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Abstract

A practical image reconstruction method for multi-source quantitative photoacoustic

tomography (QPAT) is proposed in this work with the consideration of detector response

function and limited-view scanning. First, the correct detector response function, i.e., spa-

tial impulse response (SIR) and acousto-electric impulse response (EIR), is considered for

the ultrasonic transducer to accurately model the acoustic measurement; second, acoustic

data is only measured near optical sources with meaningful signal-to-noise ratio (SNR),

i.e., the limited-view scanning, which also reduces the data acquisition time for point trans-

ducer. However, due to the incomplete limited-view data, a two-step image reconstruction

method (i.e., to first reconstruct initial acoustic pressure and then reconstruct optical coef-

ficients) no longer applies, since it is neither possible nor necessary to robustly reconstruct

initial acoustic pressure with limited-view data. Therefore, here we propose a direct image

reconstruction method that incorporates SIR, EIR and limited-view scanning in a coupled

opto-acoustic forward model, regularizes the nonlinear QPAT data fidelity with tensor

framelet sparsity, and then solves the QPAT problem with Quasi-Newton method based

alternating direction method of multipliers.

Mathematics subject classification: 65N06, 65B99.

Key words: Quantitative photoacoustic tomography, Alternating direction method of mul-

tipliers, Image reconstruction.

1. Introduction

Photoacoustic tomography (PAT) (see e.g., [7, 14, 24, 27, 33]) is developed in recent years

for non-invasively imaging soft biological tissues with various biomedical applications. On

one hand acoustic imaging allows higher spatial resolution than optical imaging owing to the

weaker acoustic scattering than optical scattering; on the other hand optical contrasts are

higher and richer than acoustic contrasts. In this sense, PAT synergizes the conventional

optical and acoustic imaging with the ability of imaging high and rich optical contrasts in

high resolution. However, it is still unclear whether PAT can reveal optical contrasts in depth
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with high resolution, which is the goal of quantitative PAT (QPAT), e.g., the review paper [12]

and the references therein.

There are two inverse problems in QPAT: acoustic inverse problem and optical inverse prob-

lem. Specifically, the acoustic inverse problem is to estimate the initial acoustic pressure from

boundary acoustic measurement [35]; the optical inverse problem is to reconstruct the optical

contrasts from initial acoustic pressure [12]. The simultaneous reconstruction of more than one

optical coefficients is not unique with only single optical illumination or optical wavelength.

Therefore QPAT with multiple optical wavelengths [10, 12, 25, 28], multi-source illuminations

(MS-QPAT) (e.g., [5,17,19,29,31,32,37,43], or their combination [6] have been investigated so

that all optical coefficients can be uniquely reconstructed. This work focuses on MS-QPAT.

In the conventional MS-QPAT, a full-rotation boundary acoustic data needs to be acquired

following each optical illumination, which may result in different level of signal-to-noise (SNR)

ratio, e.g, high SNR at the boundary close to optical sources. Consequently these low-SNR

data may degrade reconstructed image quality. To achieve a high SNR uniformly in the ac-

quired data, the limited-view MS-QPAT is proposed [43], i.e., a partial-view boundary acoustic

measurement following each optical illumination. In this way, high SNR can be uniformly

maintained. Moreover, it can significantly reduce the scanning time proportional to scanning

angles for point ultrasonic transducer. However, in addition to the SNR uniformity, for accurate

QPAT reconstruction in practice, the detector response of acoustic transducer must be taken

into account. Without considering detector response function, the reconstructed image quality

can be degraded with distortion and reduced spatial resolution [4].

In this paper, for the practical QPAT image reconstruction, we consider MS-QPAT with

limited-view scanning and detector response function. Due to limited-view scanning, the afore-

mentioned two-step approach for QPAT fails, since the acoustic reconstruction for initial acous-

tic pressure is unstable [36]. On the other hand, the reconstruction of initial acoustic pressure

is not the ultimate goal, and thus it is not essential as long as optical contrasts can be recon-

structed. Thus, we consider the direct reconstruction of optical contrasts from the acoustic

measurement based on a coupled opto-acoustic forward model with SIR and EIR.

The paper is organized as follows: The proposed practical MS-QPAT forward model and

the corresponding discretization are introduced in Section 2; the numerical method for solving

the proposed MS-QPAT in nonlinear least squares will be developed in Section 3; the sparsity-

regularized method with simple bound constraints for QPAT is investigated in Section 4; the

proposed method is validated through numerical experiments in Section 5; finally, we will

conclude in Section 6.

2. Practical QPAT

2.1. Coupled Opto-Acoustic Forward Model

The photoacoustic effect is fundamental to photoacoustic imaging. When the molecules

within the soft tissues are exposed to short-pulse radiation (e.g., electromagnetic energy), the

initial acoustic pressure p0(x⃗) is excited because of the thermo-elastic mechanism, then the

pressure wavefield p(x⃗, t) propagates in tissues and is detected by the transducers that locate

on a measurement aperture Ω0 on the object boundary. This process can be separately modeled,

i.e., as optical model and acoustic model.

