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Abstract

In this paper we develop an a posteriori error analysis of a fully-mixed finite element

method for a fluid-solid interaction problem in 2D. The media are governed by the elas-

todynamic and acoustic equations in time-harmonic regime, respectively, the transmission

conditions are given by the equilibrium of forces and the equality of the corresponding

normal displacements, and the fluid is supposed to occupy an annular region surrounding

the solid, so that a Robin boundary condition imitating the behavior of the Sommerfeld

condition is imposed on its exterior boundary. Dual-mixed approaches are applied in both

domains, and the governing equations are employed to eliminate the displacement u of

the solid and the pressure p of the fluid. In addition, since both transmission conditions

become essential, they are enforced weakly by means of two suitable Lagrange multipliers.

The unknowns of the solid and the fluid are then approximated by a conforming Galerkin

scheme defined in terms of PEERS elements in the solid, Raviart-Thomas of lowest order

in the fluid, and continuous piecewise linear functions on the boundary. As the main con-

tribution of this work, we derive a reliable and efficient residual-based a posteriori error

estimator for the aforedescribed coupled problem. Some numerical results confirming the

properties of the estimator are also reported.

Mathematics subject classification: 65N30, 65N15, 74F10, 74B05, 35J05.

Key words: Mixed finite elements, Helmholtz equation, Elastodynamic equation, A poste-

riori error analysis.

1. Introduction

In the recent paper [14] we introduced and analyzed a fully-mixed finite element method

for the two-dimensional fluid-solid interaction problem studied originally in [17] (see also [18]).

The respective model consists of an elastic body which is subject to a given incident wave that

travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region,
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and hence a Robin boundary condition imitating the behavior of the scattered field at infinity

is imposed on its exterior boundary, which is located far from the obstacle. The media are

governed by the elastodynamic and acoustic equations in time-harmonic regime, respectively,

and the transmission conditions are given by the equilibrium of forces and the equality of the

corresponding normal displacements. Differently from the analysis in [17] where dual and primal

methods are utilized in the solid and fluid, respectively, dual-mixed approaches are applied in

both domains in [14], and the governing equations are employed to eliminate the displacement

u of the solid and the pressure p of the fluid. In addition, since both transmission conditions

become essential, they are enforced weakly by means of two suitable Lagrange multipliers. In

this way, the Cauchy stress tensor and the rotation of the solid, together with the gradient

of p and the traces of u and p on the boundary of the fluid, constitute the unknowns of the

coupled problem. The solvability of the resulting continuous formulation is analyzed in [14] by

incorporating first suitable decompositions of the spaces to which the stress and the gradient of

p belong, and then by applying the Babuška-Brezzi theory and the Fredholm alternative. The

unknowns of the solid and the fluid are approximated by a conforming Galerkin scheme defined

in terms of PEERS elements in the solid, Raviart-Thomas of lowest order in the fluid, and

continuous piecewise linear functions on the boundary. The analysis of the discrete method

relies on a stable decomposition of the corresponding finite element spaces and also on the

classical result on projection methods for Fredholm operators of index zero.

On the other hand, it is well known that in order to guarantee a good convergence behaviour

of the finite element solutions, specially under the presence of complex geometries leading

eventually to singularities, one needs to apply an adaptive strategy based on a posteriori error

estimates. These are usually represented by global quantities θ that are expressed in terms

of local estimators θT defined on each element T of a given triangulation of the domain. The

estimator θ is said to be reliable (resp. efficient) if there exists Crel > 0 (resp. Ceff > 0),

independent of the meshsizes, such that

Ceff θ + h.o.t. ≤ ‖error‖ ≤ Crel θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. Concern-

ing the Helmholtz and elasticity equations, several approaches have already been developed

independently in the literature. In particular, a posteriori error analyses for interior Helmholtz

problems, which are based on local computations or explicit residuals, can be found in [7]

and [24], respectively. In addition, a reliable residual-based a posteriori error estimator, which

follows the nowadays standard approach from [29], is proposed in [25]. In turn, a posteriori

error estimators for the mixed finite element formulation of the linear elasticity problem, which

are based on residuals and on the solution of local problems, are provided in [2]. The main

novelty of the approach there has to do with the utilization of a Helmholtz decomposition of

the stress-type unknown to derive the corresponding reliability and efficiency estimates. For

related approaches employing the Helmholtz decomposition technique as well we refer to [11]

and [26].

