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Abstract

The purpose of this paper is to investigate the ability of the infimal convolution regular-

ization in curing the staircasing artifacts of the TV model in the SPECT reconstruction.

We formulate the problem of SPECT reconstruction with the infimal convolution regu-

larization as a convex three-block optimization problem and characterize its solution by a

system of fixed-point equations in terms of the proximity operator of the functions involved

in its objective function. We then develop a novel fixed-point proximity algorithm based

on the fixed-point equations. Moreover, we introduce a preconditioning matrix motivated

by the classical MLEM (maximum-likelihood expectation maximization) algorithm. We

prove convergence of the proposed algorithm. The numerical results are included to show

that the infimal convolution regularization is capable of effectively reducing the staircasing

artifacts, while maintaining comparable image quality in terms of the signal-to-noise ratio

and coefficient recovery contrast.
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1. Introduction

The goal of this article is to investigate the ability of the infimal convolution of functionals

with the first- and second-order derivatives, denoted by ICTV, to cure staircasing artifacts

in SPECT reconstruction. We develop a novel fixed-point proximity algorithm to solve the

resulting three-block optimization problem, motivated by the fixed-point framework studied

in [16,17,21,22].

Single photon emission computerized tomography (SPECT) is an important medical imaging

tool for studying functional characteristics of human bodies. In contrast, computed tomogra-

phy (CT) or magnetic resonance imaging (MRI) provides only structure information of human

bodies. For this reason, SPECT has become one of the most important techniques for detec-

tion and evaluation of coronary artery diseases. Other clinical applications of SPECT include

detecting, staging and monitoring response to cancer therapy, pulmonary ventilation/perfusion

scans, renal scans, and bone scans [32]. Clinical SPECT data are often severely corrupted by

Poisson noise due to low tracer dosage and short acquisition time. A widely used algorithm

today for clinical SPECT image reconstruction is the ordered-subset expectation maximization

algorithm (OSEM) [13], which has greatly improved the convergence speed compared to the

original maximum-likelihood expectation maximization algorithm (MLEM) [15, 29]. However,

one disadvantage of OSEM is that the noise in the reconstructed image increases with itera-

tions, and the resulting noise level often makes the reconstructed image clinically unacceptable.

Therefore, it is stopped prematurely and post-filtering should be applied [20].

As an alternative to OSEM, maximum a posteriori (MAP) in a Bayesian framework was

proposed [11], and has gained wide interest since then. MAP incorporates a regularization term

into the objective function, which assembles the a priori knowledge of the image. The total

variation (TV) regularization is capable of suppressing noise effectively, and at the same time

capturing sharp edges [26]. Hence the TV semi-norm has been widely used as a regularizer in

SPECT reconstruction [3,14,23,25,27]. The TV method works quite well when the true object

contains only piecewise constant regions. However, when the true object is smooth, the use of

the TV regularization often results in patchy, cartoon-like images, known as staircasing artifacts

[31]. In the past two decades, considerable research interest was devoted to overcoming this side

effect of the TV regularization. Several variants of the TV regularization were proposed. Chan

et al. introduced in [8] a fourth-order non-linear filter. A generalized total variation model,

known as TGV, was proposed by Bredies et al. in [4]. A recent work [19] studied effective

noise-suppressed and artifact-reduced reconstruction of SPECT data using a higher-order TV

regularization and the resulting optimization problem was solved by using a preconditioned

alternating project algorithm.

The first issue that we study in this paper is to investigate the suitability of using the

ICTV regularization in SPECT reconstruction. The ICTV regularization, suggested by Cham-

bolle and Lions in [7], combining the total variation of the image with the total variation of

its gradient, showed a possibility of reducing staircasing artifacts in mathematical imaging.

Whether it is suitable for SPECT reconstruction remains unclear. Studying this issue is the

first objective of this paper. The reason that we believe that ICTV is able to reduce staircasing

artifacts in SPECT reconstruction may be explained in two ways. The null space of the ICTV

functional is much larger than that of the TV functional. We expect that the ICTV regular-

ization would be more likely to produce smoother reconstruction than the TV regularization,

and the staircasing artifacts would be alleviated. We can also view the ICTV functional as
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decomposing a bounded variation function into two components, one having the appearance

of TV-regularized reconstructions (with sharp edges and piecewise constant regions) and the

other resembling higher-order derivative reconstructed images (with smoother estimated radio-

tracer distribution). As a result, the ICTV regularized reconstruction, as a linear combination

of the above two components, would be smoother than the TV reconstructed image and the

staircasing artifacts would likely to be reduced.

The second issue is to develop a mathematically sound and computationally efficient algo-

rithm to solve the resulting non-smooth three-block optimization problem. A direct extension

of the alternating direction method of multipliers (ADMM) may give a shot to solve the prob-

lem. However, it has been pointed out in [9, 18] that this direct extension of ADMM is not

necessarily convergent. In contrast, we shall develop an iterative algorithm based on the fixed-

point equation that characterizes the solution of the optimization problem and show that the

proposed algorithm is guaranteed to converge. It is shown in [14] that, the preconditioning

matrix adopted from the MLEM algorithm can significantly improve the convergence speed.

Following this idea, we shall propose an EM-type preconditioning matrix for the proposed algo-

rithm. We shall demonstrate by numerical experiments that the use of the ICTV regularization

can greatly reduce staircasing artifacts appearing in the conventional TV regularization.

We organize this paper in seven sections. In Section 2, we describe the ICTV model of

SPECT reconstruction. Section 3 presents the fixed-point characterization of the solution of the

optimization problem which models SPECT reconstruction. Based on the characterization we

propose in Section 4 a fixed-point proximity algorithm to solve the ICTV model. Convergence of

the proposed algorithm is analyzed in Section 5. Numerical results are presented in Section 6 to

demonstrate the capability of the infimal convolution regularization in effectively reducing the

staircasing artifacts, with maintaining comparable image quality in terms of the signal-to-noise

ratio and coefficient recovery contrast. Finally, we draw conclusions in Section 7.

2. Mathematical Model of SPECT

In a SPECT system, a patient is injected with a radiopharmaceutical, which concentrates in

the organ of interest. The gamma camera rotates around the patient, collecting photons emitted

by the radioactive isotopes in the radiopharmaceutical. The goal of SPECT reconstruction is

to obtain an estimate of the three-dimensional distribution of radiopharmaceutical from the

detected array of photon counts. It is well established that the gamma photon emission rate and

subsequent photon detection at each detector element follow the temporal Poisson distribution.

Therefore, the emission data and the unobservable expected radioactivity distribution can be

described by a Poisson model.

