [46,47] as it can transfer the constrained optimization

problem into the several easy and efficient subproblems without inner iterations [48]. Hence,

(3.4) can be easily solved by the following BOS method as

xk+1 = argmin

(
µJ(x) +

κ

2
∥Ax− yk∥22 +

1

2
∥x− xk∥2Q

)
, (3.5)

yk+1 = yk + y0 −Axk+1. (3.6)

Here, ∥ · ∥2Q = ⟨Q·, ·⟩ is a semi-norm with respect to a semi-positive definite matrix Q and

y = [ f1 f2 f3 b1 b2 ]T . By choosing Q properly, we obtain the following Algorithm

3.1: for positive parameters κ, β

Algorithm 3.1 (BOS Algorithm for (3.1))

Initialize: f (0), u(0), v
(0)
1 , v

(0)
2 , f

(0)
1 , f

(0)
2 , f

(0)
3 , d

(0)
1 , d

(0)
2 , b

(0)
1 , b

(0)
2

for k = 0, 1, 2, · · · do

(1) vk+1
1 = fk − κ−1[RT

Λ(RΛf
k − fk

1) +RT
Λc{RΛc(fk − Puk)− fk

3}]
(2) vk+1

2 = uk − κ−1P T [Puk −RT
Λf

k
2 −RT

Λc(fk − fk
3)]

(3) fk+1 = argminf≥0
β
2 ∥W1f − dk

1 + bk1∥22 + κ
2 ∥f − vk+1

1 ∥22
(4) uk+1 = argmin0≤u≤a

β
2 ∥W2u− dk

2 + bk2∥22 + κ
2 ∥u− vk+1

2 ∥22
(5) dk+1

1 = argmind1 λ1∥d1∥1 + β
2 ∥d1 −W1f

k+1 − bk1∥22
(6) dk+1

2 = argmind2 λ2∥d2∥1 + β
2 ∥d2 −W2u

k+1 − bk2∥22
(7) fk+1

1 = fk
1 + f0 −RΛf

k+1

(8) fk+1
2 = fk

2 + f0 −RΛcPuk+1

(9) fk+1
3 = fk

3 +RΛc(Puk+1 − fk+1)

(10) bk+1
1 = bk1 +W1f

k+1 − dk+1
1

(11) bk+1
2 = bk2 +W2u

k+1 − dk+1
2

end for

The convergence condition is that κ > ∥AT
1 A1∥ where

A1 =

 RΛ 0

0 RΛP

RΛc −RΛcP

 .
Note that both (3) and (4) in Algorithm 3.1 can be solved via the following two steps; since

W1 and W2 are tight frames, we first have:

u
k+1/2
i =

1

κ+ βi

[
κvk+1

i + βWT
i (d

k
i − bki )

]
for i = 1, 2, (3.7)
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where u1 = f and u2 = u. Then we have

fk+1 = max(fk+1/2, 0),

uk+1 = min
(
max(uk+1/2, 0), a

)
,

where both min and max are componentwise operation. In addition, (5) and (6) in Algorithm

3.1 have simple analytical solutions as well:

dk+1
i = Tµλi/βi

(
Wiu

k+1
i + bki

)
for i = 1, 2, (3.8)

where Tα is the soft-thresholding operator [26,36] defined as

Tα(v)l,i[k] =


vl,i[k] if i = 0,

vl,i[k]

Rl[k]
max

(
Rl[k]− α, 0

)
if i ̸= 0,

(3.9)

with Rl[k] =
[∑

i ̸=0 |vl,i[k]|2
]1/2

.

For the initialization, we use f0 = f0 and u0 as the following least square solution

min
u

∥RΛPu− f0∥22, (3.10)

which is obtained by FBP (1.2) with a measured limited data f0. For the remaining variables,

we initialize d0
1 = b01 = d0

2 = b02 = f0
3 = 0 and f0

1 = f0
2 = f0. For the data driven tight frame

case, we first learn W1 and W2 using f and u calculated from the previous iteration. Then

we perform Algorithm 3.1 with learned W1 and W2 as an inner iteration.

In addition, the sparsity model based method (3.3) can be solved in a similar way using the

BOS method:

vk+1 = uk − κ−1P TRT
Λ(RΛPuk − fk

0),

uk+1 = arg min
0≤u≤a

β

2
∥Wu− dk + bk∥22 +

κ

2
∥u− vk+1∥22,

dk+1 = argmin
d

µ∥d∥1 +
β

2
∥d−Wuk+1 − bk∥22,

bk+1 = bk +Wuk+1 − dk+1,

fk+1
0 = fk

0 + f0 −RΛPuk+1,

with initializations d0 = b0 = 0, f0
0 = f0, and u0 being the solution of (3.10).