Furtermore, to the best of our knowledge, [16] is the only work available in the literature deal-

ing with the a posteriori error analysis of fluid-solid interaction problems involving the acoustic

and elastodynamic equations in time-harmonic regime. In fact, a reliable and efficient residual-

based a posteriori error estimator for the dual-mixed/primal formulation of the model problem

analyzed in [17] was derived in [16]. More precisely, suitable auxiliary problems, the continuous

inf-sup conditions satisfied by the bilinear forms involved, a discrete Helmholtz decomposition,
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and the local approximation properties of the Clément interpolant and Raviart-Thomas oper-

ator are the main tools for proving the reliability of the estimator in [16]. Then, Helmholtz

decomposition, inverse inequalities, and the localization technique based on triangle-bubble and

edge-bubble functions are employed to show the efficiency. According to the preceding remarks,

and in order to additionaly contribute in this direction, the main purpose of the present paper

is to derive a reliable and efficient residual-based a posteriori error estimator for the fully-mixed

formulation introduced and analyzed in [14]. The rest of this work is organized as follows. In

Section 2 we recall from [14] the fluid-solid interaction problem and its continuous and discrete

fully-mixed variational formulations. The kernel of the present work is given by Section 3,

where we develop the a posteriori error analysis. Our tools for showing reliability and efficiency

are basically the same ones utilized in [16]. More precisely, in Section 3.2 we employ the global

inf-sup condition for the continuous variational formulation, discrete Helmholtz decompositions

in both domains, and the above mentioned properties of the Clément interpolant and Raviart-

Thomas operator, to derive a reliable residual-based a posteriori error estimator. Even, at some

point of this analysis we are able to identify independent terms related to the fluid and solid,

respectively, which allows us to apply, separately, some of the arguments employed for the a

posteriori error analyses of each equation. Next, in Section 3.3 we apply discrete trace and

inverse inequalities, and the localization technique based on triangle-bubble and edge-bubble

functions to show the efficiency of the estimator. In this part we take advantage of the fact that

either the efficiency estimates for some terms or the way to derive them, are already available in

the literature (see, e.g. [11], [16], and [29]). However, and for sake of completeness, we sketch at

least most of the corresponding proofs. For the remaining terms defining the a posteriori error

estimator we certainly provide full proofs. Finally, some numerical examples confirming the

reliability and efficiency of the a posteriori error estimator, and showing the good performance

of the associated adaptive algorithm are provided in Section 4.

We end this section with further notations to be used below. Since in the sequel we deal

with complex valued functions, we let C be the set of complex numbers, use the symbol ı for√
−1, denote by z and |z| the conjugate and modulus, respectively, of each z ∈ C, and let I

be the identity matrix of C2×2. On the other hand, in what follows tr denotes the matrix trace

and t stands for the transpose of a matrix. Also, given τ s := (τij), ζs := (ζij) ∈ C2×2, we

define the deviator tensor τ ds := τ s − 1
2 tr(τ s) I, the tensor product τ s : ζs :=

∑2
i,j=1 τij ζij ,

and the conjugate tensor τ s := (τ ij). In turn, in what follows we utilize standard simplified

terminology for Sobolev spaces and norms. In particular, if O is a domain, S is a closed

Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2 , Hr(O) := [Hr(O)]2×2 , and Hr(S) := [Hr(S)]2 .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O),

and H0(S), respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O),

and Hr(O)) and ‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H , we

use H and H to denote H2 and H2×2, respectively. In addition, we use 〈·, ·〉S to denote the

usual duality pairings between H−1/2(S) and H1/2(S), and between H−1/2(S) and H1/2(S).
Furthermore, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : divw ∈ L2(O)