The optical propagation in the biological tissues can be accurately described by radiative

transfer equation (RTE), e.g., [16, 20–22] and the references therein. Here we consider the
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following approximation of RTE, i.e., so-called diffusion approximation (DA)

−∇ · (D(x⃗)∇ϕ(x⃗)) + µa(x⃗)ϕ(x⃗) = 0, x⃗ ∈ Ω0, (2.1a)

2κD(x⃗)(n⃗ · ∇ϕ(x⃗)) + ϕ(x⃗) = q(x⃗), x⃗ ∈ ∂Ω0. (2.1b)

Robin boundary condition is assumed in the above equation, where ϕ(x⃗) denotes optical density

function, µa and µs denote the absorption and scattering coefficient respectively. Diffusion

coefficientD = 1/(3(µa+µ′
s)), where µ

′
s = (1−g)µs is the so-called reduced scattering coefficient

with g as the anisotropic scattering factor. Boundary coupling constant κ is used to account

for the boundary refraction index mismatch [2].

When the tissue absorbs the radiation energy, the initial acoustic pressure

p0(x⃗) = Γ(x⃗)A(x⃗) (2.2)

is excited [4], and when the stress and thermal confinements for PAT are satisfied, the acoustic

pressure which generated by laser pulse illumination I(t) propagates in the following equation

[40] (
∇2 − 1

c2
∂2

∂t2

)
p(x⃗, t) = − β

Cp
A(x⃗)

∂I(t)

∂t,
(2.3)

where c, Cp and β denote the acoustic speed, specific heat capacity and isobaric volume expan-

sion coefficient respectively. In (2.2), Γ is the given Grüneisen coefficient and A(x⃗) = µa(x⃗)ϕ(x⃗)

denotes the absorbed energy density. The pressure wavefield p(x⃗, t) measured by an ideal point

transducer at location x0 can be expressed as a solution to (2.3) as

p(x⃗0, t) =
β

4πCp

∫
v

dx⃗A(x⃗)
d

dt

δ(t− |x⃗0−x⃗|
c )

|x⃗0 − x⃗|
. (2.4)

Here, v denotes the support volume of the object and the integral denotes a hyperplane integral.

The inverse problem in QPAT is to reconstruct (µa(x⃗), D(x⃗)). It is usually assumed that

the absorbed energy density A(x⃗) or initial acoustic pressure p0(x⃗) is known or can be first

reconstructed from the boundary acoustic measurements p(x⃗, t) and then µa(x⃗) and D(x⃗) are

reconstructed by solving the corresponding light propagation RTE or DA approximation equa-

tion. However, initial acoustic signal p0(x⃗) can not be stably reconstructed in limited-view

QPAT owing to the incomplete acoustic measurements p(x⃗, t). Therefore, we need to recon-

struct (µa, D) from p(x⃗, t) directly instead of reconstructing A(x⃗) or p0(x⃗) first, i.e., we need to

consider the following coupled opto-acoustic model

−∇ · (D(x⃗)∇ϕ(x⃗)) + µa(x⃗)ϕ(x⃗) = 0, x⃗ ∈ Ω0, (2.5a)

2κD(x⃗)(n⃗ · ∇ϕ(x⃗)) + ϕ(x⃗) = q(x⃗), x⃗ ∈ ∂Ω0, (2.5b)

p(x⃗0, t) =

∫
v

dx⃗A(x⃗)HA, (2.5c)

with

HA =
β

4πCp

d

dt

δ(t− |x⃗0−x⃗|
c )

|x⃗0 − x⃗|
. (2.6)

2.2. Detector Response Function

Spatial impulse response (SIR) indicates the angular sensitivity of ultrasound transducer

caused by its aperture averaging effect. SIR can cause a temporal distortion and extension
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Fig. 2.1. Two transducer positions cases relative to point acoustic source

during the PA wave acquisition, which might lead to a blurring and degrade the image quality.

Electro-acousto impulse response, an intrinsic property of transducer, indicates the frequency

characteristic, e.g. central frequency and bandwidth. EIR is closely relevant to spatial resolution

of ultrasound imaging and usually obtained by experimental measurement [3]. In practice, the

aperture size of ultrasound transducer is finite, which causes a temporal distortion and extension

of receiving acoustic signal on the transducer surface. In other words, each transducer element

detects the source acoustic signal at different timestamps, and then those temporal profiles are

superposed together, which lead to an averaging effect, i.e., angular sensitivity.

p̃(x⃗0, t) =

∫ ∫
x∈Sd

p(x⃗d, t)dSd, (2.7)

where x⃗0, x⃗d and Sd denote the central location, the locations of the dth transducer position,

and the surface area of transducer. (2.7) can be rewritten as a temporal convolution between

p(x⃗d, t) and SIR is denoted by HSIR [41].

