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Abstract

In this paper, we introduce an efficient Chebyshev-Gauss spectral collocation method

for initial value problems of ordinary differential equations. We first propose a single

interval method and analyze its convergence. We then develop a multi-interval method.

The suggested algorithms enjoy spectral accuracy and can be implemented in stable and

efficient manners. Some numerical comparisons with some popular methods are given to

demonstrate the effectiveness of this approach.
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1. Introduction

A considerable amount of literature has been devoted to numerical solutions of ordinary dif-

ferential equations (ODEs), see, e.g., [6,8,23–25,29,39]. For Hamiltonian systems, the interested

reader may refer to [12, 13, 22, 36]. Among the existing methods, numerical schemes based on

Taylor’s expansions or quadrature formulas have been frequently used, see, e.g., [7,8,23,24,29],

which can be systematically designed and often provide accurate approximations.

In the past few decades, spectral method has become increasingly popular and been widely

used in spatial discretization of PDEs owing to its spectral accuracy (i.e., the smoother the

exact solutions become, the smaller the numerical errors will be), see, e.g., [4,5,9,14–16,37,38].

Moreover, some spectral methods for time discretization of PDEs have been developed rapidly,

see, e.g., [2, 3, 11, 27, 30, 31, 40–43]. Recently, Guo et al. [18, 19, 45] developed several Legendre-

Gauss-type spectral collocation methods for ODEs. Meanwhile, Guo et al. [20, 21] designed

Laguerre-Gauss-type spectral collocation methods for ODEs. Kanyamee and Zhang [28] also

conducted a systematic comparison of a Legendre (Chebyshev)-Gauss-Lobatto spectral collo-

cation method with some symplectic methods in solving Hamiltonian dynamical systems. For

the hp−version of the continuous Galerkin FEM, we refer the reader to [46] and the references

therein for other earlier works.

In this paper, we propose a Chebyshev-Gauss spectral collocation method for ODEs:




d

dt
U(t) = f(U(t), t), 0 < t ≤ T,

U(0) = U0,
(1.1)
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where f is a given function, and U0 is the initial data.

We start with a single interval scheme. We approximate the solution by a finite Chebyshev

series, and collocate the numerical scheme at Chebyshev-Gauss points to determine the coef-

ficients. We introduce two algorithms. Numerical results show that the suggested algorithms

can be implemented efficiently. Particularly, the algorithms are numerically stable and pos-

sess spectral accuracy. It is noted that Vigo-Aguiar and Ramos [44] also constructed a special

family of Runge-Kutta collocation algorithms based on Chebyshev-Gauss-Lobatto points, with

A-stability and stiffly accurate characteristics. The interested reader may also refer to [34, 35]

for additional information.

For a more effective implementation, we also suggest a multi-interval scheme due to the

following considerations:

• The resultant system for the expansion coefficients can be solved more efficiently for a

modest number of unknowns. For large T, it is desirable to partition the solution interval

(0, T ) and solve the subsystems successively. Hence, the scheme can be implemented

efficiently and economically.

• For ensuring the convergence of the numerical scheme, the length of T is limited some-

times.

• The multi-interval scheme provides us sufficient flexibility to handle ODEs, e.g., we may

use geometrically refined steps and linearly increasing degree vectors to resolve the singular

behavior of the solution.

Numerical illustrations also show that the suggested algorithms are particularly attractive

for ODEs with stiff behaviors, oscillating solutions, steep gradient solutions and long time

calculations.

We highlight the main differences between our strategy and the existing ones as follows.

• We collocate the numerical scheme at Chebyshev-Gauss points, and analyze the conver-

gence of the single interval scheme. The nodes and weights of Chebyshev-Gauss quadra-

tures are given explicitly, avoiding the potential loss of accuracy (compared with Legendre

and Laguerre quadratures). Particularly, the algorithm can be implemented efficiently

by using fast Chebyshev transform. The existing work on spectral collocation meth-

ods [18–21,45] studied the Legendre and Laguerre collocation schemes.

• We use the Chebyshev expansions in each sub-step (known to be much stable than the

usual Lagrange approach [38]), which lead to quite neat implementation through ma-

nipulating the expansion coefficients (see (2.24) below). The existing work on spectral

collocation methods [18–21,45] considered the Legendre and Laguerre expansions in each

sub-step, but did not establish the relationships of the expansion coefficients.

The paper is organized as follows. In the next section, we present and analyze the single

interval Chebyshev-Gauss collocation method, and provide some numerical results to justify our

theoretical analysis. In Section 3, we describe the multi-interval Chebyshev-Gauss collocation

method, the convergence is illustrated numerically. The final section is for some concluding

discussions.

We end this section with some notations to be used throughout the paper:
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• For a given interval Λ and a certain weight function χ, we denote by Hr
χ(Λ), r ≥ 0 the

weighted Sobolev space in the usual way. In particular, H0
χ(Λ) = L2

χ(Λ).

• For simplicity, we sometimes denote d
dt
v(t) = v′(t).

2. Single Interval Chebyshev-Gauss Collocation Method

In this section, we describe and analyze a single interval Chebyshev-Gauss numerical inte-

gration process for the ordinary differential equations. We also present some numerical results

to illustrate the efficiency.

2.1. Preliminaries

Let Tl(x), x ∈ [−1, 1] be the standard Chebyshev polynomial of degree l. We recall that

Tl(x) is the eigenfunction of the singular Sturm-Liouville problem

(1− x2)y′′(x)− xy′(x) + l2y(x) = 0, l = 0, 1, · · · . (2.1)

We define the shifted Chebyshev polynomials TT,l(t) by

TT,l(t) = Tl
(
2t

T
− 1

)
, t ∈ [0, T ], l = 0, 1 · · · .

In particular,

TT,0(t) = 1, TT,1(t) =
2t

T
− 1, TT,2(t) =

8t2

T 2
− 8t

T
+ 1. (2.2)

According to the properties of the standard Chebyshev polynomials, we have

TT,l+1(t)− 2

(
2t

T
− 1

)
TT,l(t) + TT,l−1(t) = 0, l ≥ 1, (2.3)

1

l + 1
T ′
T,l+1(t)−

1

l − 1
T ′
T,l−1(t) =

4

T
TT,l(t), l ≥ 2. (2.4)

Let ω(t) = t(T − t). The set of TT,l(t) forms a complete L2
ω−1/2(0, T )−orthogonal system,

∫ T

0

TT,l(t)TT,m(t)ω− 1

2 (t)dt =
1

2
πclδl,m, (2.5)

where c0 = 2, cl = 1 for l ≥ 1 and δl,m is the Kronecker symbol. Thus for any v(t) ∈
L2
ω−1/2(0, T ), we can write

v(t) =
∞∑

l=0

v̂lTT,l(t), v̂l =
2

πcl

∫ T

0

v(t)TT,l(t)ω
− 1

2 (t)dt. (2.6)

Moreover, by (2.1) we can verify readily that

∫ T

0

T ′
T,l(t)T ′

T,m(t)ω
1

2 (t)dt =
π

2
l2clδl,m. (2.7)

We now deal with the shifted Chebyshev-Gauss interpolation. We denote

xNj = − cos
(2j + 1)π

2N + 2
, 0 ≤ j ≤ N,
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which are the standard Chebyshev-Gauss points on the interval (−1, 1), and

tNT,j =
T

2
(xNj + 1) =

T

2

(
1− cos

(2j + 1)π

2N + 2

)
, 0 ≤ j ≤ N.

Clearly, tNT,j , 0 ≤ j ≤ N are the zeros of TT,N+1(t).

