
Journal of Computational Mathematics

Vol.33, No.6, 2015, 576–586.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1503-m4532

AN ADAPTIVE FAST INTERFACE TRACKING METHOD*

Yana Di

LSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing, China

Email: yndi@lsec.cc.ac.cn

Jelena Popovic

Department of Numerical Analysis, CSC, KTH, 100 44 Stockholm, Sweden

Email: jelenap@csc.kth.se

Olof Runborg

Department of Mathematics and Swedish e-Science Research Center (SeRC), KTH, 100 44 Stockholm,

Sweden

Email: olofr@nada.kth.se

Abstract

An adaptive numerical scheme is developed for the propagation of an interface in a

velocity field based on the fast interface tracking method proposed in [2]. A multiresolution

stategy to represent the interface instead of point values, allows local grid refinement while

controlling the approximation error on the interface. For time integration, we use an

explicit Runge-Kutta scheme of second-order with a multiscale time step, which takes

longer time steps for finer spatial scales. The implementation of the algorithm uses a

dynamic tree data structure to represent data in the computer memory. We briefly review

first the main algorithm, describe the essential data structures, highlight the adaptive

scheme, and illustrate the computational efficiency by some numerical examples.

Mathematics subject classification: 42C40, 65D10.

Key words: Interface tracking, Multiresolution, adaptivity, Fast algorithms.

1. Introduction

Tracking the evolution of interfaces or fronts is important in many application, for instance

wave propagation, multiphase flow, crystal growth, melting, epitaxial growth and flame prop-

agation. The interface in these cases is a manifold of co-dimension one which moves according

to some physical law that depends on the shape and location of the interface. We suppose for

convenience that it can be parameterized, so that for a fixed time t, the interface is described

by the function x(t, s) : R+ × R
q → R

d, with the parameterization s ∈ Ω ⊂ R
q and q = d− 1.

In this paper we consider the simplified case when the interface is moving in a time-varying

velocity field that does not depend on the front itself. Then x(t, s) satisfies the parameterized

ordinary differential equation (ODE)

∂x(t, s)

∂t
= F (t,x(t, s)), x(0, s) = γ(s), s ∈ Ω, (1.1)

where F (t,x) : R+ × R
d → R

d is a given function representing the velocity field and γ(s) :

R
q → R

d is the initial interface. We will mostly treat curves in two dimensions, d = 2,

* Received June 3, 2014 / Revised version received March 20, 2015 / Accepted March 26, 2015 /

Published online November 17, 2015 /

An Adaptive Fast Interface Tracking Method 577

q = 1, but also discuss extensions to higher dimensions d = 3, q = 2 and co-dimensions

d = 3, q = 1. Applications could include the tracking of physically motivated interfaces, like

wavefronts in high frequency wave propagation problems, or “artificial” fronts of propagation

paths parameterized by initial data, where a problem has the structure (1.1) even though the

front has no direct physical interpretation. This could be, for instance, iso-distance curves on a

surface (front of geodesics), fiber tract bundles in brain imaging or the method of characteristics

for the solution graph of hyperbolic PDEs. In many of these problems it is better to numerically

consider a front rather than a set of individual paths, since the connectivity between paths is

then maintained, which for example simplifies interpolation between them. Numerical methods

for this problem include the Lagrangian front tracking method [4]. There are also Eulerian

approaches like the level set method [5] and segment projection [6]. For flow problems we

should also mention the marker-and-cell (MAC) [7] and volume of fluid (VOF) [8] methods.

We focus here on front tracking, in which the interface is described by a set of marker

points that are connected in a known topology. In one dimension one would approximate

xj(t) ≈ x(t, sj) and use a numerical method for ODEs to solve

dxj(t)

dt
= F (t,xj(t)), xj(0) = γ(sj), (1.2)

where s0 < s1 < . . . < sN is a discretization of Ω. For surfaces in three dimensions, the

markers on the interface are typically held together in a triangulation. Propagating one marker

numerically with a time step length ∆t to a fixed time costs O(1/∆t) operations. Hence,

if the interface is represented by N points the cost of standard front tracking is O(N/∆t).