For circular planar transducer, we can derive a temporal window function hTW to simulate

the aperture averaging and extension effect [41].

hTW (t) =
√

τ2θ − t2 ·
∏

(τθ, t), (2.8)

where τθ indicates the arrival time difference between the nearest element and the farthest

element for a point pulse source, which can be written as

τθ =


2dRT cos θ

cs
· 1√

d2 +R2
T + 2dRT cos θ +

√
d2 +R2

T − 2dRT cos θ
, RT ≤ d cos θ,√

(2d cos θ +RT )2 + d2 sin2 θ − d sin θ

2cs
, RT > d cos θ,

(2.9)

∏
(τθ, t) =

{
1, −τθ ≤ t ≤ τθ,

0, else,
(2.10)

where θ is the axis angle, RT the radius of transducer surface, and d the distance between

transducer and acoustic source respectively. Fig. 2.1 shows two transducer positions relative

to point acoustic source. Fig. 2.2 gives the analytical solution and temporal window numerical

solution of SIR with RT = 3mm, d = 10.77mm and θ = 8.13o.
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(a) SIR simulated by Dream Toolbox (b) Temporal window solution

Fig. 2.2. Analytical solution and numerical solution of SIR

Besides, the measurement data for PAT is also related with the intrinsic characteristic of

transducer. For instance, the central frequency and bandwidth determine the axial and lateral

resolution of PAT respectively [4]. The transfer function of transducer is defined as EIR, which

is equivalent to a band-pass filter [42]. EIR is determined by transducer’s physical structure

and obtained through experimental measurement denoted by HEIR (Fig. 2.3).

Fig. 2.3. EIR of ultrasound transducer

The acoustic model H of PAT can be obtained by convolving HA, HSIR and HEIR, i.e.,

H = HA ∗HSIR ∗HEIR. (2.11)

Here ∗ denotes the temporal convolution. Note that this equation is still valid in the three-

dimensional optoacoustic tomography [11].

2.3. Discretization

Here we consider the discretization of the aforementioned opto-acoustic model with detector

response function.
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2.3.1. Optical discretization

Using finite element method (FEM) method [2], the DA equation (2.1a) can be discretized by

a triangular mesh. The unstructured meshing for discretizing the acoustic model is shown in

Fig. 2.4 (left figure) and the linear interpolated for the Cartesian grid also can be seen here.

Fig. 2.4 (right figure) also gives the triangular meshing for reconstruction.

Fig. 2.4. FEM triangular meshing

Both optical density ϕ and optical coefficients (µa, D) can be discretized in piecewise con-

stants using this kind of triangular mesh, and then the absorbed energy density A(x⃗) or p0(x⃗)

on the Cartesian grid of Ω can be linearly interpolated. The details of the corresponding

discretization scheme are given in the following or readers can refer to [19,43].

The photon density ϕ can be represented as

ϕ(x⃗) =

Np∑
i=1

ϕiφi(x⃗), [Φ]i = ϕi (2.12)

in the piecewise-linear bases {φi(x⃗j) = δij , i, j ≤ Np}, and the optical coefficients (µa, D) can

be discretized as

µa(x⃗) =

Nt∑
k=1

µkχk(x⃗), [U ′]k = µk, (2.13)

D(x⃗) =

Nt∑
k=1

Dkχk(x⃗), [D′]k = Dk, (2.14)

where {χk = 1tk , k ≤ Nt} denote the piecewise-constant bases and Np and Nt respectively

denote the number of nodes and triangles of Ω0 in Fig. 2.4.

Based on FEM [1], DA equation (2.1a) can be represented as the linear system

FΦ = Q, (2.15)

where

[F ]ij = ΣNt

k=1Dk

∫
tk

∇φi · ∇φjdx⃗+ΣNt

k=1µk

∫
tk

φiφjdx⃗+
1

2κ

∫
Γ

φiφjdx⃗, (2.16)

[Q]j =
1

2κ

∫
Γ

qφjdx⃗. (2.17)
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2.3.2. Acoustic discretization

A finite-dimensional linear approximation of A(x⃗) is given by the following form

A(x⃗) =
N−1∑
n=0

Anθn(x⃗), (2.18)

with

θn(x⃗) =

{
1, if |x⃗− x⃗n| ≤ ε,

0, else,
(2.19)

where An denotes the absorbed energy density at x⃗n and θn(x⃗) represents the uniform spherical

expansion function for A(x⃗). Furthermore, (2.4) can be rewritten as the following matrix

multiplication [11]

p(x⃗, t) = HAn(x⃗). (2.20)

Here H denotes the acoustic system matrix. If the detector is ideal point-like, then H = HA

with

HA =


βc2

2CpRq,n
(Rq,n − c(nt · △t)), for

Rq,n − ε

c · △t
≤ nt ≤

Rq,n + ε

c · △t
,

0, else

(2.21)

Here Rq,n = |x⃗d,q − x⃗n|. x⃗q and x⃗n respectively denote the locations of qth transducer position

and nth source node in imaging region. If the transducer is finite-dimension, then H = HA ∗
HSIR ∗HEIR.