Let PN (0, T ) be the set of polynomials of degree at most N. The standard Chebyshev-Gauss

formula implies that for any φ ∈ P2N+1(0, T ),

∫ T

0

φ(t)ω− 1

2 (t)dt =

∫ 1

−1

φ(
T

2
(x+ 1))(1− x2)−

1

2 dx

=
π

N + 1

N∑

j=0

φ(
T

2
(xNj + 1)) =

π

N + 1

N∑

j=0

φ(tNT,j). (2.8)

Next denote by (u, v)T,ω and ‖v‖T,ω the inner product and norm of the space L2
ω−1/2(0, T ),

respectively,

(u, v)T,ω =

∫ T

0

u(t)v(t)ω− 1

2 (t)dt, ‖v‖T,ω = (v, v)
1

2

T,ω .

The discrete inner product and the discrete norm associated with the shifted Chebyshev-Gauss

interpolation points are,

(u, v)T,N =
π

N + 1

N∑

j=0

u(tNT,j)v(t
N
T,j), ‖v‖T,N = (v, v)

1

2

T,N .

Thanks to (2.8), for any φψ ∈ P2N+1(0, T ) and ϕ ∈ PN (0, T ), we have

(φ, ψ)T,ω = (φ, ψ)T,N , ‖ϕ‖T,ω = ‖ϕ‖T,N . (2.9)

The shifted Chebyshev-Gauss interpolation operator IT,Nv(t) : C(0, T ) → PN (0, T ) is such

that

IT,Nv(t
N
T,j) = v(tNT,j), 0 ≤ j ≤ N.

Because of (2.9), we obtain that for any φ ∈ PN+1(0, T ),

(IT,Nv, φ)T,ω = (IT,Nv, φ)T,N = (v, φ)T,N . (2.10)

We can expand IT,Nv(t) as

IT,Nv(t) =

N∑

l=0

ṽlTT,l(t). (2.11)

Using (2.5) and (2.10) yields

ṽl =
2

πcl
(IT,Nv, TT,l)T,ω =

2

πcl
(v, TT,l)T,N , 0 ≤ l ≤ N. (2.12)

Next, for any ψ ∈ PN+1(0, T ), we write

ψ(t) =
N+1∑

l=0

ψ̂lTT,l(t) and IT,Nψ(t) =
N∑

l=0

ψ̃lTT,l(t). (2.13)
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With the aid of (2.12), (2.9) and (2.6), we deduce that

ψ̃l =
2

πcl
(ψ, TT,l)T,N =

2

πcl
(ψ, TT,l)T,ω = ψ̂l, 0 ≤ l ≤ N. (2.14)

The above result, along with (2.5) and (2.10), gives that

‖ψ‖2T,N = ‖IT,Nψ‖2T,N = ‖IT,Nψ‖2T,ω =

N∑

l=0

1

2
πclψ̃

2
l

=
N∑

l=0

1

2
πclψ̂

2
l ≤

N+1∑

l=0

1

2
πclψ̂

2
l = ‖ψ‖2T,ω, ∀ψ ∈ PN+1(0, T ). (2.15)

2.2. The single interval scheme

The single interval collocation scheme for solving (1.1) is to seek uN(t) ∈ PN+1(0, T ) such

that 



d

dt
uN (tNT,j) = f(uN (tNT,j), t

N
T,j), 0 ≤ j ≤ N,

uN (0) = U0.
(2.16)

The following proposition, proven in Appendix A, shows that if f(z, t) fulfills the Lipschitz

condition:

|f(z1, t)− f(z2, t)| ≤ γ|z1 − z2|, γ > 0, (2.17)

then the system (2.16) is uniquely solvable, as long as the time step T is sufficiently small.

Proposition 2.1. Assume that f(z, t) fulfills the Lipschitz condition (2.17), and

0 < γT ≤ β <
1

4
, (2.18)

where β is a certain constant. Then the method (2.16) admits a unique solution.

We now describe the numerical implementations and present some algorithms for scheme

(2.16). According to (2.16), we get that

d

dt
uN (t) = IT,Nf(u

N(t), t). (2.19)

Next, let

uN(t) =

N+1∑

k=0

ûkTT,k(t), (2.20)

IT,Nf(u
N (t), t) =

N∑

k=0

f̂kTT,k(t). (2.21)

Due to (2.5) and (2.9), we get that

f̂k =
2

πck
(IT,Nf(u

N , ·), TT,k)T,ω =
2

πck
(IT,Nf(u

N , ·), TT,k)T,N

=
2

ck(N + 1)

N∑

j=0

f(uN(tNT,j), t
N
T,j)TT,k(t

N
T,j), ∀0 ≤ k ≤ N.

(2.22)
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Moreover, by (2.19)-(2.21), (2.4) and (2.2), we derive that

N+1∑

k=1

ûkT
′

T,k(t) =
N∑

k=0

f̂kTT,k(t)

=f̂0 + f̂1TT,1(t) +

N∑

k=2

f̂kTT,k(t)

=f̂0 + f̂1TT,1(t) +
T

4

N∑

k=2

f̂k

k + 1
T ′

T,k+1(t)−
T

4

N∑

k=2

f̂k

k − 1
T ′

T,k−1(t)

=
T f̂N

4(N + 1)
T ′

T,N+1(t) +
T f̂N−1

4N
T ′

T,N (t) +
T

4

N−1∑

k=3

f̂k−1

k
T ′

T,k(t)

−
T

4

N−1∑

k=1

f̂k+1

k
T ′

T,k(t) + f̂1TT,1(t) + f̂0

=
T f̂N

4(N + 1)
T ′

T,N+1(t) +
T f̂N−1

4N
T ′

T,N (t) +
T

4

N−1∑

k=3

f̂k−1 − f̂k+1

k
T ′

T,k(t)

−
T f̂3

8
T ′

T,2(t)−
T f̂2

4
T ′

T,1(t) + f̂1TT,1(t) + f̂0

=
T f̂N

4(N + 1)
T ′

T,N+1(t) +
T f̂N−1

4N
T ′

T,N (t) +
T

4

N−1∑

k=1

ck−1f̂k−1 − f̂k+1

k
T ′

T,k(t).

(2.23)

Since {T ′
T,k(t)} are mutually orthogonal with respect to the weight ω

1

2 (t) (see (2.7)), we can

compare the expansion coefficients in terms of T ′
T,k(t) to obtain that

ûN+1 =
T f̂N

4(N + 1)
, ûN =

T f̂N−1

4N
,

ûk =
T (ck−1f̂k−1 − f̂k+1)

4k
, 1 ≤ k ≤ N − 1. (2.24)

On the other hand, TT,k(0) = (−1)k. Hence by taking t = 0 in (2.20) and using (2.16), we get

that

û0 = U0 +

N+1∑

k=1

(−1)k−1ûk. (2.25)

In actual computation, an iterative process can be employed to evaluate the values

{uN(tNT,i)}Ni=0or the expansion coefficients {ûk}N+1
k=0 , as stated below.

(i). The Newton iterative method. By (2.20), (2.25) and (2.24) we obtain that

uN (t) =

N+1∑

k=0

ûkTT,k(t) = U0 +

N+1∑

k=1

ûk(TT,k(t) + (−1)k−1)

= U0 +
T f̂N

4(N + 1)
(TT,N+1(t) + (−1)N ) +

T f̂N−1

4N
(TT,N (t) + (−1)N−1)

+

N−1∑

k=1

T (ck−1f̂k−1 − f̂k+1)

4k
(TT,k(t) + (−1)k−1). (2.26)
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A combination of (2.26) and (2.22) yields

uN(t) = F (uN , t), (2.27)

where

F (uN , t) = U0 +
T

2(N + 1)2

(
TT,N+1(t) + (−1)N

) N∑

j=0

f(uN(tNT,j), t
N
T,j)TT,N (tNT,j)

+
T

2N(N + 1)

(
TT,N (t) + (−1)N−1

) N∑

j=0

f(uN(tNT,j), t
N
T,j)TT,N−1(t

N
T,j)

+
N−1∑

k=1

T

2k(N + 1)

(
TT,k(t) + (−1)k−1

) N∑

j=0

f(uN(tNT,j), t
N
T,j)

(
TT,k−1(t

N
T,j)− TT,k+1(t

N
T,j)

)
.