In [1–3], wavelet vectors were used to describe the interface, which correspond to the details

of the interface on different scale levels. It was shown that the time derivatives of the wavelet

vectors, just as the wavelet vectors themselves, decay exponentially with level of detail. By

taking multiscale time steps, i.e. longer time steps for the fine scales than for the coarse scales,

the computational cost is reduced to only O(logN/∆t) or even O(1/∆t) without affecting

the overall accuracy. We should emphasize that this is different from standard wavelet based

adaptive schemes where shorter time steps are often used for the fine details, which is the

opposite of the method in [2]. With such strategy the cost will be reduced, but it will only

be the constant in the complexity estimate that is improved; the complexity itself remains the

same order. The reason is that there are comparatively few coarse scale wavelet vectors, where

efficiency improvement is achieved, and many fine scale wavelet vectors, where there is little

gain.

Adaptivity is usually an important feature of front tracking algorithms. Since the length

or area of the interface can grow quickly and the number of marker points used initially may

not be enough to resolve it, an adaptive mechanism which adds and removes marker points

as the resolution of the interface changes becomes necessary. For multiresolution methods, an

advantage to define adaptive techniques is an efficient data representation with an accurate es-

timation of the local approximation error. Based on the details, or wavelet coefficients, between

two consecutive grid-refinement levels, multiresolution methods provide a rigorous regularity

analysis [14], while for adaptive mesh refinement methods rigorous error estimators are quite

difficult to be derived. In the past, adaptive wavelet-based multiresolution methods have been

introduced to improve the computational efficiency and to reduce the memory requirement of

the algorithms, e.g., [9–13]. According to error estimates from different resolution levels, nu-

merical schemes have been developed for adjusting grid resolution locally and dynamically. To

obtain additional speed-up, space-time adaptive methods [15] are introduced, where the size of

578 Y. DI, J. POPOVIC AND O. RUNBORG

each cell and its time step are adjusted dynamically.

In the current paper we develop an adaptive multiresolution scheme with multi-scale time

stepping for interface tracking. Our starting point is the fast interface tracking method proposed

in [2,3], which reduced the computational cost using the multi-scale time steps, and the adaptive

versions in [1]. We employ a tree data structure to achieve high rates of data compression. To

be able to track the interface as accurately as possible, we update the adaptive data structure

by wavelet coefficients and arc lengths to ensure all elements are below the reference tolerance.

A standard multiresolution analysis is performed successively from the coarsest to the finest

level to complete the local approximation error control. As a result, the adaptive fast interface

tracking method can adjust the mesh dynamically as time evolves and improve computational

efficiency significantly.

The remainder of this article is organized as follows. In Section 2 the multiresolution rep-

resentation of the interface is presented and the governing ODEs are derived. In Section 3 the

fully adaptive fast interface tracking scheme is described. Details on the data structure and the

implementation are also given. Numerical results to demonstrate the accuracy of the algorithm

and its efficiency are in Section 4. Finally, we conclude and present some perspectives for future

work.

2. Multiresolution Description of the Interface Propagation

In standard front tracking algorithms marker points are used to represent the interface. We

will instead consider a multiresolution representation, which is often a more efficient way to

describe curves and surfaces. Multiresolution mesh is a popular tool used to approximate static

curves and surfaces. They consist of a hierarchy of increasingly detailed meshes. Each new

mesh level is computed from the previous one by first predicting a new point, for instance by

using so-called subdivision schemes, and then correcting the predicted point by a wavelet (or

detail) vector. Only the wavelet vectors need to be stored and because of the curve or surface

smoothness most wavelet vectors will be small, lending the representation well to compression.