}
, (1.1)

is standard in the realm of mixed problems (see [8], [23]). The space of matrix valued functions

whose rows belong to H(div;O) will be denoted H(div;O). Note that if τ ∈ H(div;O), then
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div τ ∈ L2(O), where div stands for the usual divergence operator div acting on each row

of the tensor, The Hilbert norms of H(div;O) and H(div;O) are denoted by ‖ · ‖div;O and

‖ · ‖div;O, respectively. Finally, we employ 0 to denote a generic null vector (including the null

functional and operator), and use C and c, with or without subscripts, bars, tildes or hats, to

denote generic constants independent of the discretization parameters, which may take different

values at different places.

2. The Fluid-solid Interaction Problem

2.1. The model problem

We consider the two-dimensional fluid-solid interaction problem whose a priori error analysis

was provided recently in [14] (see also [17] for a previous analysis of this problem). In other

words, given an incident acoustic wave upon a bounded elastic body (obstacle) fully surrounded

by a fluid, we are interested in determining both the response of the body and the scattered

wave. The obstacle is supposed to be a long cylinder parallel to the x3-axis whose cross-section

is Ωs. The boundary of Ωs is denoted by Σ. The incident wave and the volume force acting

on the body are assumed to exhibit a time-harmonic behaviour with e−ı ω t ansatz and phasors

pi and f , respectively, so that pi satisfies the Helmholtz equation in R2\Ωs. Hence, since

the phenomenon is supposed to be invariant under a translation in the x3-direction, we may

consider a bidimensional interaction problem posed in the frequency domain. In this way, and

since we employ mixed formulations in both domains (solid and fluid), the main unknowns

of our interaction problem are given by σs : Ωs → C2×2, u : Ωs → C2, p : R2\Ωs → C,

and σf : R2\Ωs → C2, corresponding to the amplitudes of the Cauchy stress tensor, the

displacement field, the total (incident + scattered) pressure, and the gradient of p, respectively.

The fluid is assumed to be perfect, compressible, and homogeneous, with density ρf and

wave number κf :=
ω

v0
, where v0 is the speed of sound in the linearized fluid, whereas the

solid is supposed to be isotropic and linearly elastic with density ρs and Lamé constants µ and

λ. The latter means, in particular, that the corresponding constitutive equation is given by

Hooke’s law, that is

σs = C ε(u) , where C τ := λ tr τ I + 2µ τ ∀ τ ∈ L2(Ω) , (2.1)

ε(u) := 1
2 (∇u+(∇u)t) is the strain tensor of small deformations, and ∇ is the gradient tensor.

Consequently, under the hypotheses of small oscillations, both in the solid and the fluid, the

unknowns σs, u, σf , and p satisfy the elastodynamic and acoustic equations in time-harmonic

regime, that is:
divσs + κ2s u = − f in Ωs ,

divσf + κ2f p = 0 in R2\Ωs ,

where κs is defined by
√
ρs ω, together with the transmission conditions:

σs ν = − pν on Σ ,

σf · ν = ρf ω
2 u · ν on Σ .

(2.2)

and the Sommerfeld radiation condition

∂(p− pi)

∂r
− ı κf (p− pi) = o(r−1) , (2.3)
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as r := ‖x‖ → +∞, uniformly for all directions
x

‖x‖ . Hereafter, ‖x‖ is the euclidean norm

of a vector x := (x1, x2)
t ∈ R2, and ν denotes the unit outward normal on Σ, that is pointing

toward R2\Ωs.
Next, according to the condition at infinity given by (2.3), which basically says that the

outgoing waves are absorbed by the far field, and in order to obtain a convenient simplification

of our model, we now proceed as in [14] and [17] and introduce a sufficiently large polyhedral

surface Γ approximating a sphere centered at the origin, whose interior contains Ωs. Then,

we define Ωf as the annular region bounded by Σ and Γ, and consider the Robin boundary

condition:

σf · ν − ı κf p = g := ∇pi · ν − ı κf pi on Γ , (2.4)

where ν denotes the unit outward normal on Γ as well. Therefore, given f ∈ L2(Ωs) and

g ∈ H−1/2(Γ), we are now interested in the following fluid-solid interaction problem: Find

σs ∈ H(div; Ωs), u ∈ H1(Ωs), σf ∈ H(div; Ωf ), and p ∈ H1(Ωf ), such that there hold in

the distributional sense:

σs = C ε(u) in Ωs ,

divσs + κ2s u = − f in Ωs ,

σf = ∇p in Ωf ,

divσf + κ2f p = 0 in Ωf ,

σs ν = − pν on Σ ,

σf · ν = ρf ω
2 u · ν on Σ ,

σf · ν − ı κf p = g on Γ .

(2.5)

2.2. The fully-mixed variational formulation

In order to recall from [14] the fully-mixed variational formulation of (2.5), we need to

introduce the auxiliary unknowns given by the trace of the displacement

ϕs := u|Σ ∈ H1/2(Σ) ,

the traces of the pressure

ϕf = (ϕ
Σ
, ϕ

Γ
) := (p|Σ, p|Γ) ∈ H1/2(Σ)×H1/2(Γ) ,

and the rotation

γ :=
1

2
(∇u− (∇u)t) ∈ L2

skew
(Ωs),

where L2
skew

(Ωs) denotes the space of skew-symmetric tensors with entries in L2(Ωs). In addi-

tion, we let

H := H(div; Ωs)×H(div; Ωf ) and Q := L2
skew

(Ωs)×H1/2(Σ)×H1/2(∂Ωf )

endowed with the usual product norms. Hereafter, given t ∈ R, we make the identification

Ht(∂Ωf ) ≡ Ht(Σ)×Ht(Γ)

with the norm

‖ψf‖t,∂Ωf
:= ‖ψ

Σ
‖t,Σ + ‖ψ

Γ
‖t,Γ
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for each ψf := (ψ
Σ
, ψ

Γ
) ∈ Ht(∂Ωf ).

Next, as explained in [14], we employ a dual-mixed approach in the solid Ωs as well as in

the fluid Ωf , and observe that both transmission conditions (cf. (2.2)) and the Robin boundary

condition (2.4) become now essential. In addition, we use the elastodynamic and Helmholtz

equations (cf. second and fourth equation of (2.5)), respectively, to eliminate u and p according

to the formulae

u = − 1

κ2s
(f + divσs) in Ωs and p = − 1

κ2f
divσf in Ωf . (2.6)

In this way, we arrive at the following fully-mixed variational formulation of (2.5): Find σ̂ :=

(σs,σf ) ∈ H and γ̂ := (γ,ϕs,ϕf ) ∈ Q such that

A(σ̂, τ̂ ) + B(τ̂ , γ̂) = F (τ̂ ) ∀ τ̂ := (τ s, τ f ) ∈ H ,

B(σ̂, η̂) + K(γ̂, η̂) = G(η̂) ∀ η̂ := (η,ψs,ψf ) ∈ Q ,
(2.7)

where F : H → C and G : Q → C are the linear functionals

F (τ̂ ) :=
1

κ2s

∫

Ωs

f · div τ s ∀ τ̂ := (τ s, τ f ) ∈ H ,

G(η̂) := −〈 g , ψ
Γ
〉Γ ∀ η̂ := (η,ψs,ψf ) := (η,ψs, (ψΣ

, ψ
Γ
)) ∈ Q ,

(2.8)

and A : H×H → C, B : H×Q → C, and K : Q×Q → C are the bilinear forms defined by

A(ζ̂, τ̂ ) :=

∫

Ωs

C−1ζs : τ s − 1

κ2s

∫

Ωs

div ζs · div τ s +

∫

Ωf

ζf · τ f −
1

κ2f

∫

Ωf

div ζf div τ f

∀ (ζ̂, τ̂ ) := ((ζs, ζf ), (τ s, τ f )) ∈ H×H ,

B(τ̂ , η̂) := Bs(τ s, (η,ψs)) + Bf (τ f ,ψf ) ∀ (τ̂ , η̂) := ((τ s, τ f ), (η,ψs,ψf )) ∈ H×Q ,