The finite-dimensional discrete approximation of the SIR can be represented as

HSIR(x⃗d,q, x⃗, t) =

N−1∑
n=0

HSIR
n (x⃗d,q, t)θn(x⃗). (2.22)

Then the linear operator H (2.11) can be discretized as a system matrix for acoustic model-

ing, which is also denoted as H here. Then the acoustic forward model based on SIR and EIR

can be written as

p = Hp0. (2.23)

Since the initial acoustic pressure p0 on Ω can be obtained by the product of U and the photon

density Φ which is interpolated from the triangular mesh on Ω0 to the Cartesian grid on Ω, i.e.,

p0 = (IΩ0→ΩΦ) · U, (2.24)

then the discretization of the coupled photoacoustic forward model can be summarized as

p(U,D) = H(IΦ(U,D) · U), (2.25)

where Φ is computed from DA Eq. (2.15).

2.4. Limited-View MS-QPAT

In the traditional MS-QPAT circumstance, 360◦ acoustic data are collected for each optical

illumination. Therefore, those data collected far from optical excitation sources may have

low SNR, and 360◦ rotations follow every optical excitation result in a long scanning time



Multi-source Quantitative Photoacoustic Tomography 597

with multiple rotations. To address this issue, we adopt limited-view scanning: the ultrasonic

transducers are considered to rotate some degrees together with the illumination sources so

that the acoustic data are collected only near the illumination sources with improved SNR and

reduced scanning time, e.g., 90-degree data per illumination for four-source QPAT which is

scanned in one rotation.

Suppose there are Ns optical illuminations in MS-QPAT and the acoustic data are detected

in the full view, the boundary measurement can be written as the following equation

pij = MT
j [H(IΦi(U,D) · U)], j ≤ Nd, i ≤ Ns, (2.26)

where Nd is the numbers of the measurements and Mj denotes the measurement matrix corre-

sponding to a specific time at detector position j.

However, in the limited-view MS-QPAT, the acoustic data are detected at the partial bound-

ary of Ω, so the data acquisition index can be regarded as a subset of all the detector positions.

Then the limited-view MS-QPAT can be written as the following

pij = MT
j [H(IΦi(U,D) · U)], j ∈ Ji, i ≤ Ns, (2.27)

where Ji denotes an index subset of {j = 1, · · · , Nd}.

3. Image Reconstruction

3.1. Functional Gradient

Let Y denote the given limited-view acoustic data andX = (U,D) denote the absorption and

diffusion distribution, then using nonlinear least squares, the MS-QPAT image reconstruction

can be modeled as

X = argmin
X

1

2
||p(X)− Y ||2. (3.1)

Let E(X) = 1
2 ||p(X)− Y ||2. Then based on the discrete forward model (2.27), we have

Ns∑
i=1

∑
j∈Ji

E2
ij =

1

2

Ns∑
i=1

∑
j∈Ji

(
MT

j H(IΦi(U,D) · U)− Yij

)2

, (3.2)

where Ji is the partial-view set of the detector positions during the ith optical illumination.

Define the adjoint acoustic problem

Ψi
a = HTQi

a (3.3)

with Qi
a =

∑
j∈Ji

EijMj , and define the adjoint optical problem

FTΨi
0 = Qi

0 (3.4)

with the adjoint optical source Qi
0 = IT (Ψi

0 · U). Then the numerical gradient of E(X) can be

represented as

∂E

∂Xk
=

Ns∑
i=1

Ψi
0

T
(
− ∂F

∂Xk

)
Φi +ΨiT

a

[
(IΦi) · ∂U

∂Xk

]
, (3.5)

where Xk denotes to the kth element of (U,D). More details about the solution of the gradient

are available in [43].
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3.2. Quasi-Newton Method

Let r = X − Xk. Denote Ek = E(Xk) and ∂Ek = ∂E
∂X |X=Xk

. The quadratic Taylor

expansion of E(X) (3.1) is

Qk(r) = Ek + ∂ET
k r +

1

2
rTHkr, (3.6)

where Hk denotes the Hessian matrix at Xk. Then the Newton direction rk can be obtained

rk = −H−1
k ∂Ek. (3.7)

Finally, the Newton iteration form for problem (3.1) can be written as

Xk+1 = Xk + λkrk. (3.8)

Here λk denotes the iteration step length.

In order to avoid the computation of the second derivative in Hessian matrix, Quasi-Newton

Method based on first-order derivative (i.e., the functional gradient) can be used to solve the

problem (3.1) instead of Newton Method, for which BFGS is a popular scheme.

Let sk = Xk+1 −Xk and yk = ∂Ek+1 − ∂Ek. Then the corresponding BFGS scheme is as

follow

H−1
k+1 = V T

k H−1
k Vk + ρksks

T
k (3.9)

Here ρk = 1
yT
k sk

and Vk = I − ρkyks
T
k .