In our case the curve x(t, s) with 0 ≤ s ≤ 1, will be described as follows. We introduce the

parameter indices sj,k = k2−j and define

xj,k(t) := x(t, k2−j), 0 ≤ k ≤ 2j . (2.1)

Note that xj+1,2k = xj,k and that for a fixed j the markers {xj,k} will be a discretization of

the interface with a level of detail that increases with the fixed j-value. We assume that we

start from a given fine discretization with 2J points on the interface, which thus corresponds

to level J . We let xj(t) = {xj,k(t)}
2j−1
k=0 and next define the wavelet vectors

wj+1(t) = xj+1(t)− Sxj(t), (2.2)

where S is the so-called subdivision scheme. A special example of a subdivision scheme is

the midpoint interpolating scheme where (Sxj)2k+1 = (xj,k + xj,k+1)/2 with second order.

This is done recursively and gives an alternative description of the interface in terms of x0(t)

together with wj(t) for j = 1, . . . , J . The wavelet sequences wj(t) := {wj,k(t)}
2j−1
k=0 can be

computed from the original discretization xJ(t) at an O(N) cost, where N = 2J is the number

of discretization points. Similarly, with an inverse wavelet transform based on reversing the

recursion in (2.2), the points xJ (t) can be computed from {wj} and x0 at an O(N) cost.

Moreover, for smooth x(t, s) the wavelets decay exponentially in j with a rate determined

An Adaptive Fast Interface Tracking Method 579

by the order of the subdivision scheme S. The fast decay of the wavelet vectors gives the

representation good compression properties, and as was shown in [2, 3] it also allows us to

construct a fast interface tracking algorithm.

For the dynamic case we insert (2.2) in (1.1) and get

dwj+1

dt
=F (t,xj+1(t))− SF (t,xj(t))

=F (t, Sxj(t) +wj+1(t))− SF (t,xj(t)). (2.3)

Setting

G(t,x,w) = F (t, Sx+w)− SF (t,x), (2.4)

we thus have the following alternative system of ODEs

dwj+1(t)

dt
= G(t,xj(t),wj+1(t)),

dx0(t)

dt
= F (t,x0(t)), (2.5)

which together with (2.2) describe the dynamics of the system.

Remark 2.1. Fine scales depend on coarser scales, but there is no dependence in the other

direction. This makes us able to compute the different scale levels sequentially from coarse to

fine, one after the other. This is the same idea that is used in the inverse wavelet transform.

3. Numerical Method

In this section we describe the adaptive fast interface tracking scheme, i.e. we describe the

numerical method for solving (2.5) together with (2.2).

3.1. Time integration

Due to the adaptive space discretization, the mesh is changing in time, and therefore we first

discretize in time and then in space. At different refinement levels j we will use different time

steps, denoted by ∆tj := mj∆t, where mj ∈ Z
+ and m0 = 1. Typically we double the time

step in each level, and hence have mj = 2j. The motivation is shown in [2] that if the initial

curve is described by a normal approximation, then also the time derivatives of the wavelet

vectors wj,k decay as 2−2j over a fixed time interval. An interpretation is that the evolution of

the system takes place on different time scales. Fine spatial scales change slower than coarse

spatial scales. Since the rate of change in wj,k is much smaller at finer than at coarser levels,

we will use longer time steps for the fine scales. Here we use an explicit second-order accurate

Runge-Kutta (RK2) scheme. We denote the numerical approximations to be

x
n
j,k ≈ xj,k(t

n), w
n
j,k ≈ wj,k(t

n), tn = n∆t,

where ∆t is the reference time step. Since we are interested in computing the solution up to

time T we also define integer M such that T = M∆t. Let Ij be the index set 0, . . . , 2j and Īj
the index set 0, . . . , 2j − 1, then xj,k is defined for all k ∈ Ij and wj,k for all k ∈ Īj . Given the

initial values

{x0
0,k}, k ∈ I0, {w0

j,k}, j ∈ {0, . . . , J}, k ∈ Īj ,

580 Y. DI, J. POPOVIC AND O. RUNBORG

where J > 0 is the highest level, the RK2 scheme used here has the form at level j > 0,