with

Bs(τ s, (η,ψs)) :=

∫

Ωs

τ s : η − 〈τ s ν,ψs〉Σ ,

Bf (τ f ,ψf ) := 〈τ f · ν, ψΣ
〉Σ − 〈τ f · ν, ψΓ

〉Γ ,
and

K(χ̂, η̂) := −〈ξ
Σ
ν,ψs〉Σ − ρf ω

2 〈ξs · ν, ψΣ
〉Σ + ı κf 〈ξΓ , ψΓ

〉Γ

∀ χ̂ := (χ, ξs, ξf ) := (χ, ξs, (ξΣ , ξΓ)) ∈ Q ,

∀ η̂ := (η,ψs,ψf ) := (η,ψs, (ψΣ
, ψ

Γ
)) ∈ Q .

At this point we recall from [15, Section 2.4.3] that the inversion of the Hooke operator C
(cf. (2.1)) yields

C−1 τ =
1

2µ
τ − λ

4µ(λ+ µ)
tr τ I ∀ τ ∈ L2(Ω) ,

from which it is easy to see that

‖C−1(τ )‖0,Ω ≤ 1

µ
‖τ‖0,Ω ∀ τ ∈ L2(Ω).

The main result concerning the solvability analysis of (2.7) is stated as follows. To this

respect, notice that irrespective of the particular functionals defined in (2.8), the following

result is actually valid for any pair (F,G) ∈ H′ ×Q′.
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Theorem 2.1. Assume that the homogeneous problem associated to (2.7) has only the trivial

solution. Then, given F ∈ H′ and G ∈ Q′, there exists a unique (σ̂, γ̂) ∈ H ×Q solution to

(2.7). In addition, there exists Ccd > 0 such that

‖(σ̂, γ̂)‖H×Q ≤ Ccd

{
‖F‖H′ + ‖G‖Q′

}
. (2.9)

Proof. The proof basically consists of showing that the left hand side of (2.7) constitutes

a Fredholm operator of index zero. We omit further details and refer to the whole analysis

developed in [14, Section 3]. �

We end this section with the converse of the derivation of (2.7). Indeed, the following

theorem establishes that the unique solution of (2.7) together with u and p given in (2.6),

solves the original fluid-solid interaction problem (2.5). This result will be used later on in

Section 3.3 to prove the efficiency of the a posteriori error estimator. Note that no extra

regularity assumptions on the data, but only f ∈ L2(Ωs) and g ∈ H−1/2(Γ), are needed here.

Theorem 2.2. Let ((σs,σf ), (γ,ϕs,ϕf )) ∈ H × Q be the unique solution of (2.7), where

ϕf := (ϕ
Σ
, ϕ

Γ
) ∈ H1/2(Σ)×H1/2(Γ), and let u ∈ L2(Ωs) and p ∈ L2(Ωf ) be defined according

to (2.6). Then ∇u = C−1σs + γ in Ωs (which yields u ∈ H1(Ωs)), u = ϕs on the interface

Σ, σs = σt

s in Ωs, and γ = 1
2 (∇u− (∇u)t) in Ωs (which yields σs = C ε(u)). In addition,

there hold σf = ∇p in Ωf (which yields p ∈ H1(Ωf )), divσf + κ2f p = 0 in Ωf , ϕΣ
= p|Σ on

Σ, ϕ
Γ
= p|Γ on Γ, and hence σs ν = −ϕ

Σ
ν = − pν on Σ, σf ·ν = ρf ω

2ϕs ·ν = ρf ω
2 u ·ν

on Σ, and σf · ν − ı κf ϕΓ
= σf · ν − ı κf p = g on Γ.

Proof. It basically follows by applying integration by parts backwardly in (2.7) and using

suitable test functions. We omit further details. �

2.3. The Galerkin scheme

In this section we recall from [14] the definition of the Galerkin approximation of (2.7).