Thus, we may evaluate the values {uN(tNT,i)}Ni=0 by using the Newton iterative process.

Next, for any 0 ≤ l ≤ N, we have uN (t)TT,l(t) ∈ P2N+1(0, T ). Therefore, multiplying (2.20)

by ω− 1

2 (t)TT,l(t), integrating the result over the interval (0, T ), and using (2.5) and (2.9), we

verify readily that

ûl =
2

πcl
(uN , TT,l)T,ω =

2

πcl
(uN , TT,l)T,N

=
2

cl(N + 1)

N∑

j=0

uN (tNT,j)TT,l(t
N
T,j), 0 ≤ l ≤ N. (2.28)

On the other hand, TT,l(0) = (−1)l. Hence by taking t = 0 in (2.20), we obtain from (2.28) that

ûN+1 = (−1)N+1U0 +

N∑

l=0

(−1)N+lûl

= (−1)N+1U0 +
2

N + 1

N∑

l=0

(−1)N+lc−1
l

N∑

j=0

uN (tNT,j)TT,l(t
N
T,j). (2.29)

Finally, by using (2.20), (2.28), (2.29), we obtain

uN (T ) =

N+1∑

l=0

ûl

=
2

N + 1

N∑

l=0

c−1
l (1 + (−1)N+l)

N∑

j=0

uN (tNT,j)TT,l(t
N
T,j) + (−1)N+1U0. (2.30)

(ii). The simple iterative method. We may use a simple iterative algorithm (also called

successive substitution method) presented in Algorithm (2.1) to evaluate the expansion coeffi-

cients {ûk}N+1
k=0 .
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Algorithm 2.1: The simple iterative algorithm.

Step 1. Provide the initial guess of uN(t) at the collocation points {tNT,j}Nj=0;

Step 2. Evaluate the values of f(uN (tNT,j), t
N
T,j), 0 ≤ j ≤ N ;

Step 3. Compute the coefficients {f̂k}Nk=0 by (2.22);

Step 4. Compute the coefficients {ûk}N+1
k=0 by (2.24) and (2.25);

Step 5. Update the data of uN(t) at the collocation points {tNT,j}Nj=0 by (2.20);

Step 6. Repeat Steps 2-5 until the maximum of the absolute difference between

two consecutive values of {uN(tNT,j)}Nj=0 is less than the desired tolerance;

Step 7. Compute uN(T ) =
∑N+1

k=0 ûk by (2.20).

The simple iterative algorithm has the following attractive advantages:

• It is much simpler and easier to design codes;

• We do not require to solve in each iteration a linear system of equations;

• The discrete Chebyshev transform (treated as a Fourier-cosine transform) can be per-

formed.

2.3. Error analysis

In this subsection, we shall analyze the numerical error of the single interval scheme (2.16).

As usual, we first compare uN(t) with the interpolation IT,NU(t). For this purpose, let

GN
T,1(t) = IT,N

d

dt
U(t)− d

dt
IT,NU(t).

Then we have from (1.1) that

d

dt
IT,NU(tNT,k) = f(U(tNT,k), t

N
T,k)−GN

T,1(t
N
T,k), 0 ≤ k ≤ N. (2.31)

Further, let EN (t) = uN(t)− IT,NU(t). Subtracting (2.31) from (2.16) yields





d

dt
EN (tNT,k) = GN

T,1(t
N
T,k) +GN

T,2(t
N
T,k), 0 ≤ k ≤ N,

EN (0) = U0 − IT,NU(0),
(2.32)

where

GN
T,2(t

N
T,k) = f(uN(tNT,k), t

N
T,k)− f(IT,NU(tNT,k), t

N
T,k).

For simplicity, we denote RN (t) = t−1(EN (t) − EN (0)). Clearly RN (t) ∈ PN (0, T ). Hence
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by integrating by parts, we deduce that

2((T − t)RN ,
d

dt
(tRN ))T,N = 2((T − t)RN ,

d

dt
(tRN ))T,ω

= 2

∫ T

0

R2
N (t)

T − t√
t(T − t)

dt+ 2

∫ T

0

RN (t)
d

dt
RN (t)

√
t(T − t)dt

= 2

∫ T

0

R2
N (t)

T − t√
t(T − t)

dt+R2
N (t)

√
t(T − t)

∣∣∣
T

0
−
∫ T

0

R2
N (t)

T − 2t

2
√
t(T − t)

dt

=

∫ T

0

R2
N (t)

1√
t(T − t)

(
3

2
T − t)dt ≥ T

2
‖RN‖2T,ω. (2.33)

On the other hand, by virtue of (2.32), we get that

2((T − t)RN ,
d

dt
(tRN ))T,N = 2((T − t)RN ,

d

dt
(EN − EN (0)))T,N

= 2((T − t)RN , G
N
T,1 +GN

T,2)T,N = AN
T,1 +AN

T,2, (2.34)

where

AN
T,1 = 2((T − t)RN , G

N
T,1)T,N , AN

T,2 = 2((T − t)RN , G
N
T,2)T,N .

Moreover, due to (2.15), we obtain that for any ε > 0,

|AN
T,1| ≤ 2‖(T − t)RN‖T,N‖GN

T,1‖T,N ≤ 2‖(T − t)RN‖T,ω‖GN
T,1‖T,ω

≤ ε

T
‖(T − t)RN‖2T,ω + ε−1T ‖GN

T,1‖2T,ω

≤ εT ‖t−1(EN − EN (0))‖2T,ω + ε−1T ‖GN
T,1‖2T,ω. (2.35)

Therefore, we derive from (2.33)-(2.35) that

(1
2
− ε

)
T ‖t−1(EN − EN (0))‖2T,ω ≤ ε−1T ‖GN

T,1‖2T,ω +AN
T,2. (2.36)

We next estimate ‖GN
T,1‖T,ω. Let χ(x) = 1− x2 and IN be the standard Chebyshev-Gauss

interpolation on the interval (−1, 1). Denote by c a generic positive constant independent of

T, N and any function. According to (4.24) of [17] with α = β = γ = δ = − 1
2 , for any

v ∈ Hr

χ
r− 1

2

(−1, 1) and integer 1 ≤ r ≤ N + 1,

‖INv − v‖2L2

χ
−

1

2

(−1,1) ≤ cN−2r

∫ 1

−1

χr− 1

2 (x)

(
dr

dxr
v(x)

)2

dx. (2.37)

Moreover, by (4.25) of [17] with α = β = − 1
2 , for any v ∈ Hr

χ
r− 3

2

(−1, 1) and integer 2 ≤ r ≤
N + 1, ∥∥∥∥

d

dx
(INv − v)

∥∥∥∥
2

L2

χ
−

1

2

(−1,1)

≤ cN4−2r

∫ 1

−1

χr− 3

2 (x)

(
dr

dxr
v(x)

)2

dx. (2.38)

Accordingly,

‖IT,Nv − v‖2T,ω ≤ cN−2r

∫ T

0

ωr− 1

2 (t)