However, H−1
k in BFGS scheme is usually dense so that it may be prohibitive with respect

to both computational speed and memory . Therefore, the following limited-memory BFGS

(L-BFGS) [9, 26] is adopted

H−1
k |L−BFGS = (V T

k−1 . . . V
T
k−m)H−1

k,0(Vk−m . . . Vk−1)

+ρk−m(V T
k−1 . . . V

T
k−m+1)sk−msTk−m(Vk−m+1 . . . Vk−1)

+ · · ·+ ρk−1sk−1s
T
k−1, (3.10)

where H−1
k,0 denotes the initial guess of H−1

k . In general, an effective choice of H−1
k,0 is

H−1
k,0 =

sTk−1yk−1

yTk−1yk−1
I. (3.11)

Then the search direction of L-BFGS recursive scheme can be summarized as the following

steps

Search direction rk: rk=Direction(∂Ek,{si, yi, k − n ≤ i ≤ k − 1}).
g = ∂Ek;

For i = k − 1, · · · , k − n

g = g − λiyi;

End

q = H−1
k,0g;

For i = k − n, · · · , k − 1

q = q + si(λi − ρiy
T
i q);

End

rk = −q.
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3.3. Simple Bound Constraints

To enforce the physical nonnegativity or apply some lower and upper limits, simple bound

of X is added as the constraint condition in the least-square model (3.1), i.e., the following

reconstruction model

X = argmin
X

1

2
||p(X)− Y ||2, s.t. L ≤ X ≤ U. (3.12)

Then the aforesaid L-BFGS can be modified accordingly for solving this bound-constrained

problem (3.12). Actually, only little modification to the search direction r is needed. Let

r̂(X) = Proj(r) =


−L, if X + r ≤ L,

r, if L < X + r < U,

−U, if X + r ≥ U.

(3.13)

Then from the well-known KKT conditions [26], it can be proved that r̂ will be also a decent

direction whenever r is a decent direction. Consequently, only one thing we need to do is to

project direction r to r̂ during the L-BFGS iterations.

As for the step size, the following modified Wolfe conditions can be used [26]

E(Xk + λkr̂k) ≤ E(X) + δ1λk∂E
T (Xk)r̂k, (3.14a)

∂ET (Xk + λkr̂k)r̂k ≥ δ2∂E
T (Xk)r̂k, (3.14b)

L ≤ Xk + λkr̂k ≤ U. (3.14c)

In this work, the following backtracking line search scheme for updating step size λk is utilized.

Bound-constrained step size: (λ, n) = Backtrack(r̂).

Parameters: δ1 = 0.0001, δ2 = 0.9, ρ = 0.25, nmax = 5;

Initialization: λ0 = 1, n = 1;

Do λn = ρλn−1

n = n+ 1

Until λn satisfies (3.14a) or n = nmax.

Our observation is that L-BFGS (3.10) with five truncation is generally sufficient. To summa-

rize, the L-BFGS method for solving our bound-constrained limited-view MS-QPAT (3.12) is

as the following:

Bound-constrained L-BFGS: Xk = Constrained-LBFGS(X0).

Parameters: Mmax = 5,Kmax = 200, ε = 0.001, k = 0,m = 0, nmax = 200

While k ≤ Kmax, l ≤ Mmax, ||∂Ek||2/N ≤ ε

rk=Direction(∂Ek,{si, yi, k − l ≤ i ≤ k − 1});
r̂k = Proj(r);

(λk, nk) = Backtrack(r̂k);

k = k + 1;

If nk == nmax

l = l + 1;

End

End
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Here the number of inner iterations nk is for updating λk and Kmax means the maximum

iterations of L-BFGS method.

In addition, since Eij may change significantly, in order to balance the inhomogeneous dis-

crepancy between the data and the model, the following weighted fidelity function is considered

E(X) =
1

2

Ns∑
i=1

∑
j∈Ii

(
Eij

Yij

)2

. (3.15)

Note that the weighting is used whenever Yij ̸= 0 and if Yij = 0, it is truncated from (3.15) .

4. Sparsity Regularization

4.1. Sparsity-Regularized QPAT

In recent years, in order to overcome the ill-posedness of the problems and reduce the noise

brought by imaging devices or system defects, a sparse regularization term is often added to im-

prove the imaging quality motivated by the assumption that images can be well approximated

by sparse coefficients under some transforms or designed systems. This kind of sparse regular-

ization method has been proved to be effective and has been applied in almost every branch of

imaging fields. In this MS-QPAT work, we consider the following sparsity-based optimization

min
X

1

2
∥p(X)− Y ∥22 + λ||WX||1, s. t. L ≤ X ≤ U, (4.1)

or the following sparsity-based constraint minimization problem with both data fidelity con-

straint and bound constraint of X

min
X

||WX||1, s. t. p(X) = Y, L ≤ X ≤ U, (4.2)

The bound constraint L and U onX has proved to be effective in our MS-QPAT experiments and

moreover it can also accelerate the convergence of the corresponding Quasi-Newton algorithm

used in solving the sub-problem. Here W denotes a sparse regularization operator. In recent

years, various sparse transform operators or systems are designed, e.g., the first-order difference

operator (total variation (TV)) [30] and wavelet based regularization operators are most widely

used. These sparse operators have been particularly used in MS-QPAT, see [5, 17, 19, 32] for

details. In this work, we use the tensor framelet (TF) transform [15,18,39] in our limited-view

MS-QPAT reconstruction scheme, as a natural generalization of isotropic TV regularization to

high orders.