To this end, we first let
{
T s
h

}
h>0

and
{
T f
h

}
h>0

be regular families of triangulations of the

polygonal regions Ω̄s and Ω̄f , respectively, by triangles T of diameter hT , with global mesh

sizes

hs := max
{
hT : T ∈ T s

h

}
, hf := max

{
hT : T ∈ T f

h

}
, and h := max

{
hs, hf

}
,

such that they are quasi-uniform around Σ and Γ, and so that their vertices coincide on Σ.

In what follows, given an integer ℓ ≥ 0 and a subset S of R2, Pℓ(S) denotes the space of

polynomials defined in S of total degree ≤ ℓ. According to the notation convention given in the

introduction, we denote Pℓ(S) := [Pℓ(S)]
2. Furthermore, given T ∈ T s

h ∪T f
h and x := (x1, x2)

t

a generic vector of R2, we let

RT0(T ) := span
{
(1, 0), (0, 1), (x1, x2)

}

be the local Raviart-Thomas space of order 0 (cf. [8], [27]), and let curlt bT :=
(
∂bT
∂x2

,− ∂bT
∂x1

)
,

where bT is the usual cubic bubble function on T . Then we define

Hs
h :=

{
vs,h ∈ H(div; Ωs) : vs,h|T ∈ RT0(T )⊕ P0(T ) curl

t bT ∀T ∈ T s
h

}
,

Hsh :=
{
τ s,h ∈ H(div; Ωs) : ct τ s,h ∈ Hs

h ∀ c ∈ R2
}
, (2.10)

H
f
h :=

{
τ f,h ∈ H(div; Ωf ) : τ f,h|T ∈ RT0(T ) ∀T ∈ T f

h

}
, (2.11)
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Qsh :=

{
ηh :=

(
0 ηh

−ηh 0

)
: ηh ∈ C(Ω̄s) , ηh|T ∈ P1(T ) ∀T ∈ T s

h

}
. (2.12)

Next, in order to set the finite dimensional subspaces on the boundaries of the domains, we let

Σh and Γh be the partitions of Σ and Γ, respectively, inherited from the triangulations, and

suppose, without loss generality, that the numbers of edges of Σh and Γh are both even. The

case of an odd number of edges is easily reduced to the even case (see [21]). Then, we let Σ2h

(resp. Γ2h) be the partition of Σ (resp. Γ) arising by joining pairs of adjacent edges of Σh
(resp. Γh). Because of the assumptions on the triangulations, Σh and Γh are automatically of

bounded variation, and, therefore, so are Σ2h and Γ2h. Hence, we now define

Λh(Σ) :=
{
ψh ∈ C(Σ) : ψh|e ∈ P1(e) ∀e edge of Σ2h

}
, (2.13)

Λh(Γ) :=
{
ψh ∈ C(Γ) : ψh|e ∈ P1(e) ∀e edge of Γ2h

}
, (2.14)

Qs
h := Λh(Σ) × Λh(Σ) , (2.15)

Q
f
h := Λh(Σ) × Λh(Γ) , (2.16)

and introduce the global finite element spaces

Hh := Hsh × H
f
h and Qh := Qsh × Qs

h × Q
f
h . (2.17)

In addition, our analysis below will also require the subspaces

Us
h :=

{
vh ∈ L2(Ωs) : vh|T ∈ P0(T ) ∀T ∈ T s

h

}
, (2.18)

Ufh :=
{
vh ∈ L2(Ωf ) : vh|T ∈ P0(T ) ∀T ∈ T f

h

}
. (2.19)

Notice here that Hsh × Us
h × Qsh constitutes the well known PEERS space introduced in [4]

for a mixed finite element aproximation of the linear elasticity problem in the plane. In turn,

H
f
h×U

f
h is the lowest order Raviart-Thomas mixed finite element approximation of the Poisson

problem for the Laplace equation (see, e.g., [8, 27]).