k1 = G(tnmj
,x

nmj

j,k ,x
nmj

j,k+1,w
nmj

j,k), (3.1)

k2 = G(t(n+1)mj
,x

(n+1)mj

j,k ,x
(n+1)mj

j,k+1 ,w
nmj

j,k +∆tjk1), (3.2)

w
(n+1)mj

j,k = w
nmj

j,k +
∆tj
2

(k1 + k2), (3.3)

where xj,k are computed from results at the coarser level,

x
n
j+1,2k+1 =

x
n
j,k + x

n
j,k+1

2
+w

n
j,k, k ∈ Īj , x

n
j+1,2k = x

n
j,k, k ∈ Ij . (3.4)

On the zeroth level,

k1 = F (tn,x
n
0,0), k1 = F (tn,x

n
0,1), (3.5a)

k2 = F (tn+1,x
n
0,0 +∆tk1), k2 = F (tn+1,x

n
0,1 +∆tk1), (3.5b)

x
n+1
0,0 = x

n
0,0 +

∆t

2
(k1 + k2), x

n+1
0,1 = x

n
0,1 +

∆t

2
(k1 + k2). (3.5c)

3.2. Error estimate

Estimates of the local truncation error are used to mark those elements with unacceptably

large errors for refinement. Letting τnj,k denote the local truncation error in time step n for

wavelet coefficient k at level j, we assume that τnj,k is given by the (p + 1)-th order derivative

of the exact solution for a p-th order method,

τnj,k ∼ ∆tp+1
j

dp+1
wj,k

dtp+1
= ∆tp+1 dp+1

wj,k

dtp+1
2j. (3.6)

The goals for our adaptivity is to make all local truncation errors under control, precisely,

smaller than a prescribed tolerance on the finest level. Runborg [2] showed that, for smooth

enough velocity field F ∈ Cp+1
b (R+ × R

2;R2), the time derivatives of the wavelet coefficients

satisfy
∣

∣

∣

∣

dlwj,k

dtl

∣

∣

∣

∣

≤ Cl(|wj,k|+ |xj,k − xj,k+1|
2), 1 ≤ l ≤ p+ 1, (3.7)

where the constant Cl only depends on the bound of the derivatives of F . Additionally, from

the definition of the wavelet vector in (2.2), the size of the wavelet vector |wj(t)| indicates the

the error of the interpolation precisely.

Hence, the indicator, or estimator for the adaptive scheme will be set to

ǫj,k = |wn
j,k|+ |xn

j,k − x
n
j,k+1|

2, (3.8)

which uses the length of a wavelet vector plus the square of arc length as an indicator for

space adaptivity. If the reference tolerance, the tolerance on the finest level is set to TOL, the

tolerance TOLj at the level j will be set to

ǫj,k ≤ TOLj = 2(J−j)qTOL. (3.9)

An Adaptive Fast Interface Tracking Method 581

Then the overall truncation error εJ is bounded by the sum of all local truncation errors,

εJ = sup
k∈Ij

0≤tn≤T

|xn
J,k − xJ,k(tn)|

≤

J
∑

j=0

⌊T/∆tj⌋
∑

n=0

τnj,k ≤

J
∑

j=0

C∆tp+1TOL2−j

≤ C∆tp+1TOL. (3.10)
3.3. Implementation

The principle of the multiresolution method is to represent a set of data given on a fine

mesh as values on a coarser mesh plus a series of differences at different levels of nested dyadic

meshes. In order to equip the scheme with a dynamically evolving adaptive mesh, a sequence

of nested meshes are constructed that each element is twice finer than the previous one. The

differences contain the information of the interface when going from a coarse mesh to a finer one.