We now describe the Poisson model for the SPECT system. Let Np := {1, 2, . . . , p} and

denote by A ∈ Rp×d the SPECT system matrix with its (ij)th entry equal to the probability

of detection of the photon emitted from voxel j of an image by the ith detector element, with

i ∈ Np and j ∈ Nd. The system matrix A summarizes detector geometry, attenuation and other

physical degradations. Since photons emitted from each voxel of an image are recorded by

detector elements in the SPECT imaging system, it is reasonable to assume that each column

of A is a nonzero vector in Rp
+ := {x : x ∈ Rp and x ≥ 0}. Furthermore, we let f represent

the expected radioactivity distribution within a phantom and let g ∈ Rp denote a vector with

the ith component gi being the number of single photons originated from the radiotracer and

recorded by the ith detector element, for i ∈ Np. Under these assumptions, the observed
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emission data g and the unknown radioactivity distribution f ∈ Rd can be modelled as

g = Af + γ,

with the positive number γ representing the mean number of background counts recorded

by each detector element. Here, for simplicity, we have assumed that the mean number of

background counts recorded by each detector element takes the same value. The summation of

a vector and a scalar will be defined later in this section. The above linear equation is highly

ill-posed and is improper to be solved directly. It requires a proper regularization.

We now formulate the reconstruction problem from a probability viewpoint. Since the

photon detections follow the Poisson distribution, we may consider the number of detected

counts gi as a realization of a Poisson distributed random variable Xi, i ∈ Np. The expected

value of Xi is given by (Af)i+γ, i ∈ Np. Applying the maximum a posteriori criterion (MAP),

a reasonable estimate of the radioactivity distribution f is determined as the maximizer of

the conditional probability P (f |g), the probability that f occurs when g is observed. This

probability may in turn be computed using the Bayes law:

P (f |g) = P (g|f)P (f)

P (g)
, (2.1)

where P (f) is the a priori distribution of f . Since P (g) does not depend on f , MAP is

equivalent to maximizing P (g|f)P (f). Recalling the Poissonian nature of the emission data,

we have that

P (g|f) =
p∏

i=1

((Af)i + γ)gi

gi!
e−((Af)i+γ).

As for P (f), the Gibbs priors are most commonly advocated:

P (f) = e−λU(f), (2.2)

where λ > 0 is a regularization weight called the hyper-parameter and U is a convex energy

functional. Since logarithmic operation does not change the monotonicity of a function, we in

turn minimize −ln(P (g|f)P (f)). As a result, we arrive at the following minimization problem

min

{
p∑

i=1

((Af)i + γ − giln((Af)i + γ)) + λU(f) : f ∈ Rd, f ≥ 0

}
. (2.3)

We next write (2.3) in a compact form. To this end, we introduce some notation. We define

the component-wise multiplication and division, respectively, by

x⊙ y := (xiyi : i ∈ Nd) and
x

y
:=

(
xi

yi
: i ∈ Nd and yi ̸= 0

)
,

for any vectors x, y ∈ Rd. The logarithmic function of x ∈ Rd is given by

lnx := (lnxi : i ∈ Nd).

For a vector x and a scalar θ ∈ R, x+ θ means,

x+ θ := (xi + θ : i ∈ Nd).

The inner product of x, y ∈ Rd is defined as

⟨x, y⟩ :=
d∑

i=1

xiyi.
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We use ‘1’ to represent both the real number 1 and the vector with all components equal to 1.

As a result, we have that

p∑
i=1

(Af)i = ⟨Af, 1⟩ and

p∑
i=1

giln ((Af)i + γ) = ⟨ln (Af + γ) , g⟩.

With these notations, if we choose the energy functional U in model (2.3) to be the TV

semi-norm, we obtain a TV regularized optimization model for SPECT reconstruction,

min
{
⟨Af, 1⟩ − ⟨ln(Af + γ), g⟩+ λ|∇f | : f ∈ Rd

+

}
. (2.4)

However, it is well-known that the TV regularizer may create staircasing artifacts [31]. Typical-

ly, such artifacts can be reduced by incorporating higher-order derivatives into the regularization

function [19]. The infimal convolution of functionals with the first- and second-order derivatives

as a regularizer, per discussed in the introduction, is an appealing approach in this direction.

With this motivation, we decompose the image f into the sum of components f1 and f2, where

f1 has the appearance of TV-regularized reconstructions with sharp edges and piecewise con-

stant regions and f2 resembles second-order derivative reconstructed images with a smoother

distribution. As a result, we propose the infimal convolution regularization model (ICTV) for

SPECT reconstruction,

min
{
⟨A(f1 + f2), 1⟩ − ⟨ln(A(f1 + f2) + γ), g⟩+ λ1|∇f1|

+ λ2|∇ · (∇f2)| : f1 + f2 ∈ Rd
+

}
. (2.5)

Adopting the notation used in [19,21], we have that

|∇f1| = φ1(B1f1) and |∇ · (∇f2)| = φ2(B2f2),

where B1 ∈ Rm1×d and B2 ∈ Rm2×d are, respectively, the first- and second-order difference

matrices and φ1, φ2 are both d-sum of the ℓ2-norms for the isotropic TV, except that their

ℓ2-norms are the Euclidean norm with different dimensions. Concrete expressions of B1, B2,

φ1 and φ2 are given in Section 4. The ICTV model (2.5) can then be rewritten as

min
{
⟨A(f1 + f2), 1⟩ − ⟨ln(A(f1 + f2) + γ), g⟩+ λ1φ1(B1f1)

+ λ2φ2(B2f2) : f1 + f2 ∈ Rd
+

}
. (2.6)

Since each column of A ∈ Rp
+ is a nonzero vector, we have that

lim
∥f1∥2+∥f2∥2→+∞

f1+f2∈Rd
+

⟨A(f1 + f2), 1⟩ − ⟨ln(A(f1 + f2) + γ), g⟩ = +∞.

Hence, the solution set of the ICTV model (2.6) is nonempty.

Finally, for the sake of notational simplicity and algorithm development convenience, we

rewrite the ICTV model (2.6) in a compact form. Let

u :=

(
f1
f2

)
, C :=

(
I, I

)
and B :=

(
B1

B2

)
,

where I is the d× d identity matrix and B ∈ Rm×2d with m := m1 +m2. We further let

Ψ(u) := ⟨A(f1 + f2), 1⟩ − ⟨ln(A(f1 + f2) + γ), g⟩,
Φ(ξ, η) := λ1φ1(ξ) + λ2φ2(η).
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Recalling the indicator function of the nonnegative constraint set

ιRd
+
(x) =

{
0, if x ∈ Rd

+,

+∞, otherwise,

and setting Υ := ιRd
+
◦ C, we have that

min
{
Ψ(u) + Φ(Bu) + Υ(u) : u ∈ R2d

}
. (2.7)

We shall develop a fixed-point algorithm to solve the non-smooth optimization problem (2.7).

3. Fixed-point Characterizations

This section is devoted to presenting a characterization of solutions of the ICTV model (2.7)

via a system of fixed-point equations. This characterization plays a crucial role in developing a

novel fixed-point proximity algorithm and its convergence analysis.

