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Abstract

This paper deals with fast and reliable numerical solution methods for the incompress-

ible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing

equations, the Picard and Newton methods are used to linearize these coupled partial dif-

ferential equations. For space discretization we use the �nite element method and utilize

the two-by-two block structure of the matrices in the arising algebraic systems of equa-

tions. The Krylov subspace iterative methods are chosen to solve the linearized discrete

systems and the development of computationally and numerically e�cient preconditioners

for the two-by-two block matrices is the main concern in this paper. In non-Newtonian

�ows, the viscosity is not constant and its variation is an important factor that e�ects the

performance of some already known preconditioning techniques. In this paper we examine

the performance of several preconditioners for variable viscosity applications, and improve

them further to be robust with respect to variations in viscosity.

Mathematics subject classi�cation: 65F10, 65F08, 65N30.
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1. Introduction

Numerical algorithms for incompressible non-Newtonian �ows have been intensively studied

in the past decades. In non-Newtonian �ows the viscosity is not constant and may depend on the

velocity, which leads to two nonlinear sources in the governing equations, i.e., the di�usion and

convection terms. Due to this, the numerical simulation of the incompressible non-Newtonian

�ows is more complicated than Newtonian �ows, where the viscosity is constant and the only

source of nonlinearity in the governing equations is the convection term.

A common approach to solve a nonlinear problem is converting it into a linearized prob-

lem, computing the updates of the unknowns by solving the linearized problem and iteratively

converging to the true nonlinear solutions. If we consider linearization of both the two nonlin-

ear terms, the variable viscosity Oseen-type problem arises. Ignoring the linearization of the

convection term leads to the variable viscosity Stokes-type problem, e.g. [16, 30]. The bene�t
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of solving the Stokes-type problem is that e�cient solution algorithms are easier to construct

compared to the Oseen-type problem. On the other hand, it may take more nonlinear iterations

to converge for the Stokes-type problem, typically when the convection is relatively dominant.

For each type problem, two well-known linearization methods are used, namely, Picard and

Newton iterations. To avoid possible slow convergence rate of Picard iterations and the possi-

bly narrow convergence region of Newton iterations, in this paper a combination of these two

iteration methods is utilised. We �rst carry out some Picard iterations to obtain a reasonably

�good� solution, and then use this solution as an initial guess for the Newton iterations. We

show that in this way a fast convergence of the nonlinear iterations can be achieved.

For the variable viscosity Oseen- and Stokes-type problems with Picard and Newton it-

erations, the �nite element discretization of the linearized problems results in discrete linear

systems of two-by-two block form. Solving the linear systems is the most time-consuming task

in the numerical simulations. In this paper, Krylov subspace methods with appropriate pre-

conditioners are chosen to solve the arising linear systems. The kernel of this paper is the

construction and the analysis of fast and reliable preconditioning techniques for the variable

viscosity Oseen- and Stokes-type problems with both Picard and Newton iterations. As far as

the authors know, in earlier works, e�cient preconditioners for the variable viscosity Oseen-

and Stokes-type problems are only studied for Picard iterations, e.g. [16, 18,30].

In the past decades, the most often used preconditioners for incompressible Navier-Stokes

equations are originally proposed and analysed for the constant viscosity cases, c.f., the surveys

[7,10] and the books [1,14,32]. Due to their algebraic construction, some of these preconditioners

can be straightforwardly utilised for the variable viscosity applications. In this paper we choose

the augmented Lagrangian preconditioner for the Oseen-type problem (Section 3) and the block

lower-triangular and the SIMPLER preconditioners for the Stokes-type problem (Section 4).

As variable viscosity is an important factor, a crucial objective for having a fast and reliable

preconditioner in this case is the robustness with respect to those variations. In order to fully

achieve this objective, we modify the above mentioned preconditioners and also propose some

computational improvements. The comparison between the targeted preconditioners and the

e�ciency of the Oseen- and Stokes-type problems are illustrated in Section 5. Conclusions and

future work are outlined in Section 6.

2. Problem Formulation and Linearization

In this paper, we assume that the velocity u and the pressure p satisfy the following gener-

alized stationary incompressible Navier-Stokes equations:

−∇ · (2ν(DII(u), p)Du) + u · ∇u+∇p = f, in Ω

∇ · u = 0, in Ω
(2.1)

with boundary conditions given by

u = g, on ∂ΩD

ν
∂u

∂n
− np = 0. on ∂ΩN

Here Ω is a bounded and connected domain Ω ⊂ Rd (d = 2, 3), and ∂Ω = ∂ΩD ∪ ∂ΩN is

its boundary, where ∂ΩD and ∂ΩN denote the parts of the boundary where Dirichlet and

Neumann boundary conditions for u are imposed, respectively. The terms f : Ω → Rd and g
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are a given force �eld and Dirichlet boundary data for the velocity. The term n denotes the

outward-pointing unit normal to the boundary.

The term Du = 1
2 (∇u+∇Tu) denotes the rate-of-deformation tensor and ν(·) denotes the

kinematic viscosity which depends on the second invariant of the rate-of-deformation tensor

DII(u) = 1
2 tr(D2u) and the pressure p. The following models are most often used in non-

Newtonian �uids:

• [M1] ν(DII(u), p) = ν0 + τ(DII(u))
α
2 describing �power law� non-Newtonian �uids

(e.g., [12]);

• [M2] ν(DII(u), p) = ν∞+(ν0−ν∞)(1+βDII(u))
α
2 describing �Carreau law� non-Newtonian

�uids;

• [M3] ν(DII(u), p) =
√

2 sinφp(DII(u))−
1
2 describing �Schae�er law� non-Newtonian �uids

(e.g., [33]);

• [M4] non-Newtonian �uids with pressure and shear dependent viscosity (e.g., [21]),

with appropriate parameters ν0, ν∞, α, β, τ , φ.

In this work we only consider the Bingham model, namely, ν(DII(u)) = ν0 + τ(DII(u))−
1
2

(M1 with α = −1), which is a special case of �power law� non-Newtonian �uids. Due to the

possible singularity of DII(u), some regularization techniques are required. Here we utilize a

widely used regularization method, namely, ν(DII(u)) = ν0 + τ(DII(u) + ε2)−
1
2 (c.f., [12, 16]).

In practice, in order to characterize the Bingham �ow well, one needs to choose ε as small as

possible. In the modi�ed Bingham model, the variation of the viscosity is represented by the

parameter ε, since νmin = ν0 and νmax = O(ε−1). Small values of ε leads to a large variation

of the viscosity and more di�culties in the numerical simulations. One important aim of this

paper is to use a reasonably small ε that describes the Bingham �ow well and to balance the

computational complexity at the same time.

For the weak formulation of the stationary Navier-Stokes equations (2.1), we de�ne the

approximate solution and test spaces for the velocity as

H1
E =

{
u ∈ H1(Ω)d|u = g on ∂ΩD

}
,

H1
E0

=

{
v ∈ H1(Ω)d|v = 0 on ∂ΩD

}
,

H1(Ω)d =

{
ui : Ω→ Rd | ui,

∂ui
∂xj
∈ L2(Ω), i, j = 1, · · ·, d

}
,

and for the pressure as

L2(Ω) =

{
p : Ω→ R |

∫
Ω

p2 <∞
}
.

Then the weak formulation reads as follows: Find u ∈ H1
E and p ∈ L2(Ω) such that∫

Ω

2ν(DII(u))Du : DvdΩ +

∫
Ω

(u · ∇u)vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

fvdΩ, (2.2a)∫
Ω

q∇ · udΩ = 0, (2.2b)
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for all v ∈ H1
E0

and all q ∈ L2(Ω). The pressure is uniquely de�ned only up to a constant

term. To make it unique, one usually imposes the additional constraint
∫

Ω
p dΩ = 0. We

also assume that the discretization is done using a stable pair of FEM spaces, satisfying the

Ladyzhenskaya-Babu²ka-Brezzi (LBB) condition, cf., e.g., [14].

Since the viscosity function ν(DII(u)) also depends on the velocity u, two terms in (2.1)

exhibit a nonlinear behavior: ∇ · (2ν(DII(u))Du) and (u · ∇u). As already mentioned, the

nonlinearity of the considered problem is handled by some linearization methods. The two

well-known and most often used methods are the Newton and Picard methods [14], brie�y

introduced below.