4. Numerical Simulations

In this section, we compare the wavelet frame based model, the data driven frame based

model, and the sparsity model based method (3.3) with W being the linear B-spline framelet

with 1 level decomposition. For (3.1), we set λ1 = 100 and λ2 = 0.01 for both wavelet frame

based model and data driven frame based model. We test these models using 256× 256 Shepp-

Logan phantom image modified by adding two round shaped objects as the true image ũ with

the window level [0, 1], as shown in the top row of Fig. 4.1. Then we generate the limited

projection data f0 through

f0 = RΛPũ+ ε
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Fig. 4.1. Numerical simulation results. The top row image is the true image ũ, followed by rows

representing the results using 180 and 90 projections respectively. Images from left to right depicts the

reconstructed images obtained by FBP (1.2), sparsity model based method (3.3), wavelet frame based

model, and data driven frame based model, respectively. In this figure, all images are shown in the

window level [0, 1] for the fair comparison.

where Λ is the discretization of [0, π)×[−1/2, 1/2] and ε is the additive Gaussian noise with zero

mean and standard deviation σ being 0.1% of max |P ũ|. The size of discrete Radon transform

matrix P depends on both the size of ũ and the number of projections Np. In our simulation,

we used 180 equally spaced projections and 90 equally spaced projections, both of which are

equispatially sampled from 0 to π as two different cases.

Fig. 4.1 describes the reconstructed images for all the tested models and cases. Compared

with FBP, both (3.3) and (3.1) can recover the image which is missing due to the truncation

of the projection data. However, we can observe that the image reconstructed by our proposed

model (3.1) has much clearer geometry information compared with the sparsity model based

method (3.3). Besides, compared with the wavelet frame based method, the data driven frame

based method recovers the image outside the ROI region.

To provide a quantitative comparison on the models for each tested case, we calculate the

PSNR defined as

PSNR := −20 log10
∥u− ũ∥2

N

where N denotes the total number of pixels. In addition, since the goal of our model is to recover

the image outside ROI part which is missing due to the limited knowledge of projection, we also

calculate the mean structural similarity (MSSIM) defined in [49], one of the methods widely

used to measure the similarity between the two given images.

Table 4.1 and 4.2 respectively depict the PSNR and the MSSIM values of the tested models
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Table 4.1: Comparison of PSNR of the algorithms. In both Np = 180 and Np = 90 cases, the data

driven frame based model yields the reconstructed image with highest PSNR, followed by the wavelet

frame based model and the sparsity model based method.

Np FBP Sparsity Model Wavelet Frame Data Driven Frame

180 13.9467 20.848 23.9691 24.1207

90 13.8511 19.038 20.8845 22.4786

Table 4.2: Comparison of MSSIM of the algorithms. In both Np = 180 and Np = 90 cases, the data

driven frame based model yields the reconstructed image with highest PSNR, followed by the wavelet

frame based model and the sparsity model based method, as in the PSNR.

Np FBP Sparsity Model Wavelet Frame Data Driven Frame

180 0.4067 0.6776 0.7448 0.7757

90 0.2407 0.6466 0.7575 0.8033

for each cases. At first, we can see that compared with the FBP, all reconstructed methods

yield the reconstructed images with better quantities both in PSNR and MSSIM. Nevertheless,

it can be shown from the tables that our proposed method (3.1) outperforms the sparsity model

based method (3.3). Moreover, we can see that the image reconstructed by the data driven

frame based method is the closest to the original image in the sense of MSSIM, because at each

step we learn tight frames W1 and W2 that best represent f and u respectively.

Finally, we also observe that the data driven frame based model can recover the image if the

number of projections is reduced to 90. In the previous researches on the limited tomography,

it is in general to increase the number of projections [21]. However, it is mentioned in [21]

that the ambiguity and/or the artifact due to the truncated projection data still remains in the

reconstructed image. Moreover, from the clinical viewpoint, it is not desirable to increase the

number of projections too much because of the X-ray radiation dosage. On the other hand,

our proposed data driven frame based method can work very well with the smaller number of

projections. This implies that our method can be helpful for the reduction of X-ray radiation

dosage, one of the most challenging issues in the current field of X-ray CT.

However, our method has a limitation. During the numerical simulation, it has been ob-

served that even though large β1 and β2 can make the reconstructed image more noise-free,

but it fails to recover the missing parts of the CT image. On the other hand, small β1 and β2
can make the reconstructed image noisy, but it performs much better in recovering the image

outside of the ROI. In addition, it requires a mathematical analysis to which extent of data

truncation we can reconstruct the entire CT image uniquely and stably. Even though our recon-

struction method via tight frame and simultaneous sinogram extrapolation method has shown

a promising result of recovering the missing part of image due to the truncated projection data,

further researches will be needed to improve the quality of reconstructed images.