We start with introducing the concepts of the proximity operator, the subdifferential and

the conjugate function. We denote by Sn (resp. Sn+) the set of n× n symmetric positive semi-

definite (resp. definite) matrices. For a matrix T ∈ Sn+, we define the weighted inner product

by

⟨x, y⟩T := ⟨x, Ty⟩, x, y ∈ Rn.

The induced weighted norm is accordingly defined by

∥x∥T :=
√
⟨x, x⟩T .

We further denote by Γ0(Rn) the class of all proper lower semi-continuous convex functions

φ : Rn → (−∞,+∞]. For a function φ ∈ Γ0(Rn), the proximity operator of φ with respect to

a given matrix T ∈ Sn+, denoted by proxTφ , is a mapping from Rn to itself, defined for a given

vector x ∈ Rn by

proxTφ(x) := argmin

{
φ(u) +

1

2
∥u− x∥2T : u ∈ Rn

}
. (3.1)

In particular, we use proxφ for proxIφ. The subdifferential of φ on Rn at a given vector x ∈ Rn

is the set defined by

∂φ(x) :=
{
y : y ∈ Rn and φ(z) ≥ φ(x) + ⟨y, z − x⟩, for all z ∈ Rn

}
.

The subdifferential and the proximity operator of a convex function are intimately related.

Specifically, for any x in the domain of φ and y ∈ Rn, we have that

Ty ∈ ∂φ(x) if and only if x = proxTφ(x+ y), (3.2)

(see, for example, [2, Proposition 16.34] and [21,24]). The function φ∗ ∈ Γ0(Rn) defined by

φ∗(u) := sup{⟨x, u⟩ − φ(x) : x ∈ Rn}, u ∈ Rn,

is called the conjugate of φ.

Now, we are in a position to characterize the solution of the ICTV model (2.7) via a system

of fixed-point equations.
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Theorem 3.1. If u ∈ R2d is a solution of the ICTV model (2.7), then for any P ∈ S2d+ and

Q ∈ Sm+ , there exists b ∈ Rm such that the pair (b, u) ∈ Rm × R2d is a solution of the following

coupled equations

b = proxQΦ∗

(
b+Q−1Bu

)
, (3.3)

u = proxPΥ
(
u− P−1

(
∇Ψ(u) +B⊤b

))
. (3.4)

Conversely, if there exist P ∈ S2d+ , Q ∈ Sm+ , b ∈ Rm and u ∈ R2d such that (3.3) and (3.4) hold,

then u is a solution of the ICTV model (2.7).

Proof. Let u ∈ R2d be a solution of the ICTV model (2.7). Applying Fermat’s rule, we get

the following inclusion relation

0 ∈ ∇Ψ(u) +B⊤∂Φ(Bu) + ∂Υ(u). (3.5)

Hence, for arbitrary matrix P ∈ S2d+ , there exist η ∈ R2d and b ∈ Rm such that Pη ∈ ∂Υ(u),

b ∈ ∂Φ(Bu), and the following equation holds

0 = ∇Ψ(u) + Pη +B⊤b. (3.6)

Applying relation (3.2) to the inclusion Pη ∈ ∂Υ(u) yields that

u = proxPΥ(η + u). (3.7)

Solving η from (3.6) and substituting it into (3.7) give (3.4). For any x ∈ dom(Φ) and y ∈
dom(Φ∗), according to [12, Proposition 6.1.2], we obtain that

y ∈ ∂Φ(x) if and only if x ∈ ∂Φ∗(y). (3.8)

Hence, from the inclusion b ∈ ∂Φ(Bu), we have that Bu ∈ ∂Φ∗(b). Therefore, for arbitrary

matrix Q ∈ Sm+ , we know that Q
(
Q−1Bx

)
∈ ∂Φ∗(b), which together with (3.2) yields (3.3).

Conversely, if P ∈ S2d+ and Q ∈ Sm+ are given matrices such that (b, u) is a solution of

(3.3)-(3.4), then all the arguments discussed above are reversible. This completes the proof. �

4. Fixed-point Algorithm

In this section, we develop an iterative scheme to solve the ICTV model (2.7) based on the

system of fixed-point equations described in Theorem 3.1. Besides, we present the closed forms

of proximity operators proxPΥ and proxQΦ∗ required for implementing the scheme. At the end of

this section, we discuss the choice of the preconditioning matrix P .

We begin with rewriting the fixed-point characterization (3.3)-(3.4) in a compact form. For

this purpose, we first introduce an operator which couples the two proximity operators involved

in (3.3) and (3.4). In fact, for given matrices P ∈ S2d+ and Q ∈ Sm+ , we define the operator

T : Rm × R2d → Rm × R2d, at a vector v := (b, u) ∈ Rm × R2d, as

T (v) :=
(
proxQΦ∗(b),prox

P
Υ(u)

)
. (4.1)

We next show that operator T is indeed a proximity operator of the convex function F (v) :=

Φ∗(b) + Υ(u), for some v := (b, u) ∈ Rm × R2d, with respect to the block diagonal matrix

R := diag(Q,P ) ∈ Sm+2d
+ .
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Lemma 4.1. If T is the operator defined by (4.1), then T is the proximity operator of the

convex function F with respect to the matrix R, that is, T = proxRF .

Proof. Let v := (b, u) ∈ Rm × R2d be given. By the definition in (3.1) of the proximity

operator, we have that

proxRF (v) = argmin

{
1

2
∥ṽ − v∥2R + F (ṽ) : ṽ = (̃b, ũ) ∈ Rm × R2d

}
. (4.2)

Recalling the separable structures of convex function F and matrix R, we can rewrite the

minimizer in (4.2) in the form

argmin

{
1

2
∥ũ− u∥2P +Υ(ũ) +

1

2
∥b̃− b∥2Q +Φ∗(̃b) : ũ ∈ R2d, b̃ ∈ Rm

}
,

which by definition is the vector
(
proxQΦ∗(b),proxPΥ(u)

)
. This completes the proof. �

Recall that a non-linear operator P : Rn → Rn is called firmly nonexpansive with respect to a

matrix S ∈ Sn+ if

∥Px− Py∥2S ≤ ⟨Px− Py, x− y⟩S , for all x, y ∈ Rn. (4.3)

It was proved in [10] that proxφ is firmly non-expansive with respect to the identity matrix for

any convex function φ on Rn. This result can be naturally generalized to guarantee the firm

non-expansivity of the operator T with respect to the matrix R.

Given an m× 2d matrix B, we define the (m+ 2d)× (m+ 2d) skew symmetric matrix SB

by

SB :=

(
0 B

−B⊤ 0

)
. (4.4)

Using (4.4), we further introduce the (m+ 2d)× (m+ 2d) matrix

E := I +R−1SB . (4.5)

Then, we introduce an operator consisting of the gradient of function Ψ and the null operator

on Rm. Indeed, we define the operator G : Rm × R2d → Rm × R2d at v = (b, u) ∈ Rm × R2d as

G(v) := (0,∇Ψ(u)) . (4.6)

With the above notation, (3.3)-(3.4) can be rewritten in a compact form

v = T
(
Ev −R−1G(v)

)
. (4.7)

We next propose an iterative scheme to solve (4.7). To this end, we first decompose the

matrix E as E = E −R−1M +R−1M for some (m+ 2d)× (m+ 2d) matrix M . Based on this

decomposition, the fixed-point characterization (4.7) can be rewritten as

v = T
(
(E −R−1M)v +R−1Mv −R−1G(v)

)
.