Small wavelet coefficients on fine levels of resolution indicate the regions where the interface is

smooth. The hierarchical data structure serves the simplicity of programming and allows fast

algorithms for mesh refinement. By hierarchical we mean that the structures of the mesh are

described hierarchically (points, lines, quadrilaterals etc.) and the refinement has to be made

hierarchically as well. It is obvious that we should not construct a uniform hierarchy geometry

in the adaptive algorithm. An element in the hierarchy geometry tree will be refined only when

a mesh adaption is necessary based on the indicators in our implementation.

A mesh is a cluster of elements which can cover the whole domain but have no common

interior parts. The elements of the meshes are coming from the nodes of the hierarchy geometry

tree. To take out some of the nodes from the hierarchy geometry tree, we cut off the branches

of the hierarchy geometry tree to get a finite sub-tree. If a node in the sub-tree has no further

descendents, it is called a leaf node. The considered mesh will be composed by the leaf nodes

of this finite sub-tree. The mesh adaption algorithm is based on the indicators (3.8) to modify

the mesh to a new one. Therefore, if the indicator is great enough, then the element will be

refined, and if on a patch of elements, the indicators are all very small, then these elements will

be coarsened into a bigger element.

First, depending on the initial condition, an initial graded tree is created. Given the graded

tree structure, a time evolution is made. Then we remesh the tree according to the indicators

(3.8). In more detail, our algorithm includes the following steps:

1. Initialization

• Create the root

• Split elements and compute the wavelets in the children elements

• If the wavelet in a child element is greater than the prescribed tolerance, split

this child

• Repeat the same procedure until all the children have smaller wavelets or the

maximum level is reached

2. Time evolution

• Compute Runge-Kutta steps in Section 3.1

582 Y. DI, J. POPOVIC AND O. RUNBORG

3. Remesh

• For the whole tree from the leaves to the root, if the indicator in this node and

in its brothers are smaller than the prescribed tolerance, the element and its

brothers are marked as deletable.

• For the whole tree from the leaves to the root,

– delete children if the node and all its children nodes are deletable

– add one more level for each undeletable leaf if not at the maximum level.

• Deallocate the tree

4. Numerical Examples

In this section, we will validate the computational efficiency with a few numerical examples.

Bearing in mind that adaptivity is expected to pay off in the presence of interface expansions,

in section 4.1 we consider first a problem where the length of the interface expands quickly.

The second example in section 4.2 is concerned with more sophisticated problems. To our

knowledge, such examples have not been studied before in the wavelet context. Therefore,

the quantitative performance of the scheme should be very instructive. In the experiments,

spatial approximations of second order, q = 2. For time discretization, we test first order

method, Forward Euler scheme, and then the Runge-Kutta method of second order. Time step

is, ∆tj = ∆tmj−J with m = 2. All errors are measured averagely on all N leaf nodes and

compared with a well resolved direct numerical simulation, 1
N

∑

i |xi(tn)− x
n
i |.

4.1. Simple example

We consider the following test case. The velocity field is given by

F (x) =

(

x2 sin(x1)− 0.5

(x1 + 0.2) cos(x2) + 0.4

)

, (4.1)

and the initial curve is given as a circle |x| = 1. The numerical solution of (4.1) at t = 2.0

is given in Fig. 4.1 for TOL= 0.01, which includes N = 105 elements and corresponds to a

maximum of 29 = 512 elements with finest scale J = 10. We can notice that, the highest level

is reached around the quick expansion region of the interface, which shows that the adaptive

fast interface tracking method automatically detects the region where small scales are necessary

and tracks the propagation phenomenon. In the right part of Fig. 4.1, we have plotted the sets

of wavelet indices that correspond to the adaptively chosen leaf wavelets. We have compared

the adaptive scheme with uniform refinement in order to get an impression of the effect of

the different sizes of markers. The results of these numerical tests are shown in the left part

of Fig. 4.2. We clearly see that the adaptive method is always cheaper in CPU time and

memory requirements than the multiresolution method on the finest mesh. The error of the

multiresolution method decreases almost linearly with degrees of freedom, which agrees to the

theoretical result for the second-order method. The error of the adaptive method decreases a

little faster than linear rate. They confirm indeed the gain of efficiency for adaptive schemes

for this example. As the standard configuration of the methods we double the time step in each

level. The timings of the methods are compared in the right part of Fig. 4.2. First it confirms