According to the above, the Galerkin scheme associated with our continuous problem (2.7)

reduces to: Find σ̂h := (σs,h,σf,h) ∈ Hh and γ̂h := (γh,ϕs,h,ϕf,h) ∈ Qh such that

A(σ̂h, τ̂h) + B(τ̂ h, γ̂h) = F (τ̂ h) ∀ τ̂h := (τ s,h, τ f,h) ∈ Hh ,

B(σ̂h, η̂h) + K(γ̂h, η̂h) = G(η̂h) ∀ η̂h := (ηh,ψs,h,ψf,h) ∈ Qh .
(2.20)

The following theorem establishes the well-posedness and convergence of the discrete scheme

(2.20).

Theorem 2.3. Assume that the homogeneous problem associated to (2.7) has only the trivial

solution, and let h0 > 0 be the constant provided by [14, Lemma 4.10]. Then there exists h1 ∈
(0, h0] such that for each h ∈ (0, h1], the fully-mixed finite element scheme (2.20) has a unique

solution (σ̂h, γ̂h) := ((σs,h,σf,h), (γh,ϕs,h,ϕf,h)) ∈ Hh × Qh, with ϕf,h := (ϕ
Σ,h
, ϕ

Γ,h
) ∈

Λh(Σ) × Λh(Γ). In addition, there exist C1, C2 > 0, independent of h, such that for each

h ∈ (0, h1] there hold

‖(σ̂h, γ̂h)‖H×Q

≤ C1

{
sup

τ̂ h ∈Hh\{0}

|F (τ̂ h)|
‖τ̂h‖H

+ sup
η̂h ∈Qh\{0}

|G(η̂h)|
‖η̂h‖Q

}
≤ C1

{
‖f‖0,Ωs + ‖g‖−1/2,Γ

}
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and

‖(σ̂, γ̂) − (σ̂h, γ̂h)‖H×Q ≤ C2 inf
(τ̂ h,η̂h)∈Hh×Qh

‖(σ̂, γ̂) − (τ̂ h, η̂h)‖H×Q ,

where (σ̂, γ̂) := ((σs,σf ), (γ,ϕs,ϕf )) ∈ H×Q is the unique solution of (2.7). Furthermore,

if there exists δ ∈ (0, 1] such that σs ∈ Hδ(Ωs), divσs ∈ Hδ(Ωs), σf ∈ Hδ(Ωf ), divσf ∈
Hδ(Ωf ), γ ∈ Hδ(Ωs), ϕs ∈ H1/2+δ(Σ), and ϕf ∈ H1/2+δ(∂Ωf ), then there exists C3 > 0,

independent of h, such that for each h ∈ (0, h1] there holds

‖(σ̂, γ̂) − (σ̂h, γ̂h)‖H×Q ≤ C3 h
δ
{
‖σs‖δ,Ωs + ‖divσs‖δ,Ωs + ‖σf‖δ,Ωf

+ ‖divσf‖δ,Ωf

+ ‖γ‖δ,Ωs + ‖ϕs‖1/2+δ,Σ + ‖ϕf‖1/2+δ,∂Ωf

}
.

Proof. See [14, Theorem 4.1] and the whole analysis in [14, Section 4] for full details. �

3. A Residual-based a Posteriori Error Estimator

In this section we derive a reliable and efficient residual based a posteriori error estimator

for (2.20).

3.1. The main result

We begin by introducing further notations. Given T ∈ T s
h ∪ T f

h , we let E(T ) be the set of

edges of T , and denote by Eh be the set of all edges of T s
h ∪ T f

h . Then we can write

Eh = Eh(Ωs) ∪ Eh(Σ) ∪ Eh(Ωf ) ∪ Eh(Γ), (3.1)

where Eh(Ωs) := {e ∈ Eh : e ⊆ Ωs}, Eh(Σ) := {e ∈ Eh : e ⊆ Σ}, and similarly for Eh(Ωf ) and
Eh(Γ). In what follows, he stands for the length of the edge e ∈ Eh. Also, for each edge e ∈ Eh
we fix a unit normal vector ν := (ν1, ν2)

t, and let s := (−ν2, ν1)t be the corresponding fixed

unit tangential vector along e. Now, let ws ∈ L2(Ωs) such that ws|T ∈ C(T ) for each T ∈ T s
h .