Accordingly, an implicit iterative scheme can be developed as follows

vk+1 = T
(
(E −R−1M)vk+1 +R−1Mvk −R−1G(vk)

)
. (4.8)

In order that algorithm (4.8) may be practically implemented, the matrix M has to be prop-

erly chosen so that bk+1 (resp., uk+1) is not needed when updating itself, that is, scheme (4.8)
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is blockwise explicit. Besides, proxQΦ∗(b) and proxPΥ(u) are required to have closed forms. These

closed forms are convenient for numerical evaluation in the sense that no further optimization

problems need to be solved. Moreover, the choise of matrix M has to ensure convergence of

the resulting algorithm.

In what follows, we specify the matrix M and develop a fixed-point proximity algorithm to

solve the ICTV model (2.7) based on the iterative scheme (4.8). In particular, we set

M :=

(
Q B

B⊤ P

)
, (4.9)

where

Q =

(
µ−1
1 I1

µ−1
2 I2

)
and P =

(
β−1
1 S−1

1

β−1
2 S−1

2

)
, (4.10)

with positive parameters µ1, µ2, β1 and β2, and positive definite diagonal matrices S1 and S2.

Thus, we obtain the following specific iterative scheme{
bk+1 = proxQΦ∗

(
bk +Q−1Buk

)
uk+1 = proxPΥ

(
uk − P−1

(
∇Ψ(uk) +B⊤ (2bk+1 − bk

)) )
.

(4.11)

Next, we present the closed form of proxPΥ. For this purpose, we need two lemmas. The

first lemma presents a characterization of the subdifferential of Υ.

Lemma 4.2. Let ξ ∈ R2d. The subdifferential ∂Υ(ξ) is nonempty if and only if for i ∈ Nd,

ξi + ξi+d ≥ 0. Moreover, for nonempty ∂Υ(ξ), η ∈ ∂Υ(ξ) if and only if it holds that ηi = ηi+d

for i ∈ Nd, and {
ηi = 0, if ξi + ξi+d > 0,

ηi ≤ 0, if ξi + ξi+d = 0.

Proof. For the first statement, we only prove its necessary condition by contradiction. The

sufficient condition can be obtained in a similar way.

Let ∂Υ(ξ) be nonempty. Suppose there exists an index i ∈ Nd such that ξi + ξi+d < 0. In

this case, Υ(ξ) = +∞, which in turn yields

Υ(ξ) + ⟨η, ε− ξ⟩ = +∞, for all ε ∈ R2d
+ and η ∈ R2d.

Note that Υ(ε) = 0, and we have that Υ(ξ) + ⟨η, ε − ξ⟩ > Υ(ε). Recalling the definition of

subdifferential, the above inequality contradicts the nonemptiness of ∂Υ(ξ).

Next, we characterize the subdifferential of Υ. For nonempty ∂Υ(ξ), let η ∈ ∂Υ(ξ). Again

by the definition of subdifferential, we observe that

Υ(ε) ≥ ⟨η, ε− ξ⟩+Υ(ξ), for all ε ∈ R2d. (4.12)

In what follows, we restrict ε to the domain of Υ. In this case, εi + εi+d ≥ 0, for i ∈ Nd, and

Υ(ε) = 0. (4.12) then reduces to the following component form

0 ≥
d∑

i=1

(
ηi (εi − ξi) + ηi+d (εi+d − ξi+d)

)
. (4.13)

(4.13) holds true for each term, that is, for i ∈ Nd, we have that

0 ≥ ηi(εi − ξi) + ηi+d(εi+d − ξi+d). (4.14)
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Otherwise, suppose there exists an index j such that ηj(εj − ξj) + ηj+d(εj+d − ξj+d) is greater

than 0. Under these circumstances, we let ε̃i = ξi for i ̸= j, and ε̃j = εj . Then ε̃ does not

satisfy (4.13), which is a contradiction.

For each index i ∈ Nd, we next explore (4.14) for two cases. When ξi + ξi+d = 0, we may

rewrite (4.14) as

0 ≥ ηi(εi + εi+d) + (ηi+d − ηi) (εi+d − ξi+d). (4.15)

Estimate (4.15) holds true for all possible ε if and only if ηi = ηi+d and ηi ≤ 0.

When ξi + ξi+d > 0, (4.14) reads

0 ≥ ηi ((εi + εi+d)− (ξi + ξi+d)) + (ηi+d − ηi) (εi+d − ξi+d) , (4.16)

which is equivalent to the fact that ηi = ηi+d = 0.

All the arguments discussed above are reversible. This completes the proof. �

As a result of Lemma 4.2, we next calculate the closed form of proxPΥ using the relationship

between the subdifferential and the proximity operator given in (3.2).

Lemma 4.3. If ξ, η ∈ R2d is given such that η = proxΥ (ξ), then for i ∈ Nd,

ηi =

{
ξi, if ξi + ξi+d > 0,
ξi−ξi+d

2 , if ξi + ξi+d ≤ 0,
and ηi+d =

{
ξi+d, if ξi + ξi+d > 0,
ξi+d−ξi

2 , if ξi + ξi+d ≤ 0.
(4.17)

Proof. By the definition of the proximity operator, we have that

η = argmin

{
1

2
∥ε− ξ∥22 +Υ(ε) : ε ∈ R2d

}
. (4.18)

Applying Fermat’s rule to model (4.18), we obtain the relation

ξ − η ∈ ∂Υ(η) . (4.19)

Invoking Lemma 4.2, we know that η ∈ R2d satisfies inclusion (4.19) if and only if for i ∈ Nd,

the following relations hold{
ξi − ηi = ξi+d − ηi+d = 0, if ηi + ηi+d > 0,

ξi − ηi = ξi+d − ηi+d ≤ 0, if ηi + ηi+d = 0.
(4.20)

Next, we explore (4.20) for two cases. If ηi+ηi+d > 0, we have that ξi = ηi and ξi+d = ηi+d.

In this case, ξi + ξi+d is also guaranteed to be positive. In the case that ηi + ηi+d = 0, we can

easily verify that

ηi =
ξi − ξi+d

2
and ηi+d =

ξi+d − ξi
2

.

Under these circumstances, ξi + ξi+d is nonpositive.