Let (u0, p0) be an initial guess and let (uk, pk) be the approximate solution at the kth

nonlinear iteration. Then we update the velocity and the pressure on the (k + 1) iteration as

uk+1 = uk + δuk, pk+1 = pk + δpk for k = 0, 1, · · · until convergence, where δuk ∈ H1
E0

and

δpk ∈ L2(Ω) (provided uk ∈ H1
E and pk ∈ L2(Ω)). Substituting uk+1 and pk+1 into the weak

formulation (2.2), the correction (δuk, δpk) should satisfy the following problem:

Find δuk ∈ H1
E0

and δpk ∈ L2(Ω) such that

∫
Ω

2ν(DII(uk))Dδuk : DvdΩ +

∫
Ω

2ν′(DII(uk))[Duk : Dδuk][Duk : Dv]dΩ

+

∫
Ω

(uk · ∇δuk) · vdΩ +

∫
Ω

(δuk · ∇uk) · vdΩ−
∫

Ω

δpk (∇ · v)dΩ = Rk (2.3a)∫
Ω

q (∇ · δuk)dΩ = Pk, (2.3b)

for all v ∈ H1
E0

and q ∈ L2(Ω). The residual terms are obtained as

Rk =

∫
Ω

f · vdΩ−
∫

Ω

2ν(DII(uk))Duk : DvdΩ−
∫

Ω

(uk · ∇uk) · vdΩ +

∫
Ω

pk∇ · vdΩ (2.4a)

Pk = −
∫

Ω

q (∇ · uk)dΩ. (2.4b)

This procedure is refereed to as the Newton linearization method. More details on the New-

ton method can be found, for example, in [14, 19]. In the regularized Bingham model, i.e.,

ν(DII(u)) = ν0 + τ(DII(u)+ε2)−
1
2 , the derivative ν′(DII(u)) in terms of DII(u) is ν′(DII(u)) =

− 1
2τ(DII(u) + ε2)−

3
2 .

Picard linearization is obtained in a similar way as for the Newton method, except that the

terms, i.e.,
∫

Ω
(δuk · ∇uk) · vdΩ and

∫
Ω

2ν′(DII(uk))[Duk : Dδuk][Duk : Dv]dΩ are dropped.

Thus, the linear problem in Picard method reads as follows:

Find δuk ∈ H1
E0

and δpk ∈ L2(Ω) such that

∫
Ω

2ν(DII(uk))Dδuk : DvdΩ +

∫
Ω

(uk · ∇δuk) · vdΩ−
∫

Ω

δpk (∇ · v)dΩ = Rk (2.5a)∫
Ω

q (∇ · δuk)dΩ = Pk, (2.5b)

for all v ∈ H1
E0

and q ∈ L2(Ω). Similarly, we update the approximations as uk+1 = uk + δuk
and pk+1 = pk + δpk for k = 0, 1, · · · until convergence.
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3. The Variable Viscosity Oseen-type Problem

Let Xh
E0

and Ph be �nite dimensional subspaces of H1
E0

and L2(Ω), and let {~ϕi}1≤i≤nu be

the nodal basis of Xh
E0

and {φi}1≤i≤np be the nodal basis of Ph. According to the Galerkin

framework, the discrete corrections of the velocity and the pressure are represented as

δuh =

nu∑
i=1

δui~ϕi, δph =

np∑
i=1

δpiφi,

where nu and np are the total number of degrees of freedom for the velocity and the pressure.

The linear systems arising in Newton and Picard linearizations are of the form[
F BT

B O

] [
δuh
δph

]
=

[
f

g

]
or Fx = b, (3.1)

where the system matrix F =

[
F BT

B O

]
is nonsymmetric and of a two-by-two block form. The

matrix B ∈ Rnp×nu corresponds to the (negative) divergence operator and BT corresponds

to the gradient operator (e.g., [14]). Here we assume either that the discrete LBB condition

is satis�ed, otherwise some stabilization is applied, resulting in a nonzero (2, 2) block. When

comparing Newton and Picard linearization methods, the di�erence appears in the pivot block

F ∈ Rnu×nu , which is of the form F = Aν + δ1Âν +N + δ2N̂ . The Newton method corresponds

to δ1 = δ2 = 1, while the Picard method corresponds to δ1 = δ2 = 0. Given the approximation

uh, the entries of Aν , Âν , N and N̂ are

Aν ∈ Rnu×nu , [Aν ]i,j =

∫
Ω

2ν(DII(uh))D~ϕi : D~ϕj , (3.2a)

Âν ∈ Rnu×nu , [Âν ]i,j =

∫
Ω

2ν′(DII(uh))[Duh : D~ϕj ][Duh : D~ϕi], (3.2b)

N ∈ Rnu×nu , [N ]i,j =

∫
Ω

(uh · ∇~ϕj)~ϕi, (3.2c)

N̂ ∈ Rnu×nu , [N̂ ]i,j =

∫
Ω

(~ϕj · ∇uh)~ϕi. (3.2d)

In this paper the linear system (3.1) arising in Newton (2.3) or Picard method (2.5) is referred

to as the Oseen-type problem with variable viscosity.

Computing the solutions of the linear systems in (3.1) is the kernel and most time-consuming

part in the numerical simulations. Therefore, fast and reliable solution techniques are critical.

As is well known, direct solution methods are highly robust with respect to both problem and

discretization parameters, and are, therefore, a preferred choice in the numerical simulations

performed by engineers and applied scientists. The limiting factors for the sparse direct solvers

are most often the computer memory demands and the need to repeatedly factorize matrices,

which are recomputed during the simulation process, as for instance, the Jacobians in nonlinear

problems. For real industrial applications where the models are mostly in three space dimensions

and result in very large scale linear systems of the type (3.1), rapidly convergent iterative

methods, accelerated by a proper preconditioner become the methods of choice. In this work,

we consider preconditioned Krylov subspace methods, see the books [1, 14,32].
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3.1. Preconditioning the variable viscosity Oseen-type problem

As already mentioned, the linear systems in (3.1) are of two-by-two block form, and how to

precondition such systems have been intensively studied in the past decades. In this work we

limit ourselves to preconditioners, based on approximate block factorizations of the coe�cient

matrix. The literature on this class of preconditioners is huge. We refer for more details to the

articles [2�6,22,27], the surveys [7,10,11,34] and the books [1,14,32], with numerous references

therein. In general, the exact factorization of a two-by-two block matrix reads[
A11 A12

A21 A22

]
=

[
A11 O

A21 S

] [
I1 A−1

11 A12

O I2

]
=

[
I1 O

A21A
−1
11 I2

] [
A11 A12

O S

]
, (3.3)

where I1 and I2 are identity matrices of proper dimensions. The pivot block A11 is assumed to

be nonsingular and S = A22 −A21A
−1
11 A12 is the exact Schur complement matrix. In our case,

A11 = F , A12 = BT , A21 = B and A22 = O. So, S = −BF−1BT .

As preconditioners for such matrices of two-by-two block form, block lower- or upper-

triangular approximate factors are often used[
Ã11 O

A21 S̃

]
,

[
Ã11 A12

O S̃

]
. (3.4)

Here the matrix Ã11 denotes some approximation of A11, given either in an explicit form or

implicitly de�ned via an inner iterative solution method with a proper stopping tolerance. The

matrix S̃ is some approximation of the exact Schur complement S.

The results in [3] show that the quality of the preconditioners in (3.4) can be improved

by making a su�cient number of inner iterations when implicitly approximating A11 and by

choosing a su�ciently accurate approximation S̃. The most challenging task turns out to

be the construction of numerically and computationally e�cient approximations of the Schur

complement, which is in general dense and it is not practical to form it explicitly.

For the two-by-two block system arising in the incompressible Navier-Stokes equations with

constant viscosity, several state-of-art approximations of the Schur complement are proposed

and analysed, c.f., [8,9,13,15,17,20,24,28,30,31,35]. Among these preconditioning techniques,

in this paper we choose the augmented Lagrangian (AL) method (see e.g., [2,8,9]). The reason

is that the construction of the AL method and its variants is purely algebraic, and it can

be straightforwardly used for the variable viscosity case. Besides, the AL method is fully

independent of the mesh re�nement and quite robust with respect to the viscosity number in

the constant viscosity cases. For the incompressible non-Newtonian �ows, the variation of the

viscosity does e�ect the e�ciency of the available preconditioners. In this work we choose the

AL method, illustrate the impact of variations in viscosity on its performance and improve that

further.

Following the AL framework, we �rst algebraically transform the system (3.1) into an equiv-

alent one as follows[
F + γBTW−1B BT

B 0

] [
δuh
δph

]
=

[
f̂

g

]
or Fγx = b̂, (3.5)

where f̂ = f + γBTW−1 g, and γ > 0 and W are suitable scalar and matrix parameters.

Clearly, the transformed system (3.5) has the same solution as (3.1) for any value of γ and any

nonsingular matrix W .