An Adaptive Fast Interface Tracking Method 583

that the fast method has almost constant execution time, which doesn’t grow linearly with N

as the direct method, while the adaptive method preserves such property.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

t=0
t=2

 5

 6

 7

 8

 9

 10

 11

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4.1. Left: Initial interface (plus +) and computed interface (cross ×) by adaptive multiresolution

at t = 2 with TOL = 0.01. Right: corresponding tree structure.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

uniform data
adaptive data

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 10 100 1000 10000

log(N)/dt+N
uniform data

adaptive data

Fig. 4.2. Left: Errors infi |xi(tn) − x
n

i | at t = 2. Right: Comparisons of the CPU time with different

DOFs and same overall error.

4.2. Vertex example

We have tested our algorithm for vertex flows, which are interesting because the interface

may exhibit singularities solely caused by the vertex. The vertex velocity field is taken to be

F (x) =

(

tanh(−x2
2 + 0.25)

sin(2πx1)

)

. (4.2)

The evolutions of the interface at T = 2 are shown in Fig. 4.3 for TOL = 0.01, which includes

N = 183 leaf elements and corresponds to a maximum of 211 = 2048 elements with finest scale

J = 12. Again, we have tested the performance of the adaptive algorithm in this regard. In

the right part of Fig. 4.3, we have plotted the sets of leaf wavelet indices that correspond to

the adaptively chosen wavelets. These wavelets are sometimes called active. One observes that

the adaptive algorithm in fact detects the nearly singular gradient of the solution according

584 Y. DI, J. POPOVIC AND O. RUNBORG

to high curvatures and adds wavelet coefficients locally in these regions. The highest level is

reached around the steep gradient region, which shows that the adaptive multiresolution method

automatically detects the region where more wavelets are necessary and tracks the interface.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t=2

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4.3. Left: The computed points by adaptive multiresolution at t = 2 with TOL = 0.001. Right: corre-

sponding tree structure.

In Fig. 4.4, the L∞− errors have been displayed in a logarithmic scale for both the fast

interface tracking method and the adaptive fast interface tracking method as the degree of

freedom increases. Not only the efficiency of the adaptive scheme is improved as expected, but

also both errors show almost the same decreasing behavior. Again CPU time are compared in

the right part of Fig. 4.4.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

uniform data
adaptive data

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 1000 10000

log(N)/dt+N
uniform data

adaptive data

Fig. 4.4. Left: Errors infi |xi(tn) − x
n

i
| at t = 2. Right: Comparisons of the CPU time with different DOFs

and same overall error.

4.3. A wave front propagating in a heterogeneous medium

Finally, the adaptive fast interface tracking method is applied for more complicated interface

tracking problem, a wave with a sharp front (which contains high frequencies) that propagates

in a heterogeneous medium. Here the tracking has been done by a pure Lagrangian front

tracking method. It is related to ray tracing, but instead of individual rays, the location of

many rays coming from one source is computed, at fixed times. Those points form a wavefront

and its evolution is tracked in the physical or the phase space in Fig. 4.5.

An Adaptive Fast Interface Tracking Method 585

Fig. 4.5. A wave propagates from a point source through a heterogeneous medium.

5. Conclusion

In the present paper we developed a new adaptive numerical scheme to speed up interface

tracking at a computational cost of O(logN/△t) rather than O(N/△t) for N markers and

timestep △t. We demonstrated its computational efficiency and the numerical accuracy by

computing several test-cases of interface tracking with given velocity fields.