In summary, the above arguments together with the uniqueness of the solution of model

(4.18) complete the proof. �

Proposition 4.1. Let P := diag{λj} be a 2d × 2d diagonal matrix with positive diagonal

entries. If ξ, η ∈ R2d satisfy η = proxPΥ(ξ), then for all i ∈ Nd

ηi =

{
ξi, if ξi + ξi+d > 0,
λiξi−λi+dξi+d

λi+λi+d
, if ξi + ξi+d ≤ 0,

and ηi+d =

{
ξi+d, if ξi + ξi+d > 0,
λi+dξi+d−λiξi

λi+λi+d
, if ξi + ξi+d ≤ 0.
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Proof. This result can be obtained by a similar computation performed in Lemma 4.3. �

Next, we present specific expressions of B1, B2, φ1 and φ2, and describe the closed forms

of proximity operators proxφ1
, proxφ2

and proxQΦ∗.

We assume that the dimension of a three-dimensional image considered in this article is

s×s× t. This image is reshaped into a vector in Rs2t in such a way that the (ijk)th pixel of the

image, where i, j ∈ Ns and k ∈ Nt, corresponds to the (i + (j − 1)s + (k − 1)s2)th component

of the vector in Rs2t. Since the radioactivity distribution f is a vector in Rd, we have that

d = s2t. For a positive integer α, we define an α× α first-order difference matrix Dα by

Dα :=


0

−1 1
. . .

. . .

−1 1

 .

Employing the Kronecker product ⊗, we define the m1×d matrix B1 and m2×d matrix B2 by

B1 :=

 It ⊗ Is ⊗Ds

It ⊗Ds ⊗ Is
Dt ⊗ Is ⊗ Is

 ,

B2 :=
[
D⊤

xx D⊤
xy D⊤

xz D⊤
yx D⊤

yy D⊤
yz D⊤

zx D⊤
zy D⊤

zz

]⊤
,

where

Dxx = It ⊗ Is ⊗−D⊤
s Ds, Dxy = It ⊗−D⊤

s ⊗Ds, Dxz = −D⊤
t ⊗ Is ⊗Ds,

Dyx = It ⊗Ds ⊗−D⊤
s , Dyy = It ⊗−D⊤

s Ds ⊗ Is, Dyz = −D⊤
t ⊗Ds ⊗ Is,

Dzx = Dt ⊗ Is ⊗−D⊤
s , Dzy = Dt ⊗−D⊤

s ⊗ Is, Dzz = −D⊤
t Dt ⊗ Is ⊗ Is.

From the definitions of B1 and B2, we know that m1 = 3d and m2 = 9d. The convex functions

φ1 : Rm1 → R and φ2 : Rm2 → R are defined at z ∈ Rm1 and ξ ∈ Rm2 as

φ1(z) :=
d∑

i=1

√
z2i + z2i+d + z2i+2d ,

φ2(ξ) :=

d∑
i=1

 8∑
j=0

ξ2i+jd

 1
2

.

The proximity operators of φ1 and φ2 can be calculated explicitly. For a positive number

µ, vectors z ∈ Rm1 and ξ ∈ Rm2 , y := proxµφ1
(z) and η := proxµφ2

(ξ) can be computed

component-wise by, for i ∈ Nd,

[yi, yi+d, yi+2d]
⊤ = max

{
∥[zi, zi+d, zi+2d]

⊤∥ − µ, 0
} [zi, zi+d, zi+2d]

⊤

∥[zi, zi+d, zi+2d]⊤∥
,

[ηi, ηi+2d, · · · , ηi+8d]
⊤ = max

{
∥[ξi, ξi+2d, · · · , ξi+8d]

⊤∥ − µ, 0
} [ξi, ξi+2d, · · · , ξi+8d]

⊤

∥[ξi, ξi+2d, · · · , ξi+8d]⊤∥
.

Because Φ(z, ξ) is separable for z and ξ, Φ∗(z, ξ) is also separable for z and ξ. Recalling the

definition (4.10) of Q, we have, for any z ∈ Rm1 and ξ ∈ Rm2 that

proxQΦ∗(z, ξ) =
(
proxµ1(λ1φ1)

∗(z), proxµ2(λ2φ2)
∗(ξ)

)
,
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where, by Moreau’s decomposition theorem [2, Theorem 14.3],

proxµi(λiφi)
∗(·) = µi

(
I − proxλi

µi
φi

)
(µ−1

i ·), i = 1, 2. (4.21)

Finally, we consider the choice of the preconditioning matrix P . In [14], it has been shown

that the EM-type preconditioning matrix is capable of significantly accelerating the convergence

rate. Hence, we propose the following algorithm (Algorithm 4.1) for solving the ICTV model

(2.7).

Algorithm 4.1

Initialization: u0, b0.

repeat

Step 1: Sk
1 ← diag(

uk
1

A⊤·1 ), S
k
2 ← diag(

uk
2

A⊤·1 )

P k ←
(

Sk
1

Sk
2

)
Step 2: bk+1 ← proxQΦ∗

(
bk +Q−1Buk

)
Step 3: uk+1 ← proxP

k

Υ

(
uk −

(
P k
)−1 (∇Ψ(uk) +B⊤ (2bk+1 − bk

)))
until “convergence”

Write the output of uk from the above loop as u∞ and compute u∞
1 + u∞

2 as the recon-

structed image

In Algorithm 4.1, the preconditioning matrix P is updated at every iteration. However, as

we shall see in Section 6, the values of the spectral norms of the preconditioning matrices S1

and S2 almost remain constant after some iteration. Therefore, we may fix the preconditioning

matrices S1 and S2 after some iteration, and then obtain the semi-dynamic version of Algorithm

4.1 (Algorithm 4.2). As a result, the convergence theorem given in Section 5 can be applied.

Algorithm 4.2

Preparation: The parameter l is a positive integer.

Initialization: u0, b0.

Run the loop in Algorithm 4.1 until k > l

Set Sl
1 ← diag(

ul
1

A⊤·1 ), S
l
2 ← diag(

ul
2

A⊤·1 )

P ←
(

Sl
1

Sl
2

)
repeat

Step 1: bk+1 ← proxQΦ∗

(
bk +Q−1Buk

)
Step 2: uk+1 ← proxPΥ

(
uk − P−1

(
∇Ψ(uk) +B⊤ (2bk+1 − bk

)))
until “convergence”

Write the output of uk from the above loop as u∞ and compute u∞
1 + u∞

2 as the recon-

structed image

5. Convergence Analysis

In this section, we establish the convergence result of the iterative scheme (4.8) for solving

the ICTV model (2.7).
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We shall prove that for the chosen matrix M (4.9), the sequence generated by the iterative

scheme (4.8) converges to a fixed-point of the operator TM defined below, and hence to a

solution of the the ICTV model (2.7). As a key ingredient in the convergence analysis, we shall

establish the following estimate

∥νN − ν∥2M +

N−1∑
k=0

∥νk+1 − νk∥2
M̃
≤ ∥ν0 − ν∥2M ,

where {νk : k ∈ N} is the sequence generated by the iterative scheme (4.8) and the expression

of matrix M̃ will be clarified later.