On Preconditioning of Incompressible Non-Newtonian Flow Problems 39

The equivalent system (3.5) is what we intend to solve and the AL-type preconditioner

proposed for Fγ in (3.5) is of a block lower-triangular form

Pγ =

[
F + γBTW−1B 0

B − 1
γW

]
. (3.6)

To distinguish from various modi�cations introduced later, the preconditioner Pγ , where
the original pivot blocks F + γBTW−1B and W are used, is referred to as the ideal AL pre-

conditioner. It can be seen that the exact Schur complement SFγ = −B(F +γBTW−1B)−1BT

of the transformed matrix Fγ is approximated by − 1
γW . We analyse the ideal AL precondi-

tioner using the technique in [9,17], for instance. Consider the following generalized eigenvalue

problem

Fγv = λPγv. (3.7)

We see that

P−1
γ Fγ =

[
I (F + γBTW−1B)−1BT

0 γW−1B(F + γBTW−1B)−1BT

]
.

Thus, the eigenvalues λ in (3.7) are either equal to 1 (with multiplicity equal to the dimension

of F ∈ Rnu×nu or coincide with those of the matrix γW−1B(F + γBTW−1B)−1BT . Applying

Sherman-Morrison-Woodbury's formula to (F + γBTW−1B)−1, we obtain

Q̃ ≡ γW−1B(F + γBTW−1B)−1BT = γQ− γQ(I + γQ)−1γQ,

where Q = W−1BF−1BT . The matrix BF−1BT is the negative Schur complement of the

original system matrix F in (3.1). We state the following theorem, which has been shown

in [18] and is included here only for completeness.

Theorem 3.1. Let µ = a+i b be an eigenvalue of Q = W−1BF−1BT , λ be an eigenvalue of the

eigenproblem (3.7) and δ be an eigenvalue of the matrix Q̃ = γW−1B(F + γBTW−1B)−1BT .

Then the following holds:

(1) The matrices Q and Q̃ have the same eigenvectors and the eigenvalues of Q̃ are equal to

δ =
γµ

1 + γµ
=

1

1 +
1

γµ

. (3.8)

(2) The eigenvalues λ equal

λ =

{
1, with multiplicity nu
δ.

When γ →∞ all nonzero eigenvalues λ converge to 1.

(3) Assume that µ is bounded in a rectangular box, i.e., there exist constants {amin, amax, bmax},
independent of the mesh size parameter h, such that{

amin ≤ a ≤ amax,

| b |≤ bmax.

}
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Then λ is also bounded in a rectangular box with sizes, independent of h. Furthermore,

there holds

δ = 1− 1 + γ a

(1 + γ a)2 + γ2b2
+ i

γ b

(1 + γ a)2 + γ2b2
. (3.9)

For any γ ≥ 1, and any value of a and b, we have

1− 1 + γ|a|
(1 + γ a)2 + γ2b2

< R(δ) < 1 and |I(δ)| = γ|b|
(1 + γ a)2 + γ2b2

< 1, (3.10)

where R(·) and I(·) denote the real and the imaginary part of a complex number.

In this form, Theorem 3.1 is originally given in [18], where the viscosity is considered to be a

function of space and time, as in multiphase �ow problems. Although the viscosity is dependent

of di�erent parameters, Theorem 3.1 always holds true.

As mentioned, the transformation (3.5) is valid for any nonsingular matrix W . In practice

W is often chosen to be the pressure mass matrix M as in [8], or to be the identity matrix

as in [2, 11]. Proposition 3.1 combined with Theorem 3.1 show that for the modi�ed Bingham

model with both Picard and Newton iterations, the ideal AL preconditioner with W = M

is independent of the mesh size. However, the independence on the variation of viscosity is

not guaranteed. In order to achieve this objective, it is natural to let W incorporate some

�information� of the variable viscosity. Therefore, we chooseW also as the scaled pressure mass

matrix, i.e.,

Mν = {(Mν)i,j} ∈ Rnp×np , with (Mν)i,j = (ν−1φi, φj). (3.11)

The ideal AL preconditioner with W = Mν is further analysed in Proposition 3.1. The con-

clusion is that the choice W = Mν leads to the ideal AL preconditioner fully independent of

the mesh size and rather robust with respect to (nearly independent of) the variation of the

viscosity for both Picard and Newton iterations.

Proposition 3.1. Consider the discrete modi�ed Bingham model with νmin = O(1) and νmax =

O(ε−1), 0 < ε� 1, solved by either Picard or Newton iterations. Let µ denote an eigenvalue of

Q = W−1BF−1BT , M be the pressure mass matrix and Mν be the scaled pressure mass matrix,

de�ned as in (3.11). For the choices W = M and W = Mν the eigenvalues µ are contained in

a rectangular box in the right half complex plane, with boundaries independent of the mesh size

parameter h. More precisely, the following bounds for the real and imaginary parts of µ hold

true:

(i) For W = M ,

c20ν
2
min

νmax(ν2
min + c21)

≤ Re(µ) ≤ 1

νmin
, and |Im(µ)| ≤ 1

2νmin
. (3.12)

(ii) For W = Mν ,

c2νν
2
min

ν2
min + c21

≤ Re(µ) ≤ Cν , and |Im(µ)| ≤ Cν
2
, (3.13)

where in Picard iterations Cν = d (d is the space dimension). The parameters c0, c1, cν and

Cν are positive constants that are independent of the discretization parameter h.
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Proof. Let S = BF−1BT , C = B(F
−1+F−T

2 )BT denote the symmetric part of S, and

R = B(F
−1−F−T

2 )BT denote the skew-symmetric part of S. Thus, S = C +R. By Bendixson's

theorem, the eigenvalues µ satisfy

min
qh∈Ph

(Cqh, qh)

(Wqh, qh)
≤ Re(µ) ≤ max

qh∈Ph
(Cqh, qh)

(Wqh, qh)
, and |Im(µ)| ≤ max

qh∈Ph
|(Rqh, qh)|

(qh, qh)
.

We let S′ = B(Aν + δÂν)−1BT , where Aν and Âν are de�ned in (3.2). In Picard iterations

δ = 0 while in Newton iterations δ = 1.

For the symmetric part C, we have

(Cqh, qh)

(Wqh, qh)
=

(Cqh, qh)

(S′qh, qh)

(S′qh, qh)

(Wqh, qh)
, (3.14)

and for the skew-symmetric part R

(Rqh, qh)

(Wqh, qh)
=

(Rqh, qh)

(S′qh, qh)

(S′qh, qh)

(Wqh, qh)
. (3.15)

Theorem 3.2 in [18] proves that for W = M in Picard iterations it holds

ν2
min

ν2
min + c21

≤ (Cqh, qh)

(S′qh, qh)
≤ 1 and

∣∣∣∣ (Rqh, qh)

(S′qh, qh)

∣∣∣∣ ≤ 1

2
, (3.16)

where c1 is a positive constant independent of the mesh size h. Following the proof of Theorem

3.2 in [18] it is easy to show that relation (3.16) holds for W = M and W = Mν in both Picard

and Newton iterations. Then, it remains to bound the term (S′qh,qh)
(Wqh,qh) .

For Picard iterations with W = M , it has been proven in [16] that

c20
νmax

≤ (S′qh, qh)

(Mqh, qh)
≤ 1

νmin
, (3.17)

where c0 is the constant in the LBB condition and is independent of h. Reference [16] considers

only relation (3.17) for Picard's iterations. Proposition 4.1 in this paper shows that relation

(3.17) also holds for Newton iterations. Then, by using relations (3.14)-(3.17) we have that for

both Picard and Newton iterations with W = M

c20ν
2
min

νmax(ν2
min + c21)

≤ Re(µ) ≤ 1

νmin
, and |Im(µ)| ≤ 1

2νmin
.

For W = Mν it is shown in [16] that for Picard iterations

c2ν ≤
(S′qh, qh)

(Mνqh, qh)
≤ d, (3.18)

where d is the spacial dimension. The parameter cν is independent of the mesh size h, however,

dependent of the regularization parameter ε, namely, the variation of the viscosity. Reference

[16] shows the validity of relation (3.18) only for Picard iterations. In Section 4.1 of this paper

we extend it to Newton iterations and get

c2ν ≤
(S′qh, qh)

(Mνqh, qh)
≤ Cν , (3.19)
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where cν is the same as in (3.18). The upper bound Cν is a positive constant and independent

of the mesh size h.

Similarly, with W = Mν we have that for either Picard or Newton iterations

c2νν
2
min

ν2
min + c21

≤ Re(µ) ≤ Cν , and |Im(µ)| ≤ Cν
2
,

where in Picard iterations Cν is replaced by d.