(
dr

dtr
v(t)

)2

dt, (2.39)

∥∥∥∥
d

dt
(IT,Nv − v)

∥∥∥∥
2

T,ω

≤ cN4−2r

∫ T

0

ωr− 3

2 (t)

(
dr

dtr
v(t)

)2

dt. (2.40)
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Hence by (2.39) with
dU

dt
and r− 1, instead of v and r, we have that for integer 2 ≤ r ≤ N +2,

∥∥∥∥IT,N

d

dt
U − d

dt
U

∥∥∥∥
2

T,ω

≤ cN2−2r

∫ T

0

ωr− 3

2 (t)

(
dr

dtr
U(t)

)2

dt. (2.41)

The above with (2.40) gives that for integer 2 ≤ r ≤ N + 1,

‖GN
T,1‖2T,ω ≤ 2

∥∥∥∥
d

dt
(IT,NU − U)

∥∥∥∥
2

T,ω

+ 2

∥∥∥∥IT,N

d

dt
U − d

dt
U

∥∥∥∥
2

T,ω

≤ cN4−2r

∫ T

0

ωr− 3

2 (t)

(
dr

dtr
U(t)

)2

dt.

(2.42)

Substituting (2.42) into (2.36), we obtain that
(
1

2
− ε

)
T ‖t−1(EN − EN (0))‖2T,ω

≤ AN
T,2 + cε−1TN4−2r

∫ T

0

ωr− 3

2 (t)

(
dr

dtr
U(t)

)2

dt. (2.43)

Theorem 2.1. Assume that f(z, t) fulfills the Lipschitz condition (2.17), and (2.18) holds.

Then for any U ∈ Hr

ω
r− 3

2

(0, T ) with integers 2 ≤ r ≤ N + 1, we have

‖U − uN‖2L2(0,T ) ≤
T

2
‖U − uN‖2T,ω ≤ cβT

3N4−2r

∫ T

0

ωr− 3

2 (t)

(
dr

dtr
U(t)

)2

dt, (2.44)

|U(T )− uN(T )|2 ≤ cβT
2N4−2r

∫ T

0

ωr− 3

2 (t)

(
dr

dtr
U(t)

)2

dt, (2.45)

where cβ is a positive constant depending only on β.

Proof. By (2.17) and (2.15), we deduce that

‖GN
T,2‖2T,N =

π

N + 1

N∑

j=0

|f(uN(tNT,j), t
N
T,j)− f(IT,N (U(tNT,j), t

N
T,j)|2

≤ πγ2

N + 1

N∑

j=0

|uN (tNT,j)− IT,NU(tNT,j)|2 = γ2‖uN − IT,NU‖2T,N

≤ γ2‖uN − IT,NU‖2T,ω = γ2‖EN‖2T,ω.

(2.46)

The above with (2.15) gives that

AN
T,2 ≤ γ‖(T − t)RN‖2T,N + γ−1‖GN

T,2‖2T,N

≤ γ‖(T − t)RN‖2T,ω + γ‖EN‖2T,ω

≤ γT 2‖t−1(EN − EN (0))‖2T,ω + γ‖EN‖2T,ω.

(2.47)

Substituting (2.47) into (2.43), we derive that
(
1

2
− ε− γT

)
T ‖t−1(EN − EN (0))‖2T,ω

≤ γ‖EN‖2T,ω + cε−1TN4−2r

∫ T

0

ωr− 3

2 (t)

(
dr

dtr
U(t)

)2

dt. (2.48)
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Moreover, a direct calculation shows that

‖EN‖2T,ω ≤ (1 + ε)‖EN − EN (0)‖2T,ω + (1 + ε−1)‖EN(0)‖2T,ω

≤ (1 + ε)T 2‖t−1(EN − EN (0))‖2T,ω + π(1 + ε−1)|EN (0)|2. (2.49)

Therefore, by (2.48) and (2.49) we get

(1
2
− ε− γT

)
T ‖EN‖2T,ω

≤(1 + ε)T 2

(
γ‖EN‖2T,ω + cε−1TN4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt

)

+ π(1 + ε−1)
(1
2
− ε− γT

)
T |EN(0)|2,

(2.50)

or equivalently,

(1
2
− ε− 2γT − εγT

)
‖EN‖2T,ω

≤ cε−1T 2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt+ π(1 + ε−1)
(1
2
− ε− γT

)
|EN (0)|2. (2.51)

On the other hand, for any v ∈ H1

ω
−

1

2

(0, T ) (see Appendix B of this paper),

max
t∈[0,T ]

|v(t)|2 ≤ π

4

(
‖v‖2T,ω + T 2‖dv

dt
‖2T,ω

)
. (2.52)

A combination of (2.39), (2.40) and (2.52) leads to

|EN (0)|2 = |IT,NU(0)− U(0)|2 ≤ π

4

(
‖IT,NU − U‖2T,ω + T 2‖ d

dt
(IT,NU − U)‖2T,ω

)

≤ cN−2r

∫ T

0

ωr− 1

2 (t)
( dr
dtr

U(t)
)2

dt+ cT 2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt

≤ cT 2N−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt+ cT 2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt

≤ cT 2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt. (2.53)

Substituting (2.53) into (2.51), we observe that

(1
2
− ε− 2γT − εγT

)
‖EN‖2T,ω ≤ cε−1T 2N4−2r

∫ T

0

ωr− 3

2

( dr
dtr

U(t)
)2

dt. (2.54)

Take ε =
1

4
−γT

1+γT
. Then by (2.18) we obtain that for certain constant cβ > 0,

‖EN‖2T,ω ≤ cβT
2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt. (2.55)

The above with (2.39) gives that

‖U − u
N‖2T,ω ≤ 2‖U − IT,NU‖2T,ω + 2‖IT,NU − u

N‖2T,ω

≤ cN
−2r

∫ T

0

ω
r− 1

2 (t)
(
dr

dtr
U(t)

)2

dt+ cβT
2
N

4−2r

∫ T

0

ω
r− 3

2 (t)
(
dr

dtr
U(t)

)2

dt

≤ cβT
2
N

4−2r

∫ T

0

ω
r− 3

2 (t)
(
dr

dtr
U(t)

)2

dt.

(2.56)
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In particular,

∫ T

0

(
U(t)− uN (t)

)2

dt ≤ T

2

∫ T

0

(
U(t)− uN (t)

)2

ω− 1

2 (t)dt =
T

2
‖U − uN‖2T,ω. (2.57)

A combination of the previous two inequalities leads to (2.44). It remains to estimate (2.45).