4.1.1. Tensor Framelet

Compared with the traditional wavelet framelet, tensor framelet was introduced into image

reconstruction for further improve the computing speed and memory. It can be regarded as

a variant of standard wavelet tight frame [47] or a generalization of the isotropic gradient

diffusion to high-order gradients. Tensor framelet has been applied to computed tomography

[13,15,18,38] and QPAT [37] etc. We start from the description of the traditional one-level 1D

wavelet tight frame. More details are available in [15,18].

Traditional wavelet tight frames can be constructed based on the Unitary Extension Prin-

ciple (UEP) [45, 46], which are derived from a families of filters h = {hi}r−1
0 that make the

associated analysis operator W (h) and synthesis operator WT (h) satisfy WTW = I.
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Let x ∈ RN denote a given 1D signal. Then x is assumed sparse under the following so-called

analysis operator denoted by W (h)

Wx =
[
h0 ∗ x, h1 ∗ x, · · · , hr−1 ∗ x

]T
, (4.3)

where ∗ denote the convolution operation.

Once the wavelet tight frame for 1D signal is constructed, the higher-dimensional wavelet

tight frame for 2D images can be obtained via the vector tensor product denoted by H =

{hi ⊗ hj}(r
2−1)

0 . Then 2D images will accordingly be approximated by 2D wavelet tight frame

associated with 2D convolution. Given a 2D image X = {Xi,j} ∈ RMN , we have

WX =
[
H0 ∗X,H1 ∗X, · · · ,Hr2−1 ∗X

]T
. (4.4)

Here ∗ is used to also denote the corresponding 2D convolution operation.

Compared with the 1D convolution operation, 2D convolution means more memory and

higher computational complexity. Therefore, instead of 2D convolution, tensor framelet (TF)

for 2D image reconstruction is designed for improve the computational efficiency. This kind

of tensor framelet is constructed from two families of 1D wavelet filters, and also satisfies the

so-called perfect reconstruction property, i.e., WTW = I.

Concretely, given a family of 1D filters hx = {hx
i }

r−1
0 . Define

Wx(h
x) : X ∈ RMN →

 hx
0 ∗x X

...

hx
r−1 ∗x X

 ∈ RrMN . (4.5)

Here ∗x denote the filtering along x direction with 1D filters hx, i.e., filtering column-wisely.

Similarly, given another family of 1D filters hy = {hy
i }

r−1
0 ,

Wy(h
y) : X ∈ RMN →

 hy
0 ∗y X
...

hy
r−1 ∗y X

 ∈ RrMN , (4.6)

where ∗y is the filtering along y direction with 1D filters hy, i.e., filtering row-wisely. Then the

constructed 2D tensor framelet for 2D images associated with two families of filters hx and hy

is defined as

W (hx, hy) : X ∈ RMN → 1√
2

[
Wx(h

x)X

Wy(h
y)X

]
∈ R2rMN . (4.7)

If hx and hy satisfy the UEP condition, then Wx(h
x)TWx(h

x) = I, Wy(h
y)TWy(h

y) = I, and

W (hx, hy)TW (hx, hy) =
1

2
(Wx(h

x)TWx(h
x) +Wy(h

y)TWy(h
y)) = I.

The 2D tensor framelet operator WT (h
x, hy) is therefore a tight frame in this circumstance.

Define

HmX|ij =
(

HmxX|ij
HmyX|ij

)
=

(
hx
m ∗x X|ij

hy
m ∗y X|ij

)
, m = 0, 1, · · · , r − 1. (4.8)

Then the TF norm can be defined as

||WTX||1 = w0||H0X||1 + w1||H1X||1 + · · ·+ wr−1||Hr−1X||1, (4.9)

where {wi}r−1
0 are the corresponding weights of the following norms

||HmX||1 =
∑
ij

√
(HmxX|ij)2 + (HmyX|ij)2, m = 0, 1, · · · , r − 1. (4.10)
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A widely used wavelet tight frame is the linear B-spline framelet whose associated filters are

h0 =
1

4
[1, 2, 1], h1 =

√
2

4
[1, 0,−1], h2 =

1

4
[−1, 2,−1]. (4.11)

This linear framelet has been applied in many image processing tasks [44]. In this work, the

tensor framelet means the filters hx = {hx
i }

r−1
0 and hy = {hy

i }
r−1
0 are both chosen to be the

linear B-Spline filters (4.11),i.e.,

H0X|ij =
(

H0xX|ij
H0yX|ij

)
=

1

4
√
2

(
Xi+1,j + 2Xij +Xi−1,j

Xi,j+1 + 2Xij +Xi,j−1

)
, (4.12)

H1X|ij =
(

H1xX|ij
H1yX|ij

)
=

1

4

(
Xi+1,j −Xi−1,j

Xi,j+1 −Xi,j−1

)
, (4.13)

H2X|ij =
(

H2xX|ij
H2yX|ij

)
=

1

4
√
2

(
−Xi+1,j + 2Xij −Xi−1,j

−Xi,j+1 + 2Xij −Xi,j−1

)
. (4.14)

The corresponding TF norm will be

||WTX||1 = w0||H0X||1 + w1||H1X||1 + w2||H2X||1, (4.15)

where

||HmX||1 =
∑
ij

√
(HmxX|ij)2 + (HmyX|ij)2, m = 0, 1, 2. (4.16)

Higher-dimensional tensor framelet at multi-level can be seen in [15,18].