5. Conclusions

This paper presents a method of image reconstruction via tight frame and simulataneous

sinogram extrapolation for limited tomography. The numerical simulation shows that our pro-

posed model (3.1) with tight frames presents a possibility of reconstructing the entire image

from the limited knowledge of the projection data. In addition, the missing part of an image

due to the truncated projection data can be recovered if we reduce the number of projection
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angles. Future direction of the research will focus on the improvement of the reconstructed CT

image quality as well as the theoretical condition on the reconstruction of entire image using

the limited sinogram.

Appendix

Provided here is the brief introduction on the concept of tight wavelet frames and data

driven tight frames. For more details, one may refer to [37, 50–52] for tight wavelet frames

and [38] for the data driven tight frames.

Tight Wavelet Frames

A countable set X ⊆ L2(R) is called a tight frame of L2(R) if it satisfies

∥f∥2L2 =
∑
φ∈X

|⟨f, φ⟩|2 for all f ∈ L2(R)

where ⟨·, ·⟩ denotes the inner product in L2(R). Equivalently, every f ∈ L2(R) can be expressed

as the linear combination of φ ∈ X:

f =
∑
φ∈X

⟨f, φ⟩φ,

with ⟨f, φ⟩ being called the canonical coefficient of f .

X is called a tight wavelet frame if there exists a finite set Ψ = {ψ1, · · · , ψr} such that

X = X(Ψ) =
{
ψl,j,k(x) = 2j/2ψl(2

jx− k) : 1 ≤ l ≤ r & j, k ∈ Z
}
,

where ψ1, · · · , ψr are called the framelets. The compactly supported framelets can be generated

by applying the unitary extension principle [53]. For n ≥ 2, the tight wavelet frame system of

L2(Rn) can be easily constructed by the tensor products of one dimensional framelets [35–37,50].

In a discrete setting, a two dimensional image u can be regarded as a two dimensional

array [26, 35, 36]. Let W denote a discrete framelet decomposition (or analysis operator) and

let WT be the fast reconstruction (or synthesis operator). Since two dimensional framelets

are generated by the tensor products of univariate framelets satisfying the unitary extension

principle [53], it follows that

u = WTWu for any image u.

Finally, an L-level framelet decomposition of u will be denoted as

Wu =
{
Wl,iu : 0 ≤ l ≤ L− 1, 0 ≤ i1, i2 ≤ r

}
, (A.1)

where i = (i1, i2) is the index of all framelet bands. If L = 1, we write Wiu for Wl,iu.

Data Driven Tight Frames

Even though tensor product framelet based approaches are simple to implement and able

to achieve sparse representation of a given image, their major disadvantage lies in that these

framelets mostly focus on the horizontal and vertical discontinuities [38, 40]. For example,
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when the discontinuities of an image have complex geometries, the tensor product framelet

representation may not be sparse enough [38].

Based on the concept of adaptivity explored by machine learning approaches [54–59], the

goal of data driven tight frame is to construct an adaptive discrete tight frame W generated by

real valued filters {a1, · · · ,am} for a given image u. This is achieved by solving the following

minimization problem [38]:

min
d,{aj}m

j=1

∥d−W(a1, · · · ,am)u∥22 + λ21∥d∥0 s.t. WTW = I (A.2)

where ∥d∥0 is the number of nonzero elements in the coefficient vector d, W(a1, · · · ,am) is the

analysis operator generated by filters a1, · · · ,am, and I is the identity operator.

The minimization problem (A.2) can be solved by updating d and {aj}mj=1 alternatively [38].

More precisely, let {a0
j}mj=1 be the initial filters such as the B-spline framelet filters in [26,35,36].

Then for k = 0, 1, · · · ,K − 1, we have

1. Given filters {ak
j }mj=1, we define Wk = W(ak

1 , · · · ,ak
m). Then we solve

dk = argmin
d

∥d−Wku∥22 + λ2∥d∥0. (A.3)

2. Given dk, update {ak+1
j }mj=1 by solving the following constrained minimization problem:

{ak+1
j }mj=1 = arg min

{aj}m
j=1

∥dk −W(a1, · · · ,am)u∥22 s.t. WTW = I. (A.4)

Note that (A.3) has a closed form solution given by the hard threshold:

dk = T λ(W
ku) where T λ(v)[k] =

{
v[k] if |v[k]| ≥ λ

0 if |v[k]| < λ.

For (A.4), the authors in [38] has shown that under a proper assumption, the optimal solution

has a closed form solution, which simplifies the computation significantly.
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