First, we introduce a set-valued operator from scheme (4.8). Suppose that for any w ∈
Rm+2d, there exists a vector ν ∈ Rm+2d satisfying

ν = T
(
(E −R−1M)ν +R−1Mw −R−1G(w)

)
. (5.1)

(5.1) implicitly defines a non-linear operator mapping from w to ν. Specifically, we denote

by 2R
m+2d

the family of all subsets of Rm+2d. Then we define the set-valued operator TM :

Rm+2d → 2R
m+2d

at w ∈ Rm+2d as

TM (w) :=
{
ν ∈ Rm+2d : (w, ν) satisfies (5.1)

}
. (5.2)

Next, we define the continuity of the general set-valued operator. For an operator H : Rm+2d →
2R

m+2d

, we denote by gra(H) the graph of H, defined by

gra(H) :=
{
(w, ν) ∈ Rm+2d × Rm+2d : ν ∈ H(w)

}
. (5.3)

We say that operator H is continuous if its graph is a closed set [2]. Moreover, given a vector

ν ∈ Rm+2d satisfying the inclusion ν ∈ H(ν), we say that ν is a fixed-point of H. This is a

generalization of the traditional concept of fixed-points.

Let L∇Ψ := ∥AC∥2∥g∥∞/γ2. It is easy to verify the following result.

Lemma 5.1. The function Ψ in the ICTV model (2.7) is differentiable in R2d
+ with a Lipschitz

continuous gradient. Furthermore, for any ξ, η ∈ R2d
+ , we have that

∥∇Ψ(ξ)−∇Ψ(η)∥2 ≤ L∇Ψ∥ξ − η∥2.

We now discuss two properties of TM .

Lemma 5.2. Let P ∈ S2d+ and Q ∈ Sm+ . If TM is defined by (5.2) and the vector pairs (wi, νi) ∈
gra(TM ) for i = 1, 2, then

⟨ν2 − ν1,M(ν2 − ν1)⟩ ≤ ⟨ν2 − ν1,M(w2 − w1)⟩ − ⟨ν2 − ν1,G(w2)− G(w1)⟩. (5.4)

Moreover, TM is continuous.

Proof. We first prove (5.4). Recalling the definition of operator TM , we know that for

i = 1, 2, there holds

νi = T
(
(E −R−1M)νi +R−1Mwi −R−1G(wi)

)
.

By the firm nonexpansivity of operator T with respect to matrix R and the expression of matrix

E in (4.5), we further have that

⟨ν2 − ν1, R(ν2 − ν1)⟩
≤ ⟨ν2 − ν1, R(ν2 − ν1)⟩+ ⟨ν2 − ν1, SB(ν2 − ν1)⟩ − ⟨ν2 − ν1,M(ν2 − ν1)⟩

+⟨ν2 − ν1,M(w2 − w1)⟩ − ⟨ν2 − ν1,G(w2)− G(w1)⟩. (5.5)
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Since matrix SB is skew symmetric, we can verify that ⟨ν2− ν1, SB(ν2− ν1)⟩ = 0. Substituting

this equation into (5.5) yields (5.4).

Next, we prove the continuity of TM . Let {(wn, νn) : n ∈ N} be an arbitrary convergent

sequence in gra(TM ), and let (w, ν) ∈ Rm+2d × Rm+2d be its limit. Then we have that

νn = T
(
(E −R−1M)νn +R−1Mwn −R−1G(wn)

)
.

Set ν̃ := T
(
(E −R−1M)ν +R−1Mw −R−1G(w)

)
. Then the firm nonexpansivity of T with

respect to R ensures that

∥νn − ν̃∥2R ≤ ⟨νn − ν̃, (RE −M)(νn − ν) +M(wn − w)− (G(wn)− G(w))⟩ . (5.6)

Recalling the definition of operator G in (4.6), the Lipschitz continuity of the gradient of Ψ

ensures the strong convergence of sequence {G(wn) : n ∈ N} to G(w). This together with (5.6)

implies that ν̃ is also a limit of sequence {νn : n ∈ N}. Therefore, we have ν = ν̃, which

indicates that (w, ν) ∈ gra(TM ). This completes the proof. �

Next, we present a property regarding the gradient of Ψ, which is crucial in the convergence

analysis.

Lemma 5.3. For any ξ, η, ν ∈ dom(Ψ), there holds

−⟨ξ − η,∇Ψ(ν)−∇Ψ(η)⟩ ≤ ⟨ξ − ν,∇Ψ(ξ)−∇Ψ(ν)⟩. (5.7)

Proof. By spitting the left hand side of (5.7), we have that

− ⟨ξ − η,∇Ψ(ν)−∇Ψ(η)⟩
= ⟨ξ − ν,∇Ψ(ξ)−∇Ψ(ν)⟩ − ⟨ξ − ν,∇Ψ(ξ)−∇Ψ(η)⟩ − ⟨ν − η,∇Ψ(ν)−∇Ψ(η)⟩
= ⟨ξ − ν,∇Ψ(ξ)−∇Ψ(ν)⟩+ ⟨ν − ξ,∇Ψ(ξ)⟩+ ⟨η − ν,∇Ψ(ν)⟩+ ⟨ξ − η,∇Ψ(η)⟩. (5.8)

We further employ the convexity of Ψ to obtain

⟨ν − ξ,∇Ψ(ξ)⟩ ≤ Ψ(ν)−Ψ(ξ),

⟨η − ν,∇Ψ(ν)⟩ ≤ Ψ(η)−Ψ(ν),

⟨ξ − η,∇Ψ(η)⟩ ≤ Ψ(ξ)−Ψ(η).

Substituting the above estimates into (5.8) leads to the desired result (5.7). �

Directly combining Lemma 5.3 with the fact that the gradient of Ψ is L∇Ψ-Lipschitz con-

tinuous, we get the following estimate.

Lemma 5.4. If ξ, η, ν ∈ R2d, then

−⟨ξ − η,∇Ψ(ν)−∇Ψ(η)⟩ ≤ L∇Ψ⟨ξ − ν, ξ − ν⟩.

We define a matrix M̃ , which will be used later

M̃ := M −
(

0

2L∇ΨI

)
. (5.9)

Now, we give a key estimate of the sequence {νk : k ∈ N} generated by (4.8). It is crucial

for the convergence analysis.
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Lemma 5.5. If both M and M̃ are positive definite and symmetric matrices, and ν is a solution

of (4.7), then for any initial value ν0 ∈ R2d, the sequence {νk : k ∈ N} generated by (4.8)

satisfies,

∥νN − ν∥2M +

N−1∑
k=0

∥νk+1 − νk∥2
M̃
≤ ∥ν0 − ν∥2M , for every N ∈ N. (5.10)

Proof. Since ν is a solution of (4.7), ν is a fixed-point of TM . Let k be a positive integer.

Identifying ν1, ν2, w1 and w2 in (5.4), respectively, with ν, νk+1, ν and νk, and employing

Lemma 5.2, we observe that

⟨νk+1 − ν,M(νk+1 − ν)⟩ ≤ ⟨νk+1 − ν,M(νk − ν)⟩ − ⟨νk+1 − ν,G(νk)− G(ν)⟩.