Clearly,

|U(T )− uN(T )|2 ≤ 2|U(T )− IT,NU(T )|2 + 2|IT,NU(T )− uN(T )|2. (2.58)

According to (2.52), we have

|U(T )− IT,NU(T )|2 ≤ π

4

(
‖U − IT,NU‖2T,ω + T 2‖ d

dt
(U − IT,NU)‖2T,ω

)
. (2.59)

The above with (2.39) and (2.40) gives that

|U(T )− IT,NU(T )|2 ≤ cT 2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt. (2.60)

We next estimate |IT,NU(T )− uN(T )|2. By (2.52) we obtain that

|IT,NU(T )− uN(T )|2 ≤ π

4

(
‖IT,NU − uN‖2T,ω + T 2‖ d

dt
(IT,NU − uN)‖2T,ω

)

=
π

4

(
‖EN‖2T,ω + T 2‖ d

dt
EN‖2T,ω

)
. (2.61)

Moreover, by (2.9) and (2.32) we derive that

‖ d
dt
EN‖2T,ω = (

d

dt
EN ,

d

dt
EN )T,N =

(
GN

T,1 +GN
T,2,

d

dt
EN

)
T,N

≤
(
‖GN

T,1‖T,N + ‖GN
T,2‖T,N

)
‖ d
dt
EN‖T,N

=
(
‖GN

T,1‖T,ω + ‖GN
T,2‖T,N

)
‖ d
dt
EN‖T,ω, (2.62)

or equivalently,

‖ d
dt
EN‖T,ω ≤ ‖GN

T,1‖T,ω + ‖GN
T,2‖T,N . (2.63)

Substituting (2.42), (2.46) and (2.55) into (2.63), we get that

∥∥∥ d
dt
EN

∥∥∥
2

T,ω
≤ cN4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt

+ cβγ
2T 2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt. (2.64)

Since 0 < γT ≤ β < 1
4 , we have from (2.61), (2.64) and (2.55) that

|IT,NU(T )− uN(T )|2 ≤ cβT
2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt. (2.65)

Finally, a combination of (2.58), (2.60) and (2.65) leads to

|U(T )− uN(T )|2 ≤ cβT
2N4−2r

∫ T

0

ωr− 3

2 (t)
( dr
dtr

U(t)
)2

dt. (2.66)

This leads to (2.45). �
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2.4. Numerical results

In this subsection, we present some numerical results to illustrate the efficiency of the

aforementioned single interval algorithm. Throughout this paper, we take, for simplicity, the

initial guess of the numerical solutions at the collocation points to be a zero vector.

Consider the following problem:





d

dt
U(t) = exp

(
1
5 sin (U(t))

)
+ f(t), 0 < t ≤ T,

U(0) = 1,
(2.67)

where

f(t) =
3

2
(t+ 1)

1

2 + 10 cos 2t− exp
(1
5
sin((t+ 1)

3

2 + 5 sin 2t)
)
. (2.68)
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Fig. 2.1. The point-wise absolute errors and

the discrete L2−errors at T = 0.5.
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Fig. 2.2. The point-wise absolute errors and

the discrete L2−errors at T = 0.8.
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Fig. 2.3. The simple iterative algorithm

vs. the N + 1 stage implicit Legendre-Gauss

Runge-Kutta method at T = 0.5, 0.8.
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Fig. 2.4. The simple iterative algorithm vs.

the N + 1 stage implicit Legendre-Gauss-

Radau Runge-Kutta methods at T = 0.5.

The exact solution of (2.67) is given by U(t) = (t + 1)
3

2 + 5 sin 2t, which oscillates and

grows to infinity as t→ ∞. Eq. (2.67) fulfills the Lipschitz condition (2.17) with γ = 1
5 exp(

1
5 ).

Therefore, as predicted by (2.44) and (2.45), for any T < 1
4γ = 5

4 exp(− 1
5 ), the point-wise

absolute errors |U(T )− uN (T )| and the L2(0, T )−errors decay exponentially as N → ∞.
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Fig. 2.5. The simple iterative algorithm vs.

the N + 1 stage implicit Legendre-Gauss-

Radau Runge-Kutta methods at T = 0.8.
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Fig. 2.6. The simple iterative algorithm vs.

the N + 1 stage implicit Legendre-Gauss-

Lobatto Runge-Kutta methods at T = 0.5.
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Fig. 2.7. The simple iterative algorithm vs.

the N + 1 stage implicit Legendre-Gauss-

Lobatto Runge-Kutta methods at T = 0.8.
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Fig. 2.8. The point-wise absolute errors and

the discrete L2−errors at T = 10.

We use the simple iterative algorithm described in Table 2.1 of Subsection 2.2 to resolve

the problem (2.67). For description of numerical errors, we denote by EN
p (T ) and EN

T the

point-wise absolute errors and the discrete L2−errors, respectively, i.e.,

EN
p (T ) = |U(T )− uN(T )|, EN

T = ‖U − uN‖T,N .

In Figs. 2.1 and 2.2, we plot the point-wise absolute errors log10E
N
p (T ) and the discrete

L2−errors log10E
N
T at T = 0.5, 0.8 with various values of N. Clearly, the numerical errors

decay exponentially as N increases. This coincides very well with theoretical analysis.

In Fig. 2.3, we compare the simple iterative algorithm described in Table (2.1) with the

N + 1 stage implicit Legendre-Gauss Runge-Kutta method. In Figs. 2.4 and 2.5, we compare

the simple iterative algorithm with the N + 1 stage implicit Legendre-Gauss-Radau Runge-

Kutta methods (Radau IA and Radau IIA) as presented in [1, 10, 13, 24, 29] at T = 0.5, 0.8,

respectively. In Figs. 2.6 and 2.7, we compare the simple iterative algorithm with the N + 1

stage implicit Legendre-Gauss-Lobatto Runge-Kutta methods (Lobatto IIIA, Lobatto IIIB and

Lobatto IIIC) as presented in [1, 10, 13, 24, 29] at T = 0.5, 0.8, respectively. We find that the

simple iterative algorithm is accurate and stable. We also see the instability of some high-order

Runge-Kutta methods.

It is pointed out that our algorithms often work very well even for large T. In Fig. 2.8, we
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plot the point-wise absolute errors log10E
N
p (T ) and the discrete L2−errors log10E

N
T at T = 10

with various values of N, using the simple iterative algorithm. Clearly, the numerical errors

decay exponentially as N increases. However, if we use Legendre-Gauss-type Runge-Kutta

methods with T = 10, the numerical solution will not converge to the correct value.

3. A Multi-interval Chebyshev-Gauss Collocation method

In the previous section, we investigated the single interval Chebyshev-Gauss collocation

method. The numerical errors decay very rapidly as N and r increase. However, in actual

computation, it is not effective to resolve (2.16) with very large mode N. On the other hand,

for ensuring the convergence of scheme (2.16), the length of T is limited sometimes, such as the

condition (2.18). To remedy these deficiencies, it is advisable to partition the interval (0, T )

into a finite number of subintervals and solve the equations subsequently on each subinterval,

using the suggested algorithms in Subsection 2.2 with moderate mode N . This technique

simplifies computation, saves work, and still keeps the spectral accuracy. Moreover, it also

provides us sufficient flexibility to adapt to the evolutionary process of solutions, e.g., we may

use geometrically refined steps and linearly increasing degree vectors to resolve the singular

behavior of the solution.

3.1. The multi-interval scheme

Let M be any positive integer and τ = T
M
. Replacing T by τ in (2.16) and all formulas in

Section 2, we can derive an alternative algorithm, with which we obtain the numerical solution

uN1 (t) for 0 ≤ t ≤ τ. In particular, uN1 (0) = U0. Next, we evaluate the numerical solutions

uNm(t) ∈ PN+1(0, τ), 2 ≤ m ≤M, such that




d

dt
uNm(tNτ,k) = f(uNm(tNτ,k),mτ − τ + tNτ,k), 0 ≤ k ≤ N, 2 ≤ m ≤M,

uNm(0) = uNm−1(τ), 2 ≤ m ≤M.
(3.1)

Finally, the global numerical solution of (2.16) is given by

uN (t+mτ − τ) = uNm(t), 0 ≤ t ≤ τ, 1 ≤ m ≤M. (3.2)

According to Proposition 2.1, the method (3.1) also admits a unique solution, provided that

0 < γτ ≤ β < 1
4 .
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Fig. 3.1. The multi-interval method (3.1) vs. the N + 1 stage implicit Legendre-Gauss Runge-Kutta

method with (a) τ = 0.5 and (b) τ = 0.8.
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Fig. 3.2. The multi-interval method (3.1) vs. the N + 1 stage implicit Legendre-Gauss-Radau IIA

Runge-Kutta method with (a) τ = 0.5 and (b) τ = 0.8.
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Fig. 3.3. The multi-interval method (3.1) vs. the N + 1 stage implicit Legendre-Gauss-Lobatto IIIA

Runge-Kutta method with (a) τ = 0.5 and (b) τ = 0.8.