Remark 3.1 For W = M , since νmin = O(1) and νmax = O(ε−1), we have that Re(µ)min =

O(ε), Re(µ)max = O(1) and |Im(µ)|max = O(1) in either Picard or Newton iterations. Thus, we

see that the eigenvalues µ are independent of the mesh size h, however, dependent of ε, namely,

variation of the viscosity.

Remark 3.2 ForW = Mν , a deep discussion on cν in [16] shows that for Picard iterations only

the smallest eigenvalue of M−1
ν S′ is of the order O(ε), and the left eigenvalues are of the order

O(1). In Section 4.1 of this paper we consider the lower and upper bounds of (3.19) for Newton

iterations, cν and Cν , respectively. Section 4.1 of this paper shows that for Newton iterations

cν is independent of the mesh size h and the regularization parameter ε. The upper bound Cν
is nearly independent of ε. Thus, based on (3.12)-(3.13) we can conclude that W = Mν leads

to a much more clustered eigenvalues µ of Q = W−1BF−1BT than W = M , for both Newton

and Picard iterations.

Based on Theorem 3.1, Proposition 3.1 and Remarks 3.1-3.2, we conclude that the eigen-

values of the generalized eigenvalue problem (3.7), where the ideal AL preconditioner Pγ is

constructed with W = Mν are more clustered than those, corresponding to Pγ with W = M .

In practice, with no hesitation, one can choose W = diag(Mν), since cmdiag(Mν) ≤ Mν ≤
Cmdiag(Mν) with positive mesh-independent constants cm and Cm. The above analysis for

W = Mν holds also for W = diag(Mν). Thus, when using the AL preconditioner for the

variable viscosity Oseen-type problem, we recommend to choose W = diag(Mν).

The second parameter in the AL scheme is the scalar γ. As Theorem 3.1 shows, for γ →∞
and for any nonsingular matrix W , all the eigenvalues of the preconditioned matrix P−1

γ Fγ
cluster at one. This result means that for large values of γ and provided that we solve the

sub-systems with the modi�ed pivot block Fγ = F + γBTW−1B accurately enough, the ideal

AL preconditioner ensures a very fast convergence, within a few iterations only. However, with

increasing γ the modi�ed pivot block Fγ becomes increasingly ill-conditioned and computing

solutions of systems with Fγ becomes more and more di�cult. Therefore, γ = 1 has been used

in the numerical tests in many studies, for example [8, 17]. With γ = 1 the condition number

of Fγ and the number of iterations by using ideal AL preconditioner are quite acceptable, see

the numerical experiments in [8, 17]. In [18] the good properties of that choice are justi�ed.

Although the matrices F and B are sparse, the modi�ed pivot block Fγ is in general much

denser. Furthermore, Fγ contains discretizations of mixed derivatives, and Fγ is not block-

diagonal, as for Newtonian �uids. Besides, the mixed derivatives bring additional di�culties for

the numerical solution methods. How to e�ciently solve systems with Fγ in the AL framework

is in general still an open question and more research e�orts need to be invested here. In

this work, we utilize the approach proposed in [9] and illustrate it for a problem in two space

dimensions. In 2D, F is of the form F =

[
F11 F12

F21 F22

]
, where each block is square and of order
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nu/2. Denoting B =
[
B1 B2

]
, we have

Fγ = F + γBTW−1B

=

[
F11 F12

F21 F22

]
+ γ

[
BT1
BT2

]
W−1

[
B1 B2

]
=

[
F11 + γBT1 W

−1B1 F12 + γBT1 W
−1B2

F21 + γBT2 W
−1B1 F22 + γBT2 W

−1B2

]
:=

[
Fγ,11 Fγ,12

Fγ,21 Fγ,22

]
.

A possible approach, used in [9], is to approximate Fγ by a block lower-triangular matrix

F̃γ =

[
F̃γ,11 O

Fγ,21 F̃γ,22

]
,

and replacing Fγ by F̃γ in the ideal AL preconditioner (3.6) we obtain the modi�ed AL pre-

conditioner as follows

P̃γ =

[
F̃γ O

B − 1
γW

]
=

F̃γ,11 O O

Fγ,21 F̃γ,22 O

B1 B2 − 1
γW

 , (3.20)

where the terms F̃γ,11 and F̃γ,22 denote approximations of Fγ,11 and Fγ,22, for instance, obtained

via an inner iterative solution method with a proper stopping tolerance.

The modi�ed AL preconditioner o�ers two main advantages compared to the ideal one.

When solving systems with F̃γ one needs to solve two sub-systems with Fγ,11 and Fγ,22. In this

way, the size of the linear system to be solved is reduced. Besides, as already mentioned, there

are approximations of mixed derivatives in Fγ , i.e., Fγ,21 and Fγ,12. This can be an obstacle

when applying known solution techniques, such as algebraic multigrid (AMG) methods. Here we

use AMG as a block solver and the details are presented in Section 5. A comparison between the

performance of the multigrid solver, applied to the whole block Fγ and for the sub-blocks Fγ,11,

Fγ,22 shows that the modi�ed AL preconditioner is superior to the ideal AL preconditioner in

terms of overall CPU time. Details are described in Section 5.

On the other hand, the performance of the modi�ed AL preconditioner is dependent of the

parameter γ. There exists an optimal value of γ which minimizing the number of iterations

when using the modi�ed AL preconditioner. For the case of constant viscosity, attempts to

determine the optimal γ are found in [9]. Although some theory has been derived in [9],

the optimal value turns out to be problem dependent and expensive to calculate. For non-

Newtonian �ows, we studied the e�ect of γ on the behaviour of the solver numerically. Results,

not included here, show that a minimal number of iterations is obtained by choosing the value of

γ to be 1. Therefore, for all numerical experiments in this paper, γ = 1 is used in the modi�ed

AL preconditioner.

So far, we only analyse the ideal AL preconditioner to check its robustness with respect

to the mesh size h and the variation of the viscosity in the modi�ed Bingham model. The

theoretical analysis of the modi�ed AL preconditioner, is a topic of separate research. In this

paper the performance of the modi�ed AL preconditioner for the variable viscosity Oseen-type

problem is explored via thorough numerical experiments.
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From the above discussion on Mν and diag(Mν) in the modi�ed Bingham model, we see

that both Mν and diag(Mν) are very good approximations of the matrix BF−1BT , which is

the negative Schur complement of the original system matrix F in (3.1). In this way, it is not

di�cult to construct the preconditioner as given in (3.4)[
F̃ O

B −diag(Mν)

]
or

[
F̃ BT

O −diag(Mν)

]

for the system matrix F in (3.1). The term F̃ denotes the approximation de�ned via an inner

iterative solution method. It seems that it is not necessary to use the AL transformation and

the AL preconditioner. The comment on this issue is that the AL preconditioner is suitable for

the Oseen-type problem when the convection term is relatively dominant. For the Oseen-type

problem with constant viscosity, the AL preconditioner and its variation are very e�cient for

small values of the viscosity, see the numerical experiments in [8, 9, 17]. For large viscosity the

di�usion part turns to be dominant and the problem becomes closer to the Stokes type. How to

e�ciently precondition the Stokes equations is simpler and has been introduced in earlier works,

see, e.g. [14, 24]. For the considered modi�ed Bingham model, the di�usion term is dominant

compared to the convection term. For other convection-dominated non-Newtonian models,

the ideal and modi�ed AL preconditioner are very attractive, due to their purely algebraic

construction and e�ciency.

For di�usion-dominant non-Newtonian models, it is appropriate to consider the Stokes-type

problem with variable viscosity. Up to the knowledge of the authors, e�cient algorithms of the

variable viscosity Stokes-type problems are only constructed for Picard iterations, c.f. [16, 30]

In the next section we consider e�cient preconditioners for both Picard and Newton iterations.

4. The Variable Viscosity Stokes-type Problem

As already stated in Section 2, at each nonlinear step the updates (δuk, δpk) are computed

by solving the linear problem (2.3) via Newton method or the problem (2.5) via Picard method.

At the (k+1) nonlinear iteration, the velocity and the pressure are corrected as uk+1 = uk+δuk
and pk+1 = pk + δpk. The above process continues until some convergence criterion is met.

Since uk+1 and pk+1 are approximate solutions, when computing the updates (δuk, δpk), we

could even drop the linearization terms coming from the convection terms in (2.3) and (2.5).