Specially, if two filters hx = hy = [1,−1] are used in convolution, then (4.15) is exactly the

TV regularization and (4.16) is the so-called isotropic TV norm. Consequently tensor framelet

we constructed in this work can be regarded as a variant of traditional wavelet tight framelet

and also can be treated as a generalization of isotropic TV.

4.2. Optimization Algorithm

We restate the sparsity-regularized MS-QPAT reconstruction problem

min
X

||WTX||1, s.t. p(X) = Y, L ≤ X ≤ U. (4.17)

Here WT is the aforementioned tensor framelet based on B-Spline linear filters. Here we only

provide the algorithm for (4.17) (small-noise case), and the algorithm for (4.1) (large-noise case)

is similar.

Observe that (4.17) is a nonlinear and nonconvex problem and the L1 regularization term

is non-differentiable. In [37], forward-backward splitting algorithm is developed to handle the

nonconvex MS-QPAT reconstruction problem with established convergence analysis. In this

work, we develop the reconstruction algorithm based on alternating direction method of mul-

tipliers (ADMM) [8] or so-called split Bregman method [23], which is often used in solving the

L1 non-differentiable problem. With ADMM algorithm the nonconvex and nonlinear function

p can be solved by using Quasi-Newton method as the inner loop.

Let C = {K ∈ RMN : L ≤ K ≤ U}. Define the indicator function of C as

γC(K) =

{
0, if K ∈ C,

+∞, otherwise.
(4.18)
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Then by introducing another variable Z to overcome the non-differential property, problem

(4.17) can be rewritten as

min
X

||Z||1 + γC(K), s. t. p(X) = Y, WTX = Z, X = K. (4.19)

Then the ADMM iteration method for solving the limited-view MS-QPAT problem (4.17) can

be formulated as the following decoupled equations:

Xn+1 = argmin
X

α
2 ||p(X)− Y + b1||22 +

β
2 ||WTX − Z + b2||22 +

γ
2 ||X −K + b3||22,

Zn+1 = argmin
Z

∥Z∥1 + β
2 ||WX − Z + b2||22,

Kn+1 = argmin
K

γC(K) + β
2 ||X −K + b3||22,

bn+1
1 = p(X)− Y + b1,

bn+1
2 = WTX − Z + b2,

bn+1
3 = X −K + b3.

(4.20)

As for the X sub-problem, we can use the unconstrained L-BFGS method mentioned above,

for which only the gradient is slightly different. Let

E(X) =
α

2
||p(X)− Y + b1||22 +

β

2
||WTX − Z + b2||22 +

γ

2
||X −K + b3||22.

The numerical gradient of E(X) is

∂E

∂X
= α(p− Y + b1)

∂p

∂X
+ βWT

T

(
WTX − (Z − b2)

)
+ γ(X −K + b3). (4.21)

So the adjoint acoustic source is modified accordingly in the solver (3.3),

Qi
a = α

∑
j∈Ji

(pij − Yij + b1,ij)Mj . (4.22)

Then the numerical gradient can be obtained by adding βWT
T (WTX−(Z−b2))+γ(X−K+b3)

to the adjoint method (3.5).

As for the Z sub-problem, generalized shrinkage formula can be used to solve this problem.

Let

smx|ij = HmxX|ij + bx2m|ij ,
smy|ij = HmyX|ij + by2m|ij .

Since

Zn+1 =argmin
Z

2∑
m=0

∑
ij

{
β

2
[Zx,m

ij − (smx|ij)]2 +
β

2
[Zy,m

ij − (smy|ij)]2

+
√
(Zx,m

ij )2 + (Zx,m
ij )2

}
,

Then the generalized shrinkage formula denoted by Sβ can be solved as follows

Zx,m
ij = max

(√
(smx|ij)2 + (smy|ij)2 −

1

β
, 0

)
(smx|ij , smy|ij)√

(smx|ij)2 + (smy|ij)2
. (4.23)

As for the K sub-problem, the following well-known proximity operator proxφ : H → H defined

as

proxφ(x) := argmin
y

{
1

2
∥x− y∥22 + φ(y) : y ∈ H

}
(4.24)
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can be used. Then

proxγC
(x) =


x, if x ∈ C,

U, if x > U,

L, if x < L.

(4.25)

Algorithm 4.1: ADMM for solving (4.19)

Choose: parameters λ, β, γ;

Initialization: b1, b2, b3.

For n = 1, · · · ,m Xn+1 = Xn + λnrn,

rn+1 = Direction(∂E(Xn)),

λn+1 is selected by Wolfe conditions,

Zn+1 = Sβ(WTX
n+1 + bn2 ) ,

Kn+1 = proxγC
(Xn+1 + bn3 ),

bn+1
1 = bn1 + p(Xn+1)− Y,

bn+1
2 = bn2 +WTX

n+1 − Zn+1,

bn+1
3 = bn3 +Xn+1 −Kn+1.