3.2. Numerical results

In this subsection, we present some numerical results to illustrate the efficiency of the multi-

interval method.

3.2.1. Nonlinear problems

We first consider the problem (2.67), and resolve it numerically, using the multi-interval

scheme (3.1), combined with the simple iterative algorithm described in Table 2.1 of Subsection

2.2 at each time step.

In Fig. 3.1, we compare the multi-interval method (3.1) with the usual N +1 stage implicit

Legendre-Gauss Runge-Kutta method, by taking τ = 0.5, 0.8 and N = 6, 20, respectively.

In Fig. 3.2, we compare the multi-interval method (3.1) with the usual N + 1 stage implicit

Legendre-Gauss-Radau IIA Runge-Kutta method, by taking τ = 0.5, 0.8 and N = 6, 40,

respectively. In Fig. 3.3, we compare the multi-interval method (3.1) with the usual N + 1

stage implicit Legendre-Gauss-Lobatto IIIA Runge-Kutta method, by taking τ = 0.5, 0.8 and

N = 6, 40, respectively. We find that our method provides more accurate numerical results,

especially for large N .
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We next consider another nonlinear problem (cf. [26]):

{
y′(t) = −ǫ−1(y3(t)− g3(t)) + g′(t), t ∈ (0, T ],

y(0) = 1,
(3.3)

with g(t) = cos(t) and the exact solution given by y(t) = cos(t).

Denoted by yN(t) the global numerical solutions, and Err the maximum of the absolute

errors:

Err = max
j

|y(jτ) − yN(jτ)|. (3.4)

We use the multi-interval scheme (3.1) to resolve (3.3) numerically. In Figs. 3.4, we plot

the absolute errors Err of this algorithm, by using the Newton iterative method (NIM) and the

simple iterative method (SIM) with ǫ = 1 and T = 1000. In Table 3.1, we list the CPU time

consumption between NIM and SIM. We observe that the simple iterative method takes less

computation time (due to lower cost at each iteration) and achieves the same level of accuracy.

But the convergence behaviors of two iterative methods are different. In Fig. 3.5, we also take

ǫ = 10−3 and plot the absolute errors at T = 1, using the Newton iterative method. Clearly, the

numerical errors decay exponentially as N increases. However, in this case the simple iterative

method does not converge to the solution.

Table 3.1: The comparison of CPU time consumption between NIM and SIM.

τ = 1 τ = 0.5 τ = 0.1 τ = 0.05

N NIM SIM NIM SIM NIM SIM NIM SIM

2 8.72 3.52 17.56 7.58 87.60 37.46 175.92 74.70

3 14.10 3.94 28.80 8.98 141.01 43.67 287.81 88.02

4 21.65 4.55 44.03 10.15 218.03 50.52 411.71 101.77

5 31.38 5.48 64.92 11.43 316.88 56.27 595.71 115.08

6 43.27 5.77 89.89 13.68 434.30 63.68

7 58.39 6.49 117.92 14.05 585.12 70.48

8 75.72 6.91 153.91 15.76

9 96.56 7.47 195.55 16.97

10 121.69 8.09
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Fig. 3.4. The maximum of the absolute errors of (3.3) by (a) the Newton iterative method and (b) the

simple iterative method with ǫ = 1 and T = 1000.



76 X. YANG AND Z. WANG

2 3 4 5 6 7 8 9 10 11
−18

−16

−14

−12

−10

−8

−6

−4

−2

N

lo
g 10

E
rr

 

 

τ=1
τ=0.5
τ=0.1
τ=0.05
τ=0.01

Fig. 3.5. The maximum of the absolute errors

of (3.3) by the Newton iterative method with

ǫ = 10−3 and T = 1.
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Fig. 3.6. The maximum of the absolute errors

of scheme (3.6) with moderate τ and N .
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Fig. 3.7. Numerical errors of (3.10) with a =

b = 1 and τ = 0.1.
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Fig. 3.8. Numerical errors of (3.10) with a =

b = 1 and τ = 0.05.

3.2.2. Stiff problems

We consider two linear stiff problems in this subsection. The first one is the Prothero-

Robinson equation (cf. [33]):

{
y′(t) = λ(y(t) − g(t)) + g′(t), t ∈ [0, 10],

y(0) = 0,
(3.5)

with λ = −106, g(t) = sin(t) and the exact solution given by y(t) = sin(t).

We use the multi-interval scheme (3.1) to resolve (3.5) numerically. At each time step, we

use the algorithm described in Subsection 2.2. More precisely, we use the following scheme:

d

dt
yNm(tNτ,k) = λ

(
yNm(tNτ,k)− g(mτ − τ + tNτ,k)

)

+g′(mτ − τ + tNτ,k), 0 ≤ k ≤ N, 1 ≤ m ≤M,

yNm(0) = yNm−1(τ), 2 ≤ m ≤M,

yN1 (0) = 0,

(3.6)

where τ = 10
M
, and yNm(t) is the numerical solutions of y(t) at the interval (mτ − τ,mτ).
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For clarity, we next describe the numerical implementation. Let

yNm(t) =

N+1∑

j=0

ŷmj Tτ,j(t), ∀ t ∈ (0, τ). (3.7)

Then, by (2.13) and (2.14) we get

Iτ,NyNm(t) =

N∑

j=0

ŷmj Tτ,j(t).

Hence, by (2.24) we obtain that

ŷmN+1 =
τ

4(N + 1)
(λŷmN − λamN + bmN ), ŷmN =

τ

4N
(λŷmN−1 − λamN−1 + bmN−1),

ŷmj =
τ

4j

(
cj−1(λŷ

m
j−1 − λamj−1 + bmj−1)− (λŷmj+1 − λamj+1 + bmj+1)

)
, 1 ≤ j ≤ N − 1,

(3.8)

where amj and bmj are the expansion coefficients of Iτ,Ng(mτ − τ + t) and Iτ,Ng′(mτ − τ + t),

respectively. Due to (3.7), we have

yNm(0) =
N+1∑

j=0

(−1)j ŷmj , =⇒ ŷm0 = yNm(0)−
N+1∑

j=1

(−1)j ŷmj . (3.9)

From (3.8) and (3.9), we further derive a system of N + 1 linear algebraic equations in N + 1

unknowns {ŷmj }N+1
j=1 , which can be solved efficiently.

Next denoted by yN (t) the global numerical solutions, and Err the maximum of the absolute

errors as in (3.4).

In Fig. 3.6, we present the absolute errors Err of this algorithm, with moderate τ and N .

They show that for stiff problem (3.5), our method provides accurate numerical results.

We next consider another stiff system (cf. [29]):





d

dt
P (t) = −2P (t) +Q(t) + 2 sin t, 0 < t ≤ 1,

d

dt
Q(t) = 998P (t)− 999Q(t) + 999(cos t− sin t), 0 < t ≤ 1.

(3.10)

The eigenvalues of coefficient matrix are λ1 = −1000 and λ2 = −1. It is easy to verify that

P (t) = ae−t + be−1000t + sin t, Q(t) = ae−t − 998be−1000t + cos t, (3.11)

where a and b are arbitrary real numbers.