Then, the linear problem in Newton method reads as follows:

Find δuk ∈ H1
E0

and δpk ∈ L2(Ω) such that∫
Ω

2ν(DII(uk))Dδuk : DvdΩ +

∫
Ω

2ν′(DII(uk))[Duk : Dδuk][Duk : Dv]dΩ

−
∫

Ω

δpk (∇ · v)dΩ = Rk (4.1a)∫
Ω

q (∇ · δuk)dΩ = Pk. (4.1b)

The linear problem for the Picard method reads as follows: Find δuk ∈ H1
E0

and δpk ∈ L2(Ω)

such that
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∫
Ω

2ν(DII(uk))Dδuk : DvdΩ−
∫

Ω

δpk (∇ · v)dΩ = Rk (4.2a)∫
Ω

q (∇ · δuk)dΩ = Pk, (4.2b)

for all v ∈ H1
E0

and q ∈ L2(Ω). The residuals Rk, Pk are the same as given in (2.4), i.e.,

Rk =

∫
Ω

f · vdΩ−
∫

Ω

2ν(DII(uk))Duk : DvdΩ−
∫

Ω

(uk · ∇uk) · vdΩ +

∫
Ω

pk∇ · vdΩ

Pk = −
∫

Ω

q (∇ · uk)dΩ.

In this way, we see that the above iterative procedure involves the convection term in the

right-hand side vector only. If the norm of the residuals Rk and Pk is smaller than the stopping

tolerance, we can guarantee that the corresponding solutions satisfy the weak formulation (2.2).

After discretization with a stable FEM pair, the linear systems arising in (4.1) and (4.2) are

of the form [
A BT

B O

] [
δuh
δph

]
=

[
f

g

]
or Ax = b, (4.3)

where the pivot block A is symmetric positive de�nite (spd) and of the form A = Aν + δ1Âν .

The terms Aν and Âν are the same as in (3.2). Newton's method corresponds to δ1 = 1 and

Picard method � to δ1 = 0. The coe�cient matrix A is symmetric but inde�nite.

4.1. Preconditioning the variable viscosity Stokes-type problem

We refer to the problems (4.1) and (4.2) or their representations in matrix form (4.3) as

the variable viscosity Stokes-type problems. Compared to the Oseen-type problem, the main

bene�t of solving the Stokes-type problem is that e�cient approximations of the Schur com-

plement in the Stokes-type problems are easier to construct, see e.g. [7, 10, 14] . We test two

preconditioners for the Stokes-type problem�the block lower-triangular preconditioner and the

SIMPLER preconditioner.

The block lower-triangular preconditioner is of the form PL =

[
Ã O

B S̃

]
, where Ã denotes

an approximation of the pivot block A de�ned via an inner iterative solution method, and

the term S̃ denotes an approximation of the exact Schur complement S = −BA−1BT . Still,

the most di�cult task is how to e�ciently approximate the Schur complement. The Stokes

problem arising in the incompressible Newtonian �ows has been studied rather well and e�cient

approximations of S are well-known. For example, the pressure mass matrixM is a very e�cient

and numerically cheap approximation, see [24]. For the variable viscosity Stokes-type problem

(4.3), it is natural to use the scaled pressure mass matrix Mν or diag(Mν) as an approximation

of the Schur complement, instead of the original pressure mass matrix M . The de�nition of

Mν is the same as given in Section 3. In earlier publications, related to the variable viscosity

Stokes-type problem, the performance of S̃ = −M and S̃ = −Mν is only analysed for Picard

iterations (c.f. [16]). In this paper the following theorem extends the analysis to the case of

Newton iterations.
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Proposition 4.1. Consider the discrete modi�ed Bingham model with νmin = O(1) and νmax =

O(ε−1), 0 < ε� 1, solved by Newton iterations. Let η denote an eigenvalue of Q = S̃−1S, M

be the pressure mass matrix and Mν be the scaled pressure mass matrix, de�ned as in (3.11).

For the choices S̃ = −M and S̃ = −Mν , the lower and upper bounds for the eigenvalues η are

independent of the mesh size parameter h. More precisely, the following bounds for η hold true:

(i) For S̃ = −M ,

c20ν
−1
max ≤ η ≤ ν−1

min. (4.4)

(ii) For S̃ = −Mν ,

c2ν ≤ η ≤ Cν , (4.5)

where Cν = ν−1
minνmax. The parameters c0, cν and Cν are positive constants that are independent

of the discretization parameter h.

Proof. For any vh ∈ Xh
E0

and qh ∈ Ph, due to the de�nitions of matrices A, B and M , it

holds

(BA−1BT qh, qh) = (A−1BT qh, B
T qh)

= sup
vh∈XhE0

(vh, B
T qh)2

(Avh,vh)
= sup
vh∈XhE0

(qh,∇ · vh)2

(Avh,vh)
, (4.6a)

(Mqh, qh) = ‖qh‖2, (4.6b)

where

(Avh,vh) =

∫
Ω

νDvh : DvhdΩ +

∫
Ω

ν′(DII(u))(Duh : Dvh)2dΩ. (4.7)

In the modi�ed Bingham model, namely, ν(DII(u)) = ν0 + τ(DII(u) + ε2)−
1
2 > 0, the

derivative ν′(DII(u)) in terms of DII(u) is ν′(DII(u)) = − 1
2τ(DII(u)+ε2)−

3
2 < 0. Based on the

formulas, we can get νmin = ν0, νmax = O(ε−1), and |ν′|min = 0, |ν′|max = O(ε−3). Compared

to Picard iterations, the pivot matrix A is not necessarily positive de�nite any more in Newton

iterations. For the considered modi�ed Bingham model in this paper, we assume that A is

positive de�nite.

Also, within the proof the following inequalities are needed, which have been proved in [16]

‖∇ · vh‖2 ≤ ‖Dvh‖2 ≤ ‖∇vh‖2, ∀vh ∈ Xh
E0
.

Considering ν′ < 0, we directly get

(Avh,vh) ≤
∫

Ω

νDvh : DvhdΩ ≤ νmax

∫
Ω

Dvh : DvhdΩ

= νmax‖Dvh‖2 ≤ νmax‖∇vh‖2. (4.8)

Since the LBB condition is satis�ed, i.e. there exists a mesh independent constant c0 such that

c0 ≤ inf
qh∈Ph

sup
vh∈XhE0

(qh,∇ · vh)

‖qh‖‖∇vh‖
.

Relation (4.6) together with estimate (4.8) and the LBB condition yield

O(ε)(Mqh, qh) = c20ν
−1
max(Mqh, qh) ≤ (BA−1BT qh, qh).
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Considering the minimal and maximal values of |ν′| and ν, we can get

(Avh,vh) ≥ ν0‖Dvh‖2 = νmin‖Dvh‖2. (4.9)

Using the Cauchy-Schwarz inequality we have

(qh,∇ · vh)2 ≤ ‖qh‖2‖∇ · vh‖2 ≤ ‖qh‖2‖Dvh‖2. (4.10)

Estimates (4.9)-(4.10) together with relation (4.6) yield

(BA−1BT qh, qh) ≤ ν−1
min(Mqh, qh) = O(1)(Mqh, qh).

Thus, relation (4.4) is proved.

For S̃ = −Mν , it is easy to show that in Newton iterations

O(ε)Mν = c20νminν
−1
maxMν ≤ BA−1BT ≤ ν−1

minνmaxMν = O(ε−1)Mν . (4.11)

This result can be obtained by using νminMν ≤ M ≤ νmaxMν . The inequality (4.11) does not

give any improvement compared to the original pressure mass matrix M . As used in [16], here

we also assume that there exist an coe�cient cν such that

cν ≤ inf
qh∈Ph

sup
vh∈XhE0

(qh,∇ · vh)

‖ν− 1
2 qh‖‖ν

1
2Dvh‖

.

using (Avh,vh) ≤ ‖ν 1
2Dvh‖2 and relation (4.6) we directly obtain

c2ν(Mνqh, qh) = c2ν‖ν−
1
2 qh‖2 ≤ (BA−1BT qh, qh).

Then, in Newton iterations we can obtain

c2νMν ≤ BA−1BT ≤ CνMν ,

where Cν = ν−1
minνmax.

Remark 4.1. For S̃ = −M , Proposition 4.1 and the earlier reference [16] show that the inequal-

ities (4.4) hold for both Picard and Newton iterations. Since νmax = O(ε−1) and νmin = O(1),

the eigenvalues η are dependent of the regularization parameter ε, namely, the variation of

the viscosity. Item (i) in Proposition 4.1 matches well with numerical experiments. We give

the minimal and maximal eigenvalues of M−1BA−1BT in Table 5.5 of Section 5, where A is

obtained at the last Newton iteration. As seen there, the maximal eigenvalue is a constant and

the minimal one is of the order O(ε).