Multiplying the above inequality by 2 and writing the term ⟨νk+1 − ν,M(νk − ν)⟩ as ⟨νk+1 −
ν,M(νk − νk+1)⟩+ ⟨νk+1 − ν,M(νk+1 − ν)⟩, we obtain that

2⟨νk+1 − ν,M(νk+1 − ν)⟩
≤ ⟨νk+1 − ν,M(νk+1 − ν)⟩+ ⟨νk+1 − ν,M(νk − νk+1)⟩

+ ⟨νk+1 − ν,M(νk − ν)⟩ − 2⟨νk+1 − ν,G(νk)− G(ν)⟩. (5.11)

We further split the inner product ⟨νk+1− ν,M(νk − νk+1)⟩ at the right hand side of (5.11) as

⟨νk+1 − νk,M(νk − νk+1)⟩+ ⟨νk − ν,M(νk − νk+1)⟩, and recall the symmetry of matrix M to

conclude that

⟨νk+1 − ν,M(νk+1 − ν)⟩
≤ ⟨νk − ν,M(νk − ν)⟩ − ⟨νk+1 − νk,M(νk+1 − νk)⟩ − 2⟨νk+1 − ν,G(νk)− G(ν)⟩. (5.12)

Recalling the definition of G and applying Lemma 5.4, we have the estimate

−2⟨νk+1 − ν,G(νk)− G(ν)⟩ ≤ ⟨uk+1 − uk, 2L∇Ψ(u
k+1 − uk)⟩. (5.13)

Combining (5.12) with estimate (5.13) leads to

⟨νk+1 − ν,M(νk+1 − ν)⟩ ≤ ⟨νk − ν,M(νk − ν)⟩ − ⟨νk+1 − νk, M̃(νk+1 − νk)⟩. (5.14)

Finally, summing (5.14) for k running from 0 to N − 1 and recalling the positive definiteness

of matrices M and M̃ , we obtain the desired estimate (5.10). �
Now, we are ready to give the main convergence result.

Theorem 5.1. If M and M̃ are both positive definite, then for any initial value ν0 ∈ R2d, the

sequence {νk : k ∈ N} generated by (4.8) converges to a solution of the ICTV model (2.7).

Proof. Since N in (5.10) is arbitrary, we have that sequence {νk : k ∈ N} is bounded and∑∞
k=0 ∥νk+1 − νk∥2

M̃
converges, ensuring that {νk : k ∈ N} converges. Due to the continuity

of TM , the limit point of {νk : k ∈ N} is a fixed-point of TM , which means that {νk : k ∈ N}
converges to a solution of the ICTV model (2.7). �

It remains to investigate the conditions that M and M̃ are positive definite.

Lemma 5.6. If for some ε ∈ (0, 1) and i = 1, 2, µi and βi satisfy

0 < βi <
(1− ε)γ2

2∥AC∥2∥Si∥2∥g∥∞
, (5.15)

0 < µiβi <
ε

∥Bi∥22∥Si∥2
, (5.16)

then matrices M and M̃ are positive definite.
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Proof. By the definition of matrix M̃ , we know that the positive definiteness of M̃ implies

that of M . Hence, it suffices to verify that matrix M̃ is positive definite.

Let G := Q−1/2B(P − 2L∇ΨI)
−1/2. Matrix M̃ can be decomposed as(

Q1/2

(P−2L∇ΨI)1/2

)(
I −G

I

)−1(
I−GG⊤

I

)(
I

−G⊤ I

)−1(
Q1/2

(P−2L∇ΨI)1/2

)⊤

.

Therefore, it suffices to show that matrix P − 2L∇ΨI is positive definite and ∥G∥2 < 1.

Noting that

P − 2L∇ΨI = P 1/2
(
I − 2L∇ΨP

−1
) (

P 1/2
)⊤

,

we consider matrix I−2L∇ΨP
−1. Recalling the definitions of L∇Ψ and preconditioning matrix

P , we obtain that all the eigenvalues of matrix I − 2L∇ΨP
−1 are larger than ε if β1 and β2

satisfy (5.15). As a result, matrix P − 2L∇ΨI is positive definite.

Next, we verify that ∥G∥2 < 1. Recalling the block forms of Q, B and P , we have that

G =

(
µ
1/2
1 I1

µ
1/2
2 I2

)(
B1

B2

)(
β−1
1 S−1

1 − 2L∇ΨI1
β−1
2 S−1

2 − 2L∇ΨI2

)−1/2

=

(
µ
1/2
1 B1(β

−1
1 S−1

1 − 2L∇ΨI1)
−1/2

µ
1/2
2 B2(β

−1
2 S−1

2 − 2L∇ΨI2)
−1/2

)
.

Noting that

µ
1/2
i Bi(β

−1
i S−1

i − 2L∇ΨIi)
−1/2 = (µiβi)

1/2
Bi(I − 2L∇ΨβiSi)

−1/2S
1/2
i ,

it suffices to show

∥ (µiβi)
1/2

Bi(I − 2L∇ΨβiSi)
−1/2S

1/2
i ∥2 < 1, i = 1, 2. (5.17)

Since all the eigenvalues of I − 2L∇ΨP
−1 are larger than ε, we know that

∥(I − 2L∇ΨβiSi)
−1∥2 <

1

ε
, i = 1, 2. (5.18)

This together with condition (5.16) yields the desired result. �

The culmination of our effort is the following convergence result.

Theorem 5.2. Let λ1 and λ2 be positive numbers. If µ1, µ2, β1 and β2 are chosen to satisfy

0 < βi <
(1− ε)γ2

2∥AC∥2∥Si∥2∥g∥∞
and 0 < µiβi <

ε

∥Bi∥22∥Si∥2
, i = 1, 2,

for some ε ∈ (0, 1), then for any initial value u0 ∈ R2d, the sequence {uk : k ∈ N} generated by

Algorithm 4.2 converges to a solution of the ICTV model (2.7).

Proof. This result follows immediately from the combination of Theorem 5.1 and Lemma

5.6. �

6. Numerical Experiments

In this section, we report numerical results for the TV model (2.4) and the ICTV model

(2.7). We first compare staircasing artifacts of the constructed images obtained from these
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Fig. 6.1. (a) slice 26 of the phantom; (b) its central horizontal line profile.
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Fig. 6.2. (a) slice 26 of the reconstruction from noiseless projection using the MLEM algorithm with

40 iterations ; (b) its central horizontal line profile.

models, and then compare their image quality using signal-to-noise ratio (SNR) and contrast

recovery coefficient (CRC).

We conducted studies over a computer generated phantom, to investigate the properties of

the TV model (2.4) and the ICTV model (2.7). The phantom array is 128 × 128 × 64 and

the array of each slice 128 × 128. In each slice of the phantom between slices 12 and 30, there

are three small discs contained in a large disc. The large disc, used as background, has curved

intensity. The intensity of the central disc changes linearly along the horizontal axis, with the

slope being 0.7. The remaining two small discs located in the upper part of the background,

have uniform intensities. In Fig. 6.1 we show a representative slice (slice 26) and the central

horizontal line profile of the phantom.