We use the multi-interval scheme (3.1) to resolve (3.10) numerically. For convenience, we

introduce some notations:

• CGC: The multi-interval Chebyshev-Gauss collocation scheme (3.1), combined with the

algorithm in Subsection 2.2 at each time step, (also cf. (3.8) for a similar process);

• LGRK: N + 1 stage Legendre-Gauss Runge-Kutta method;

• LGRRK: N + 1 stage Legendre-Gauss-Radau IIA Runge-Kutta method;

• LGLRK: N + 1 stage Legendre-Gauss-Lobatto IIIA Runge-Kutta method.



78 X. YANG AND Z. WANG

3 7 11 15 19 23 27 31 35 39 43 47 51
−14

−12

−10

−8

−6

−4

−2

0

2

4

N

lo
g 10

E
m

ax

 

 

LGRK
LGRRK
LGLRK
CGC

Fig. 3.9. Numerical errors of (3.10) with a =

b = 1 and τ = 0.01.
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Fig. 3.10. Numerical errors of (3.10) with a =

− 1

999
, b = 1

999
and τ = 0.1.
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Fig. 3.11. Numerical errors of (3.10) with a =

− 1

999
, b = 1

999
and τ = 0.05.

3 7 11 15 19 23 27 31 35 39 43 47 51
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

N

lo
g 10

E
m

ax

 

 

LGRK
LGRRK
LGLRK
CGC

Fig. 3.12. Numerical errors of (3.10) with a =

− 1

999
, b = 1

999
and τ = 0.01.

Let M be a positive integer and τ = 1
M
. Denoted by pN (t) and qN (t) the global numerical

solutions. We measure the numerical errors by the maximum norm:

Emax = max
1≤j≤M

(
|P (jτ) − pN (jτ)|, |Q(jτ) − qN (jτ)|

)
.

In Figs. 3.7-3.9, we plot the values of log10Emax of our methods (CGC) and various N + 1

stage Runge-Kutta methods for problem (3.10) with a = b = 1 and τ = 0.1, 0.05, 0.01,

respectively.

In Figs. 3.10-3.12, we also plot the values of log10Emax of our methods and various N + 1

stage Runge-Kutta methods for problem (3.10) with a = − 1
999 , b =

1
999 and τ = 0.1, 0.05, 0.01,

respectively.

We observe again that for stiff system (3.10), the multi-interval scheme (3.1) also provides

more accurate and stable numerical results, especially for large τ and N .

3.2.3. Oscillating solution

We consider the second order ODE (cf. [32]):





y′′(t) + λ2y(t) = a sin(λt), 0 < t ≤ 1,

y(0) = 1,

y′(0) = − a
2λ .

(3.12)
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Fig. 3.13. The numerical errors of problem

(3.13) with moderate τ and N .
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Fig. 3.14. The maximum of the absolute errors

of problem (3.15) with moderate τ and N .

It can be converted to a system of the first order equations





y′1(t) = λy2(t), 0 < t ≤ 1,

y′2(t) = −λy1(t) + a
λ
sin(λt), 0 < t ≤ 1,

y1(0) = 1,

y2(0) = − a
2λ2 .

(3.13)

The exact solutions are

{
y1(t) = (1− at

2λ ) cos(λt),

y2(t) = −(1− at
2λ) sin(λt) − a

2λ2 cos(λt).
(3.14)

We take a = 100 and λ = 1000 as in [32]. Clearly, the solutions are highly oscillating.

We resolve (3.13) using the multi-interval scheme (3.1). In Fig. 3.13, we plot the numerical

errors Emax of this algorithm, with moderate τ and N . They indicate that our algorithm is

very effective for highly oscillating solutions. It is noted that Petzold [32] also provided some

numerical results with the error of order 10−3 ∼ 10−5.

3.2.4. Steep gradient solution

We consider the nonlinear ODE:

U ′(t) =
U(t)

U2(t) + 1
+ (−100t+ 500) exp(−50(t− 5)2)

− exp(−50(t− 5)2)

exp(−100(t− 5)2) + 1
, t ∈ [0, 10]. (3.15)

The exact solution U(t) = exp(−50(t− 5)2) is a Gaussian function, which has extremely steep

gradients near t = 5.

We resolve (3.15) numerically using the multi-interval scheme (3.1), combined with the

simple iterative algorithm described in Table 2.1. In Fig. 3.14, we plot the absolute errors Err

of this algorithm, with moderate τ and N . They indicate that our algorithm is also valid even

for steep gradient solutions.
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3.2.5. Long time calculation

We consider the simple hamiltonian system:





P ′(t) = −4Q(t), 0 < t ≤ T,

Q′(t) = P (t), 0 < t ≤ T,

P (0) = 1, Q(0) = 0.

(3.16)

Obviously, P (t) = cos(2t) and Q(t) = 1
2 sin(2t).

We resolve (3.16) using the multi-interval scheme (3.1). More precisely, we use the following

scheme:





d

dt
pNm(tNτ,k) = −4qNm(tNτ,k), 0 ≤ k ≤ N, 1 ≤ m ≤M,

d

dt
qNm(tNτ,k) = pNm(tNτ,k), 0 ≤ k ≤ N, 1 ≤ m ≤M,

pNm(0) = pNm−1(τ), qNm(0) = qNm−1(τ), 2 ≤ m ≤M,

pN1 (0) = 1, qN1 (0) = 0,

(3.17)

where τ = T
M
, and pNm(t) and qNm(t) are the numerical solutions of P (t) and Q(t) at the interval

(mτ − τ,mτ).

For clarity, we describe the numerical implementation. Let

pNm(t) =
N+1∑

j=0

p̂mj Tτ,j(t), qNm(t) =
N+1∑

j=0

q̂mj Tτ,j(t), ∀ t ∈ (0, τ). (3.18)

Then, by (2.13) and (2.14) we get that

Iτ,NpNm(t) =

N∑

j=0

p̂mj Tτ,j(t), Iτ,NqNm(t) =

N∑

j=0

q̂mj Tτ,j(t).

Hence, by (2.24) we obtain that





p̂mN+1 = − τ q̂mN
N + 1

, p̂mN = −τ q̂
m
N−1

N
, p̂mj = −

τ(cj−1q̂
m
j−1 − q̂mj+1)

j
, 1 ≤ j ≤ N − 1,

q̂mN+1 =
τ p̂mN

4(N + 1)
, q̂mN =

τ p̂mN−1

4N
, q̂mj =

τ(cj−1p̂
m
j−1 − p̂mj+1)

4j
, 1 ≤ j ≤ N − 1.

(3.19)

Due to (3.18), we have

pNm(0) =

N+1∑

j=0

(−1)j p̂mj , qNm(0) =

N+1∑

j=0

(−1)j q̂mj . (3.20)
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Thus, by eliminating the variables p̂mj , 0 ≤ j ≤ N + 1 and q̂m0 in (3.19), we derive that





(1 +
5

8
τ2)q̂m1 − 4

3
τ2q̂m2 +

τ2

8
q̂m3 + τ2

N∑

j=3

(−1)j+1 j2

j2 − 1
q̂mj + (−1)Nτ2q̂mN+1

=
τ

2
pNm(0)− τ2qNm(0),

τ2

4

N+1∑

j=1

(−1)j+1q̂mj + (1− τ2

6
)q̂m2 +

τ2

24
q̂m4 = −τ

2

4
qNm(0),

τ2

4j(j − 1)
q̂mj−2 + (1− τ2

2(j2 − 1)
)q̂mj +

τ2

4j(j + 1)
q̂mj+2 = 0, 3 ≤ j ≤ N − 2,

τ2

4(N − 1)(N − 2)
q̂mN−3 + (1− τ2

2N(N − 2)
)q̂mN−1 = 0,

τ2

4N(N − 1)
q̂mN−2 + (1− τ2

4N(N − 1)
)q̂mN = 0,

τ2

4N(N + 1)
q̂mN−1 + q̂mN+1 = 0.