Remark 4.2. From the results in [16] if is seen that for Picard iterations it holds

c2νMν ≤ BA−1BT ≤ dMν ,

where d is the spacial dimension and cν is the same as in (4.5). The coe�cient cν is discussed in

detail in [16] and the conclusions therein show that for Picard iterations the smallest eigenvalue

ofM−1
ν BA−1BT is of the order O(ε), and the left eigenvalues are of the order O(1). For Newton

iterations, the numerical results in Table 5.5 show that cν is constant, bounded independently

of ε and h. For Newton iterations the upper bound in (4.5) is Cν = ν−1
minνmax = O(ε−1). Results

in Table 5.5 show that this bound is not optimal and Cν is nearly independent of ε. The further

analysis of cν and Cν for Newton iterations is considered as a future research direction.
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Combining the reference [16], Proposition 4.1 and Remarks 4.1�4.2, we conclude that the

preconditioner PL with S̃ = −Mν is more e�cient than S̃ = −M for the Stokes-type problem

(4.3) solved by either Newton or Picard iterations. Here, we again recommend to choose

S̃ = −diag(Mν) in practice with the same reason as given before.

In [16] at each preconditioning step the sub-systems with the pivot block A are solved

by a direct method, which is clearly not suitable for large scale simulations in terms of CPU

time and memory requirements. Here we suggest a computational improvement, based on the

strategy of constructing the modi�ed AL preconditioner, as described in (3.20), namely, in the

two dimensional case, the pivot block A =

[
A11 A12

A21 A22

]
is approximated by Ã =

[
Ã11 O

A21 Ã22

]
.

The terms Ã11 and Ã22 denote approximations of A11 and A22 obtained by an inner iterative

solution method with a proper stopping tolerance. In summary, the block lower-triangular

preconditioner for the Stokes-type problem with variable viscosity is

PStokes =

[
Ã O

B S̃

]
=

Ã11 O O

A21 Ã22 O

B1 B2 −diag(Mν)

 . (4.12)

SIMPLE (semi-implicit pressure linked equation) is used by Patanker [29] as an iterative

method to solve the Navier-Stokes problem. The scheme belongs to the class of basic iterative

methods and exhibits slow convergence. In [20, 35] SIMPLE and its variant SIMPLER are

used as preconditioners in a Krylov subspace method to solve the incompressible Navier-Stokes

equations, achieving in this way, a much faster convergence. SIMPLE and SIMPLER rely on

an approximate block-factorization of saddle point matrices and due to their simplicity, remain

attractive preconditioning techniques. We brie�y describe both formulations for the Stokes

matrix A in (4.3).

The SIMPLE preconditioner PSIMPLE reads:

PSIMPLE =

[
A O

B S̃

] [
I1 D−1BT

O I2

]
,

whereD is the diagonal of the block A and S̃ = −BD−1BT . Solutions of systems with PSIMPLE

are straightforward, see Algorithm 4.1.

Algorithm 4.1 (Algorithm SIMPLE)

Given y = [yu;yp], x = P−1
SIMPLEy is found within the following steps.

Step 1: Solve Ax?u = yu

Step 2: Solve S̃xp = yp −Bx?u

Step 3: Compute xu = x
?
u −D−1BTxp

Step 4: Set x = [xu;xp]

SIMPLER di�ers slightly from SIMPLE. It includes a pressure prediction step, see Algorithm

4.2.
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Algorithm 4.2 (Algorithm SIMPLER)

Given y = [yu;yp], x = P−1
SIMPLERy is found within the following steps.

Step 0: Solve S̃x?p = yp −BD−1
yu

Step 1: Solve Ax?u = yu −BTx?p

Step 2: Solve S̃δxp = yp −Bx?u

Step 3: Update xp = x
?
p + δxp and xu = x

?
u −D−1BT δxp

Step 4: Set x = [xu;xp]

We see, that when applying PSIMPLE and PSIMPLER, two solutions with S̃ and one solution

with A are required. Based on earlier experience, we modify PSIMPLE and PSIMPLER as

follows:

(i) We choose S̃ = −diag(Mν). The choice is motivated by the previous analysis.

(ii) In Step 1, instead of solving systems with A, we approximate A as Ã =

[
Ã11 O

A21 Ã22

]
,

where Ã11 and Ã22 indicate that we use an inner iterative solver with a proper stopping

tolerance for the blocks A11 and A22.

(iii) In order to improve the numerical stability, in this work the velocity block A is approxi-

mated by a diagonal matrix D = Σ|A|, where Σ|A| denotes the row sum of absolute values

of A.

As already discussed, the AL preconditioner is expected to work e�ciently for the Oseen-

type problem, typically when the convection term is dominant. Thus, in the variable viscosity

Stokes-type problem we do not use the AL preconditioner.

5. Numerical Illustrations

We choose as a benchmark the well-known two-dimensional lid-driven cavity problem,

equipped with the boundary conditions u1 = u2 = 0 for x = 0, x = 1 and y = 0; u1 =

1, u2 = 0 for y = 1. The problem is discretized using a uniform Cartesian mesh and the

Q2-Q1 �nite element pair. In this paper we consider the regularized Bingham model, i.e.,

ν(DII(u)) = ν0 + τ(DII(u) + ε2)−
1
2 . We �x ν0 = 1 and vary the regularization parameter ε and

the coe�cient τ , as ε = 10−1, 10−2, 10−3, 10−4, 10−5, and τ = 1, 2.5.

As already mentioned, we consider two nonlinear linearization methods - Picard and Newton

iterations. In order to achieve fast convergence of the nonlinear solver, in this paper we utilize

the combination of these two methods. On a given grid, for each pair of (ε, τ) Picard iterations

are carried out �rst and terminated when the norm of the relative residual ‖[Rk;Pk]‖/‖[R0;P0]‖
is decreased by two orders of magnitude, where (Rk, Pk) is de�ned in (2.4). Then the so-obtained

solution is used as an initial guess for Newton iterations, repeated until the relative residual

is redused by a factor of 10−6. Due to the good initial guess, the Newton method takes only

a few iterations to converge. Besides, the �nal solution with each pair of (ε, τ) on the current
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Table 5.1: Oseen formulation, comparison between two choices of W in P̃γ , h = 1/32.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−5 10−1 10−2 10−3 10−4 10−5

W = diag(Mν)

Picard iter. 7 16 32 43 58 13 31 59 72 98

Picard-GCR iter. 7 5 6 7 8 8 7 7 8 11

Newton iter. 4 4 6 12 9 4 5 6 8 9

Newton-GCR iter. 9 9 9 11 16 10 10 10 16 20

W = diag(M)

Picard iter. 7 15 32 52 67 13 31 60 89 108

Picard-GCR iter. 10 20 41 229 >400 14 32 182 255 >400

Newton iter. 4 6 12 28 33 5 10 21 33 39

Newton-GCR iter. 20 52 90 197 >400 29 66 154 308 >400

grid is linearly interpolated to the next �ner mesh, obtained by one regular mesh re�nement.

The interpolated solution is used as an initial guess for Picard iterations on the �ner mesh. In

this way, Picard iterations are independent of the mesh re�nement.

Systems with the matrices arising in the linearized problems, i.e., Fγ in (3.5) and A in

(4.3), are solved by a preconditioned iterative method, in this case the generalized conjugate

residual method (GCR) [1] as it allows for variable preconditioning. The stopping tolerance for

GCR is also relative and is denoted by εGCR. In this paper we choose εGCR = 10−2. Decreasing the

tolerance for GCR is not bene�cial since the number of Picard and Newton iterations will not

be signi�cantly reduced.

The preconditioner for the Oseen-type problem is P̃γ , de�ned in (3.6). With, γ = 1 and

W = diag(Mν) or W = diag(M). The preconditioner for the Stokes-type problem is either

PStokes in (4.12) or PSIMPLER in Algorithm SIMPLER. When applying those preconditioners,

we need to solve systems with the sub-blocks Fγ,11, Fγ,22 and A11 and A22, respectively. In this

paper this is done by an algebraic multigrid method, namely, agmg (see [23, 25, 26]). For agmg,

the relative stopping tolerance is denoted by εagmg. Unless stated otherwise, εagmg = 10−2. The

implementation of agmg is in Fortran and a Matlab interface is provided. For nonsymmetric

matrices agmg uses the GCR method accelerated by an algebraic multigrid preconditioner, based

on aggregation techniques.

The presented GCR iterations are averaged over the total number of nonlinear iterations.

The average GCR iterations per nonlinear iteration is denoted as Picard-GCR and Newton-GCR

iterations. All results in this paper are carried out in Matlab 7.13 (R2011b), and performed on

a Linux-64 platform with 4 Intel(R) Core i5 CPUs, 660@3.33GHz. The reported execution time

is in seconds. Whenever agmg is used, the setup time is included in the reported time �gures.