The parallel-collimator SPECT projection data had 120 views in 256 × 128 matrix with

pixel size 1.78mm. The projection data were generated using analytical pixel-wise discretized

projector with 20 rays per detector bin [30]. Neither attenuation nor scatter was modelled and

the detector was set to be ideal. We created noisy images corrupted by Poisson noise by using

the Matlab’s imnoise function. The total number of counts in 120 views was 9.5 × 106. Each

image in these projection sets was then down-sampled to a 128 × 64 matrix with the pixel size

3.56mm.

We reconstructed the noiseless projections using the MLEM algorithm [15] with 40 itera-

tions. The image obtained is used as a standard to be compared with other reconstructions.

Slice 26 of this image is shown in Fig. 6.2, together with the central horizontal line profile. The

mean number of background counts γ in the TV model (2.4) and the ICTV model (2.7) was

set to be 0.01. The TV model was solved using the PAPA algorithm with 400 iterations [14].
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Fig. 6.3. SNR versus weighting parameter λ curve for the TV model.

In the TV model and the ICTV model, the results are sensitive to the regularization weighting

parameter(s). In our study, the weighting parameter λ in the TV model (2.4) varies from 0.01

to 1.5. When λ was small (λ ≤ 0.07), the resulting images contained more high frequency noise;

when λ was large (λ ≥ 0.3), the hot discs were blurred and contrast reduced. We then used

signal-to-noise ratio (SNR), as proposed in [6], to select the optimal λ within the reasonable

range [0.05, 0.25], where SNR is defined by

SNR := 20 ln

(
∥f̃∥2
∥f̃ − f∥2

)
,

with f̃ and f being the original image and reconstructed image respectively. In this work, f̃

is chosen to be slice 26 of reconstructed image from noiseless projection data using the MLEM

algorithm with 40 iterations. And f is chosen to be slice 26 of reconstructed image. The

larger the SNR is, the more accurate the reconstructed image is. Fig. 6.3 shows the curve of

SNR versus λ for the TV model. When λ was 0.16, SNR achieved its maximum in the range

[0.05, 0.25]. Hence, the optimal value of λ was chosen to be 0.16.

Solving the ICTV model (2.7) with Algorithm 4.1 required estimation of six parameters:

λ1, λ2, β1, β2, µ1 and µ2. We set β1 = β2 = 1, and chose µ1 and µ2 to be the upper bounds

suggested by Theorem 5.2. Specifically, for i = 1, 2, we set µi = 1/
(
∥Bi∥22∥Sk

i ∥2
)
in the kth

iteration. The optimal values of weighting parameters λ1 and λ2 were obtained by performing

sets of trial reconstructions with λ1 ranging from 0.01 to 1.5 and λ2 ranging from 10−4 to 1.5.

We qualitatively (visually) balanced the trade-off between SNR and the severity of staircasing

artifacts. This was performed by increasing λ1 and λ2 until the artifacts were greatly reduced

while avoiding unacceptable SNR loss. As a result, the optimal values of λ1 and λ2 were chosen

to be 0.09 and 0.08, respectively. The iteration number of Algorithm 4.1 was set to be 400.

We first investigate numerically how the preconditioning matrices S1 and S2 (4.10) change

in iterations in terms of their spectral norms. Fig. 6.4 displays the curves of the spectral norm

versus iterations for S1 and S2. It can be seen that the change of the spectral norms of S1 and

S2 can be neglected after the first few iterations. Hence, S1 and S2 may be fixed after some

iteration. Consequently, the convergence result in Section 5 can be applied.

In the following, we only use slice 26 for all figures to be shown and all quantities to be

calculated.

We now evaluate the quality of the reconstructed images.
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Fig. 6.4. Curves of the spectral norm versus iteration numbers for (a) S1 and (b) S2. Reconstructions

are obtained using Algorithm 4.1 with λ1 = 0.09 and λ2 = 0.08.

First, we investigate the ability of the ICTV model to reduce staircasing artifacts. For this

purpose, in Fig. 6.5, we plot the central horizontal line profile and draw the contour of the

central disc using Matlab’s mesh function. Fig. 6.5 shows that there are several large steps in

the central part of the line profile of the TV model, which are created by staircasing artifacts.

While in the corresponding line profile of the ICTV model, these steps disappear and the line

profile is much straighter. This means that the ICTV model has greatly reduced staircasing

artifacts. This fact is further verified by the contours in Fig. 6.5. The contour of the ICTV

model is much smoother and flatter than that of the TV model.

Next, we use SNR to estimate the accuracy of reconstructions. Table 6.1 tells us that the

SNR of TV model is slightly higher than that of the ICTV model.

Table 6.1: Results of CRC for the upper right sphere and SNR.

Method TV ICTV

SNR 58.00 56.25

CRC 0.87 0.96

Finally, we compare the contrast recovery coefficient (CRC) [1], which serves to measure

quantitatively the accuracy of reconstructions. The target ROI should match the cross-sections

of the upper right uniform disc, meanwhile avoiding the edges. The background ROIs should

be the same size as targets, and we should use 2 of them distributed around the upper right

disc and not overlapping the centre disc. The CRC for a hot disc is defined as,

CRC :=
mobj/mbkg − 1

R− 1
,

where mobj and mbkg are the mean intensities in target and background ROIs respectively, and

R is the true disc-to-background intensity concentration ratio. The higher CRC value indicates

that the reconstruction for the chosen target ROI is more accurate. As shown in Table 1, the

ICTV model has larger CRC compared to the TV model. Therefore, the contrast of upper right

disc has been improved by adopting the ICTV model.
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Fig. 6.5. Reconstructions, central horizontal line profiles, and contours of the central hot disc for MLEM

from noiseless projection with 40 iterations in Column Ground-truth; the TV model using the PAPA

algorithm with 400 iterations and λ = 0.16 in Column TV; the ICTV model using Algorithm 4.1 with

400 iterations and λ1 = 0.09 and λ2 = 0.08 in Column ICTV.

7. Conclusions

The TV semi-norm has been widely used in the penalized likelihood reconstruction for

SPECT imaging. However, it suffers from staircasing artifacts, which result in cartoon-like

images and create faulty edges. To reduce this undesired phenomenon, we propose to use the

ICTV model instead of the TV model and develop a novel fixed-point proximity algorithm to

solve the underlying model. We prove convergence of the proposed algorithm. We also introduce

a preconditioning matrix motivated by the MLEM algorithm to accelerate convergence of the

proposed algorithm. Numerical experiments performed in this work show that the ICTV model

can effectively reduce staircasing artifacts. Possible future research directions are adopting

TGV as a penalty function and developing efficient fixed-point proximity algorithms to solve

the resulting optimization problem.
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