(3.21)

In actual computation, we first compute the coefficients {q̂mj }N+1
j=1 by (3.21), and then com-

pute the coefficients q̂m0 and {p̂mj }N+1
j=0 by (3.20) and (3.19).

Next let pN (t) and qN (t) be the global numerical solutions of P (t) and Q(t), and denote

the point-wise absolute error by

EN (t) =
√
|pN (t)− P (t)|2 + |qN (t)−Q(t)|2.

For convenience, we also introduce some notations:

• CGC: Chebyshev-Gauss collocation method presented in this subsection;

• LGC: Legendre-Gauss collocation method presented in [18];

• LGRC: Legendre-Gauss-Radau collocation method presented in [45];

• LGLC: Legendre-Gauss-Lobatto collocation method presented in [19].

In Tables 3.2 and 3.3, we list the point-wise errors EN (t) and the corresponding CPU time

(CPUT) of various numerical methods at t = 107, with moderate τ and N . They show that our

method costs less computational time and provides more accurate and stable numerical results.

4. Concluding Discussions

In this paper, we proposed the single interval and multi-interval Chebyshev-Gauss collo-

cation methods for ODEs. We also suggested two algorithms, which can be implemented

efficiently. These approaches have several fascinating features:

• The single interval Chebyshev-Gauss collocation method is easy to implement, and enjoys

computational efficiency, accuracy and stability over some popular numerical approaches.
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Table 3.2: Comparison of various numerical methods for problem (3.16).

CGC LGRK LGRRK LGLRK

τ N EN(t) CPUT EN(t) CPUT EN (t) CPUT EN(t) CPUT

0.1 7 6.62e-10 1.84e3 1.45e-7 1.65e3 1.27e-8 1.68e3 2.13e-9 1.65e3

0.25 9 2.19e-10 7.52e2 1.38e-5 7.12e2 9.13e-9 7.20e2 1.47e-8 6.86e2

0.5 11 7.00e-11 3.90e2 2.36e-4 3.64e2 5.16e-9 3.70e2 1.50e-9 3.49e2

1 13 2.89e-10 2.00e2 6.46e-2 1.89e2 1.66e-9 1.97e2 5.00e-9 1.82e2

2 16 7.31e-10 1.03e2 7.51e-1 1.00e2 3.81e-9 1.04e2 2.61e-9 95.82

4 21 1.70e-9 55.31 7.51e-1 6.59e2 1.17e-7 1.02e2 1.09e-7 97.38

8 33 1.83e-10 41.47 – – 7.36e-2 1.86e2 1.18e-1 1.78e2

16 44 1.35e-9 24.40 – – – – – –

32 70 4.64e-10 16.26 – – – – – –

Table 3.3: Comparison of various numerical methods for problem (3.16).

CGC LGC LGRC LGLC

τ N EN(t) CPUT EN(t) CPUT EN (t) CPUT EN (t) CPUT

0.1 7 6.62e-10 1.84e3 2.73e-8 2.83e3 1.28e-6 2.58e3 2.53e-6 2.37e3

0.25 9 2.19e-10 7.52e2 1.68e-8 1.21e3 2.87e-7 1.17e3 1.94e-7 1.01e3

0.5 11 7.00e-11 3.90e2 1.32e-8 6.64e2 9.38e-8 6.26e2 1.51e-7 5.37e2

1 13 2.89e-10 2.00e2 2.25e-8 3.47e2 1.20e-7 3.33e2 1.85e-7 2..84e2

2 16 7.31e-10 1.03e2 1.58e-9 1.87e2 4.14e-7 1.78e2 3.41e-7 1.66e2

4 21 1.70e-9 55.31 2.31e-8 1.13e2 2.04e-7 1.05e2 1.60e-7 95.27

8 33 1.83e-10 41.47 2.32e-9 80.40 8.68e-8 77.38 1.70e-7 67.91

16 44 1.35e-9 24.40 1.71e-8 53.13 7.09e-8 50.30 3.07e-7 45.82

32 70 4.64e-10 16.26 1.44e-9 44.61 6.84e-8 42.02 1.09e-7 39.81

• The multi-interval Chebyshev-Gauss collocation method can not only help us to solve the

resultant system more efficiently and economically, but also provide us sufficient flexibility

to adapt to the evolutionary process of solutions. Moreover, the numerical results indi-

cate that the convergence can be obtained by refining the time steps (h-method) and/or

increasing the order of trial functions (p-method).

• The suggested approaches often work very well even for large step-size τ.

Numerical illustrations also show that the suggested algorithms are particularly attractive

for ODEs with stiff behaviors, oscillating solutions, steep gradient solutions and long time

calculations.

Appendix

A. Proof of Proposition 2.1.

As usual, we consider the following iteration process:




d

dt
uN,m(tNT,k) = f(uN,m−1(tNT,k), t

N
T,k), 0 ≤ k ≤ N, m ≥ 1,

uN,m(0) = U0, m ≥ 0.
(4.1)

Denote ũN,m(t) = uN,m(t)− uN,m−1(t). Then we have from (4.1) that, for m≥ 2,

d

dt
ũN,m(tNT,k) = f(uN,m−1(tNT,k), t

N
T,k)− f(uN,m−2(tNT,k), t

N
T,k), 0 ≤ k ≤ N. (4.2)
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In addition, ũN,m(0) = 0.

We next show the contraction property of ũN,m(t). Obviously, by (2.33) we have

T

2
‖t−1ũN,m‖2T,ω ≤ 2((T − t)t−1ũN,m,

d

dt
ũN,m)T,N . (4.3)

On the other hand, by (4.2), (2.17), (2.9) and (2.15), we get that

2((T − t)t−1ũN,m,
d

dt
ũN,m)T,N ≤ 2γ‖(T − t)t−1ũN,m‖T,N‖ũN,m−1‖T,N

≤ 2γT ‖t−1ũN,m‖T,N‖ũN,m−1‖T,N ≤ 2γT ‖t−1ũN,m‖T,ω‖ũN,m−1‖T,ω. (4.4)

A combination of (4.3) and (4.3) leads to

‖ũN,m‖T,ω ≤ T ‖t−1ũN,m‖T,ω ≤ 4γT ‖ũN,m−1‖T,ω.

It follows that, if 0 ≤ 4γT ≤ β < 1, then ‖ũN,m‖T,ω → 0 as m → ∞, and thus, the proof is

complete.

B. Proof of (2.52).

For any v ∈ H1(0, T ) and 0 ≤ t1 ≤ t2 ≤ T, we have that

|v(t2)− v(t1)| ≤
∫ t2

t1

|v′(t)|dt ≤
( ∫ T

0

√
t(T − t)dt

∫ T

0

|v′(t)|2√
t(T − t)

dt
) 1

2 ≤
√
2πT

4
‖v′‖T,ω.

Next let |v(t∗)| = min
t∈[0,T ]

|v(t)|. Then, by the previous inequality, we get that

|v(t)| − |v(t∗)| ≤ |v(t)− v(t∗)| ≤
√
2πT

4
‖v′‖T,ω.

Moreover

|v(t∗)| ≤ 1

T

∫ T

0

|v(t)|dt ≤ 1

T

(∫ T

0

√
t(T − t)dt

∫ T

0

v2(t)√
t(T − t)

dt
) 1

2 ≤
√
2π

4
‖v‖T,ω.

Therefore

|v(t)| ≤
√
2π

4

(
‖v‖T,ω + T ‖v′‖T,ω

)
.
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