Tables 5.1-5.4 present results for the Oseen-type problem and Tables 5.5-5.8 for the Stokes-

type problem.

Table 5.1 shows the performance of the modi�ed AL preconditioner P̃γ with the two choices

ofW . From Table 5.1 we see that the choice ofW = diag(Mν) results in much less GCR iterations

than the choice of W = diag(M). Therefore, in the rest of the experiments for the ideal and

modi�ed AL preconditioners we �x W = diag(Mν).

Table 5.2 shows a comparison between the ideal and the modi�ed AL preconditioners, i.e.,

Pγ and P̃γ . From Table 5.2 we see that as predicted the ideal AL preconditioner is independent
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Table 5.2: Oseen formulation, comparison between P̃γ and Pγ , h = 1/64.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−5 10−1 10−2 10−3 10−4 10−5

P̃γ
Picard iter. 6 11 22 33 51 10 26 44 60 88

Picard-GCR iter. 6 7 9 10 11 7 7 9 10 12

Newton iter. 4 5 6 7 9 4 5 6 9 8

Newton-GCR iter. 9 9 9 15 22 10 10 11 13 19

Total solution time 3.8 6.9 11.8 24.6 53.8 5.5 12.5 24.9 48.5 120.9

Pγ
Picard iter. 6 11 22 33 48 10 26 44 60 82

Picard-GCR iter. 7 7 9 10 10 8 8 9 10 12

Newton iter. 3 4 6 6 7 4 5 6 5 5

Newton-GCR iter. 8 7 8 7 7 7 7 8 7 7

Total solution time 9.3 21.1 60,2 128.9 191.1 18.1 45.5 108.8 236.8 516.9

of the parameter ε in both Picard and Newton iterations. Using P̃γ the Picard-GCR iterations

are independent of ε, but the number of Newton-GCR iterations increase a little for a smaller ε.

The gain in total solution time by using the modi�ed AL preconditioner P̃γ is substantial.

Table 5.3 illustrates the nonlinear and the average GCR iterations by using the modi�ed

AL preconditioner P̃γ in Oseen formulation. Also, the total computational time is reported.

We see from Table 5.3 that as expected, the Picard-GCR and Newton-GCR iterations by using

Table 5.3: Oseen formulation with P̃γ as a preconditioner.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−5 10−1 10−2 10−3 10−4 10−5

h = 1/32

Picard iter. 7 16 32 43 58 13 31 59 72 98

Picard-GCR iter. 7 5 6 7 8 8 7 7 8 11

Newton iter. 4 4 6 12 9 4 5 6 8 9

Newton-GCR iter. 9 9 9 11 16 10 10 10 16 20

Total solution time 1.0 1.6 3.2 5.9 10.8 1.6 3.1 5.9 10.8 22.3

h = 1/64

Picard iter. 6 11 22 33 51 10 26 44 60 88

Picard-GCR iter. 6 7 9 10 11 7 7 9 10 12

Newton iter. 4 5 6 7 9 4 5 6 9 8

Newton-GCR iter. 9 9 9 15 22 10 10 11 13 19

Total solution time 3.8 6.9 11.8 24.6 53.8 5.5 12.5 24.9 48.5 120.9

h = 1/128

Picard iter. 5 9 17 27 40 9 21 39 59 84

Picard-GCR iter. 7 6 8 8 8 6 6 8 8 9

Newton iter. 4 5 7 6 11 4 5 6 6 9

Newton-GCR iter. 8 9 9 16 25 8 9 11 17 17

Total solution time 12.3 19.2 42.5 76.7 257.8 20.1 40.2 87.1 158.1 469.1
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Table 5.4: Oseen formulation, agmg performance for Fγ,11, εagmg = 10−6 and random right-hand side

vectors.

Picard linearization Newton's linearization

τ = 1 τ = 2.5 τ = 1 τ = 2.5

h = 1/64

agmg setup time: 3.80e-2 4.00e-2 6.30e-2 5.60e-2

agmg solution time: 5.10e-2 4.90e-2 5.50e-2 6.70e-2

agmg total time: 8.90e-2 8.90e-2 1.18e-1 1.23e-1

agmg iter.: 17 16 19 19

Direct solver time: 1.35e-1 1.38e-1 1.14e-1 1.19e-1

h = 1/128

agmg setup time: 1.85e-1 1.86e-1 1.90e-1 1.88e-1

agmg solution time: 2.13e-1 2.46e-1 2.45e-1 2.70e-1

agmg total time: 3.98e-1 4.32e-1 4.35e-1 4.58e-1

agmg iter.: 18 21 19 23

Direct solver time: 7.47e-1 7.47e-1 7.43e-1 7.47e-1

h = 1/256

agmg setup time: 8.36e-1 8.36e-1 8.40e-1 8.36e-1

agmg solution time: 8.95e-1 1.03 1.03 1.13

agmg total time: 1.73 1.87 1.87 1.97

agmg iter.: 19 20 20 21

Direct solver time: 3.92 3.92 3.95 3.99

the modi�ed AL preconditioner P̃γ are independent of the mesh re�nement. Besides, Picard-

GCR iterations are independent of the parameter ε. When decreasing the values of ε, a slight

increase in the number of Newton-GCR iterations is observed, however, the number of Newton-

GCR iterations is still very acceptable, even for the smallest ε tested. Due to the combination

of Picard and Newton methods, we see that Newton linearization takes less than 10 iterations

to converge for all pairs of (ε, τ). Thanks to interpolating the solution between meshes, the

Table 5.5: Stokes formulation: minimal and maximal eigenvalues of M−1BA−1BT and M−1
ν BA−1BT ,

τ = 1 and A is obtained from the last Newton iteration.

ε λmin(M
−1BA−1BT ) λmax(M

−1BA−1BT ) λmin(M
−1
ν BA−1BT ) λmax(M

−1
ν BA−1BT )

h=1/32

10−2 0.0017 0.4187 0.1246 0.9355

10−3 1.7752e-4 0.4187 0.1204 0.9946

10−4 1.7885e-5 0.4187 0.1200 1.3203

10−5 1.8111e-6 0.4187 0.1200 1.7018

10−6 1.8440e-7 0.4187 0.1200 1.7642

h=1/64

10−2 0.0017 0.4539 0.1427 0.9594

10−3 1.7044e-4 0.4539 0.1401 1.0624

10−4 1.7079e-5 0.4539 0.1396 1.1774

10−5 1.7106e-6 0.4539 0.1396 1.5778

10−6 1.7134e-7 0.4539 0.1396 2.0008
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Table 5.6: Stokes formulation with PStokes as a preconditioner.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−5 10−1 10−2 10−3 10−4 10−5

h = 1/32

Picard iter. 7 16 32 43 58 13 31 59 72 97

Picard-GCR iter. 7 8 8 9 10 9 9 10 12 14

Newton iter. 3 4 6 9 7 4 4 5 9 11

Newton-GCR iter. 11 12 11 14 19 13 15 14 19 21

Total solution time 0.5 1.1 2.0 4.1 7.5 1.0 1.8 4.2 8.0 16.1

h = 1/64

Picard iter. 6 11 22 34 51 10 26 44 61 88

Picard-GCR iter. 7 9 12 15 15 9 9 12 14 16

Newton iter. 3 4 6 6 8 4 4 6 9 7

Newton-GCR iter. 12 13 11 21 30 13 14 15 19 29

Total solution time 1.8 3.3 6.7 15.3 31.5 3.2 6.6 13.8 30.4 71.5

h = 1/128

Picard iter. 5 9 17 27 40 9 21 39 59 78

Picard-GCR iter. 7 8 11 12 12 7 8 10 11 12

Newton iter. 3 4 7 6 9 3 5 4 6 9

Newton-GCR iter. 11 11 12 24 33 11 12 19 22 28

Total solution time 6.0 9.8 20.8 35.2 108.4 8.1 19.8 42.1 91.5 262.7

number of Picard iterations is independent of the mesh re�nement. The total solution time

illustrates that the computational procedure is nearly of the optimal complexity.