End

Another method we can solve X sub-problem is that we first solve the unconstrained prob-

lem, i.e.,

min
X

α

2
||p(X)− Y + b1||22 +

β

2
||WTX − Z + b2||22

using the L-BFGS method and then consider L < X < U , i.e., the L-BFGS for bound-

constrained L < X < U . We briefly write the constrained ADMM iteration algorithm as

follows

Algorithm 4.2: ADMM based on L-BFGS method with bound-constraint for

solving (4.19)

Choose: parameters λ, β;

Initialization: b1, b2.

For n = 1, · · · ,m
Xn+1 = Constrained-LBFGS (Xn, Zn, bn1 , b

n
2 ),

Zn+1 = Sβ(WTX
n+1 + bn2 ),

bn+1
1 = bn1 + p(Xn+1)− Y,

bn+1
2 = bn2 +WTX

n+1 − Zn+1.

End

The modified L-BFGS method with simple bound constraint, i.e., Algorithm 4.2 can slightly

speed up the numerical solution compared with Algorithm 4.1 based on numerical simulations.

In the following, we use Algorithm 4.2 for simulation.

5. Results

This section presents the simulation results to validate the proposed method. For the

limited-view scanning with four optical illuminations, the ultrasonic transducers are designed
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(a) Temporal waveform (b) Frequency Spectrum

Fig. 5.1. Experimental EIR. (a) The temporal waveform of experimental EIR with temporal dura-

tion 0.3µs. (b) The spectrum of experimental EIR with central frequency 8.51MHz, and pass-band

frequency [6.32, 12.19MHz].

(a) Temporal waveform (b) Frequency spectrum

Fig. 5.2. Simulated FIR filter.

(a) Simulated 1D PA signal (b) Experimental 1D PA signal

Fig. 5.3. One-dimensional PA data estimation.

to rotate 90◦ together with the illuminations with the total data acquisition completed in one

rotation, so that the acoustic data are collected only near the illumination sources for improved

SNR and reduced scanning time.

The temporal waveform and the frequency spectrum of experimental EIR are listed in Fig.

5.1. The corresponding test conditions are as follows. Transducer type: No. Olympus NDT

V311-SU; standard central frequency of transducer: 10MHz; pulser setting: energy 100 Volt,
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(a) Ground truth

(b) Results without SIR and EIR

(c) Results with SIR and EIR

Fig. 5.4. Reconstruction results with initial guesses µa = 0.012, µ′
s= 1.2. Images in (a) (from left to

right) are respectively the ground truth of µa and µ′
s; Images in (b) (from left to right) are respec-

tively the reconstructed µa and µ′
s without SIR and EIR; Images in (c) (from left to right) are the

reconstructed µa and µ′
s by our proposed method with SIR and EIR.

damping 50 Ohm, spike shape; receiver setting: gain 23dB, filter 2.0-21.5MHz; target: 2 inch

silica. In this study, EIR can be approximated by a finite-impulse-response (FIR) digital filter

(Fig. 5.2) through a window function method. The pass-band frequency is set as [8, 12.5MHz]

with a central frequency as 10MHz. Given that the simulated sampling frequency might reach

at 100MHz for data acquisition in forward modeling, the temporal duration of FIR filter is

set to be 0.3µs (30 points in discrete domain) according to the database of transducer itself.

The simulated 1D PA signal and the experimental 1D PA signal of a hair thread with 93µm

in diameter are illustrated in Fig. 5.3, which demonstrates the advantages of incorporating the

SIR and EIR.

As for the two-dimensional circumstance, the limited MS-QPAT scheme is simulated on a

Shepp-Logan phantom (Fig. 5.4). Images in Fig. 5.4(a) (from left to right) are respectively

the ground truth of absorption coefficient µa and scattering coefficient µ′
s; four illuminations
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are located equally at the boundary of the image square domain. The values of the parameters

used in the numerical experiment are as follows: g = 0, κ = 2.74, c = 1.5, Cp = β = 1, ε =

40/128 = 0.3125, and g is the delta function. Both the absorption and the scattering maps are

reconstructed simultaneously by using the proposed scheme. The reconstruction of scattering

coefficient is more ill-posed using the DA forward model. The displayed 128×128 images have

the same display windows, i.e., [0.01 0.02] for µa and [1 2] for µ′
s, and the simulation data has

one percent Gaussian noise. From Fig. 5.4(c), we can see that the proposed method with SIR

and EIR could completely reconstruct the absorption coefficient µa and meanwhile improve the

reconstructed results compared with the method without SIR and EIR (Fig. 5.4(b)).

6. Conclusion

This paper has considered a practical image reconstruction scheme for multi-source QPAT.

The spatial impulse response (SIR) and acousto-electric impulse (EIR) response are incorpo-

rated to accurately model the QPAT measurement and the limited-view scheme is used to

take the measurement near optical sources to reduce the data acquisition time and meanwhile

improve the SNR. A coupled opto-acoustic image reconstruction algorithm that incorporates

SIR, EIR and limited-view scanning is proposed, and solved by alternating direction method

of multipliers with tensor framelet regularization. Simulated experimental results demonstrate

that the proposed method with SIR and EIR improves the reconstructed image quality from

that without SIR and EIR.
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