Instead of tracking marker points on the interface we track the wavelet vectors, which like the

markers satisfy ordinary differential equations. A dynamical adaption strategy which exploits

the multiscale representation of the interface by adding finer scales allows us to advance the

interface in time. The adaptive algorithm is implemented using a graded tree data structure

to represent the adaptive interface in the computer memory. By taking longer time steps for

finer spatial scales we are able to track the interface with the same overall accuracy as when

directly tracking the markers, which is verified numerically. We have compared the performance

in terms of CPU time and memory requirements to a direct tracking method using the same

numerical schemes on the finest regular mesh with a static data structure.

The current work is dealing with the second order schemes. The developed adaptive scheme

could be extended to higher order. To construct higher order methods more accurate prediction

schemes are needed. In [3], a thorough analysis has been given that with higher order spatial

averaging using general subdivision schemes, high order accuracy can be combined with low

computational cost. We also plan to extend the developed scheme using high order Runge-Kutta

schemes for the time stepping to match with sufficiently high order subdivision schemes.

Acknowledgments. This research is supported by the Dahlquist Research Fellowship in KTH.

Y. Di is supported in part by the NSFC (11271358).

References

[1] J. Popovic, Fast Adaptive Numerical Methods for High Frequency Waves and Interface Tracking,

PhD thesis, KTH Royal Institute of Technology, 2012.

586 Y. DI, J. POPOVIC AND O. RUNBORG

[2] O. Runborg, Fast interface tracking via a multiresolution representation of curves and surfaces,

Commun. Math. Sci., 7 (2009), 365-398.

[3] O. Runborg, Analysis of high order fast interface tracking methods, Numer. Math., 128:2 (2014),

339-375.

[4] J. Glimm, E. Isaacson, D. Marchesin and O. McBryan, Front tracking for hyperbolic systems,

Adv. Appl. Math., 2 (1981), 91-119.

[5] S.J. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms

based on Hamilton-Jacobi formulations, J. Comput. Phys., 79:1 (1988), 12-49.

[6] A.K. Tornberg and B. Engquist, The segment projection method for interface tracking, Comm.

Pure Appl. Math., 56:1 (2003), 47-79.

[7] J.E. Welch, F.W. Harlow, J.P. Shannon and B.J. Daly, The MAC method: a computing tech-

nique for solving viscous, incompressible, transient fluid flow problems involving free surfaces, Los

Alalmos Scientific Laboratory Report LA, 3425 (1966).

[8] C.W. Hirt and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries,

J. Comput. Phys., 39 (1981), 201-225.

[9] A. Harten, Adaptive multiresolution schemes for shock computations, J. Comput. Phys., 115

(1994), 319-338.

[10] A. Cohen, S. M. Kaber, S. Müller and M. Postel, Fully adaptive multiresolution finite volume

schemes for conservation laws, Math. Comput., 72 (2003), 183-225.

[11] O. Roussel, K. Schneider, A. Tsigulin and H. Bockhorn, A conservative fully adaptive multireso-

lution algorithm for parabolic PDEs, J. Comput. Phys., 188 (2003), 493-523.

[12] M.O. Domingues, S.M. Gomes, O. Roussel and K. Schneider, Adaptive multiresolution methods,

ESAIM Proc., 34 (2011), 1-96.

[13] K. Schneider and O.V. Vasilyev, Wavelet methods in computational fluid dynamics, Annu. Rev.

Fluid Mech., 42 (2010), 473-503.

[14] A. Cohen, Wavelet methods in numerical analysis, Handb. Numer. Anal., 7 (2000), 417-711.

[15] M.O. Domingues, S.M. Gomes, O. Roussel and K. Schneider, An adaptive multiresolution scheme

with local time stepping for evolutionary PDEs, J. Comput. Phys., 227 (2008), 3758-3780.

[16] I. Daubechies, O. Runborg and W. Sweldens, Normal multiresolution approximation of curves,

Constr. Approx., 20 (2004), 399-463.

[17] S. Harizanov, P. Oswald and T. Shingel, Normal multi-scale transforms for curves, Found. Comput.

Math., 11:6, (2011), 617-656.