Table 5.7: Stokes formulation with PSIMPLER as a preconditioner.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−5 10−1 10−2 10−3 10−4 10−5

h = 1/32

Picard iter. 7 16 32 43 59 13 31 59 72 101

Picard-GCR iter. 8 9 9 10 12 10 10 12 14 17

Newton iter. 3 4 6 10 8 4 4 5 9 11

Newton-GCR iter. 11 11 13 16 24 12 14 16 20 24

Total solution time 0.5 1.2 2.4 5.4 10.9 1.1 2.4 4.9 10.4 21.4

h = 1/64

Picard iter. 6 11 22 34 53 10 26 44 61 92

Picard-GCR iter. 8 10 14 17 19 10 11 16 17 19

Newton iter. 3 4 6 6 9 4 4 5 8 6

Newton-GCR iter. 11 12 15 26 34 12 14 15 21 29

Total solution time 1.8 3.5 8.9 19.1 46.3 3.3 7.6 18.1 35.9 87.9

h = 1/128

Picard iter. 5 9 17 27 40 9 21 39 59 78

Picard-GCR iter. 9 9 15 17 16 9 10 13 14 15

Newton iter. 3 5 7 7 10 3 5 4 6 10

Newton-GCR iter. 10 11 14 32 40 12 14 20 27 30

Total solution time 5.9 11.1 28.4 64.8 157.7 9.4 23.1 52.2 118.9 296.2
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Table 5.8: Stokes formulation, agmg performance for A11, εagmg = 10−6 and random right-hand side

vectors.

Picard linearization Newton linearization

τ = 1 τ = 2.5 τ = 1 τ = 2.5

h = 1/64

agmg setup time: 8.00e-3 8.00e-3 8.00e-3 9.00e-3

agmg solution time: 1.60e-2 1.80e-2 2.10e-2 2.20e-2

agmg total time: 2.40e-2 2.60e-2 2.90e-2 3.10e-2

agmg iter.: 16 18 21 20

Direct solver time: 3.32e-2 3.23e-2 3.44e-2 3.52e-2

h = 1/128

agmg setup time: 2.40e-2 2.70e-2 2.60e-2 2.40e-2

agmg solution time: 8.20e-2 1.06e-1 9.00e-2 1.23e-1

agmg total time: 1.06e-1 1.33e-1 1.16e-1 1.47e-1

agmg iter.: 19 23 21 24

Direct solver time: 1.67e-1 1.57e-1 1.54e-1 1.57e-1

h = 1/256

agmg setup time: 8.40e-2 9.45e-2 9.10e-2 8.50e-2

agmg solution time: 3.44e-1 4.45e-1 3.78e-1 5.29e-1

agmg total time: 4.28e-1 5.39e-1 4.69e-1 6.14e-1

agmg iter.: 19 22 21 22

Direct solver time: 8.35e-1 8.35e-1 8.35e-1 8.35e-1

Table 5.4 illustrates the performance of agmg itself. We set the parameter ε = 10−4 to

simulate a more di�cult scenario. In the regularized Bingham model the extreme values of

the viscosity are νmin = O(1) and νmax = O(ε−1). A smaller value of ε results in a larger

variation in viscosity. Another reason we choose ε = 10−4 is that this value is small enough

to characterise the non-Newtonian �ows. More details on this issue is presented at the end of

this section. We see that the agmg solver is fully independent of the mesh size, the parameter τ

and the di�erent linearization methods. Also, we compare it with the 'backslash' direct sparse

solver in Matlab. For the problem sizes we test, agmg already shows its superiority, that will

be increasingly stronger for larger problem sizes and 3D problems.

Next, in Tables 5.5-5.8 we illustrate the overall performance of the nonlinear and linear

solvers for the variable viscosity Stokes-type problem. In Table 5.5 we calculate and present the

smallest and largest eigenvalues of the matrices M−1BA−1BT and MνBA
−1BT with varying

ε. As seen, the smallest eigenvalue of M−1BA−1BT is of the order O(ε) and the largest one is

constant. This matches well with Proposition 4.1. For M−1
ν BA−1BT , the smallest eigenvalue

is constant. The largest eigenvalue does increase a little with decreasing ε, but this increase

is much less than that predicted as O(ε−1) in Proposition 4.1. To explain this phenomenon,

further analysis is needed. The extremal eigenvalues of M−1BA−1BT and MνBA
−1BT are

independent of the mesh size h, as seen in Table 5.5.

We see from Tables 5.6-5.7 that the linear Picard-GCR and Newton-GCR by using the pre-

conditioners PStokes and PSIMPLER are independent of the mesh re�nement. The number

of Picard-GCR iterations is independent of the parameter ε. For Newton-GCR iterations the

independence of ε is loosen a little. Also, fast convergence rate of Newton iterations and inde-

pendence of the mesh re�nement for Picard iterations are achieved, due to the same reasons as
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given in Oseen formulation. The total solution time by using PStokes preconditioner is slightly
smaller than that with PSIMPLER. Still, with the two preconditioners PStokes and PSIMPLER,

the computational procedure for the variable viscosity Stokes-type problem is of optimal com-

plexity.

The e�ciency of agmg for A11 is presented in Table 5.8. In the Stokes-type problem, since the

sub-blocks A11 and A22 are spd, agmg uses the conjugate gradient (CG) Krylov subspace method

accelerated by the multigrid preconditioner. Here, the agmg solver is also fully independent of

the mesh size, the parameter τ and di�erent linearization methods. The superiority to the

direct method is exhibited too.

The comparison between the behaviour of the numerical solution methods for the Oseen-

and Stokes-type problems (Tables 5.3, 5.6 and 5.7) shows that in both cases the number of

nonlinear Picard and Newton iterations is the same. The explanation for this e�ect is that the

di�usion term is dominant for the considered Bingham model. For other convection-dominant

non-Newtonian models, the number of nonlinear iterations can be reduced by solving the Oseen-

type problem. In those applications the introduced solution algorithms for the Oseen-type

problem are applicable and attractive.

(a) ε = 10−2 (b) ε = 10−3

(c) ε = 10−4 (d) ε = 10−5

Fig. 5.1. Computed isolines for (DII(u))
1
2 = {10−1, 10−2, 10−3} with τ = 1.
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For the two problems, the overall computational time for the Stokes-type problem is only

half of that for the Oseen-type problem. Further, the sub-blocks A11 and A22 are spd and

agmg uses the CG method, which is numerically cheaper than the GCR method used for Fγ,11 and

Fγ,22. Also, the blocks A11 and A22 are sparser than Fγ,11 and Fγ,22, and the sparsity is another

reason making agmg to work more e�ciently for the Stokes formulation. Comparing the results

in Table 5.4 and 5.8, we see that the overall computational time of agmg for the Stokes-type

problem is reduced about three times, compared to that for the Oseen-type problem.

Finally, we include some plots of the numerically computed solution. Determining the rigid

regions of the viscoplastic �ow, formally regions where DII(u) = 0, is the most challenging

task from modeling point of view. However, when a regularized model is used the condition

DII(u) = 0 does not hold exactly. In practice one needs to choose the regularization parameter

ε as small as possible. On the other hand, small values of the regularization parameter ε

lead to more computational work, see the nonlinear iterations and the total solution time

in the previous tables. To give an insight regarding reasonable values of ε which can well

predict the rigid regions, Figures 5.1-5.2 show the computed isolines of (DII(u))
1
2 for ε ∈

{10−2, 10−3, 10−4, 10−5}. These �gures appear to be nearly identical with those in [12,16] and

we see that for ε ≈ 10−4 the computed results give a fairly good prediction of the rigid regions.

(a) ε = 10−2 (b) ε = 10−3

(c) ε = 10−4 (d) ε = 10−5

Fig. 5.2. Computed isolines for (DII(u))
1
2 = {10−1, 10−2, 10−3} with τ = 2.5.
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The relatively large values, i.e., ε ≥ 10−3 are not small enough to recover the viscoplastic

properties.

6. Conclusions and Future Work

In this paper we consider fast and reliable numerical solution methods for the incompressible

non-Newtonian Navier-Stokes equations. Among the several non-Newtonian �uid models here

we limit ourselves to the regularized Bingham model. When linearizing the governing nonlinear

equations, Oseen- or Stokes-type problems arise. In both cases, the coe�cient matrices are

of a two-by-two block form. Numerically and computationally e�cient preconditioners for the

so-arising systems are the main concerns in this paper. Various preconditioners are analysed,

namely, the modi�ed augmented Lagrangian preconditioner for the Oseen-type problem and

the block lower-triangular and the SIMPLER preconditioners for the Stokes-type. Numeri-

cal experiments show that all the preconditioners are independent of the mesh size, and are

rather robust with respect to the parameters in the Bingham model. Due to their algebraic

constructions, the tested preconditioning techniques are straightforwardly applicable for other

non-Newtonian �uid models. A detailed study on their performance in other applications is

subject to a future research.

How to accelerate the convergence of the nonlinear solver is also studied in this paper.

Numerical experiments show that a combination of Picard and Newton methods and the inter-

polation technique used in this paper are successful.
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