Then, given T ∈ T s
h and e ∈ E(T ) ∩ Eh(Ωs), we denote by [ws] the jump of ws across e, that

is [ws] := (ws|T )|e − (ws|T ′)|e, where T and T ′ are the triangles of T s
h having e as a common

edge. Also, given e ∈ Eh(Ωs) and τ s ∈ L(Ωs) such that τ s|T ∈ C(T ) on each T ∈ T s
h , we let

[τ s s] := (τ s|T − τ s|T ′)|e s. Similar definitions hold for vf ∈ L2(Ωf ) such that vf |T ∈ C(T ) for

each T ∈ T f
h . In fact, given e ∈ E(T ) ∩ Eh(Ωf ), we define

[vf · ν] :=
(
(vf |T )|e − (vf |T ′)|e

)
|e · ν.

Finally, given a scalar function q, a vector χ := (χ1,χ2) and a tensor τ := (τij), we let

curl(q) :=




∂q
∂x2

− ∂q
∂x1


 , curl(χ) :=




∂χ
1

∂x2

−∂χ
1

∂x1

∂χ
2

∂x2

−∂χ
2

∂x1


 , (3.2)

rotχ :=
∂χ2

∂x1
− ∂χ1

∂x2
and curl(τ ) :=




∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2


 . (3.3)
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In addition, given a domain O with boundary ∂O, we introduce the tangential derivatives

dϕ

ds
:= ∇ϕ · s ∈ H−1/2(∂O) ∀ϕ ∈ H1(O),

dϕ

ds
:= ∇ϕ s ∈ H−1/2(∂O) ∀ϕ ∈ H1(O) .

Next, letting (σ̂h, γ̂h) := ((σs,h,σf,h), (γh,ϕs,h,ϕf,h)) ∈ Hh×Qh be the unique solution

of (2.20), with ϕf,h := (ϕ
Σ,h
, ϕ

Γ,h
) ∈ Λh(Σ)×Λh(Γ), and denoting by Psh the L2(Ωs)-orthogonal

projector onto Us
h (cf. (2.18)), we define for each T ∈ T s

h , and for each T ∈ T f
h , respectively,

the a posteriori error indicators:

θ2T,s := ‖σs,h − σt

s,h‖20,T + ‖(I− Psh) f ‖20,T + h2T ‖C−1σs,h + γh‖20,T

+ h2T ‖curl(C−1 σs,h + γh)‖20,T +
∑

e∈E(T )∩Eh(Ωs)

he ‖[(C−1σs,h + γh) s]‖20,e , (3.4)

θ2T,f := h2T ‖σf,h‖20,T + h2T ‖rot(σf,h)‖20,T +
∑

e∈E(T )∩Eh(Ωf )

he ‖[σf,h · s]‖20,e . (3.5)

Similarly, for each e ∈ Eh(Σ) we define

θ2e,Σ :=he ‖ϕs,h − uh‖20,e + he ‖σf,h · ν − ρfω
2ϕs,h · ν‖20,e

+ he ‖σs,h ν + ϕ
Σ,h
ν‖20,e + he

∥∥∥(C−1σs,h + γh) s −
dϕs,h
ds

∥∥∥
2

0,e
(3.6)

+ he

∥∥∥σf,h · s − dϕ
Σ,h

ds

∥∥∥
2

0,e
+ he ‖ϕΣ,h

− ph‖20,e ,

where, resembling (2.6) (see also [14]), we set

uh := − 1

κ2s

(
Psh(f) + divσs,h

)
in Ωs and ph := − 1

κ2f
divσf,h in Ωf . (3.7)

In addition, assuming that the Robin datum g ∈ L2(Γ), we set for each e ∈ Eh(Γ)

θ2e,Γ := he

∥∥∥σf,h · s − dϕ
Γ,h

ds

∥∥∥
2

0,e
+ he ‖ϕΓ,h

− ph‖20,e + he ‖σf,h · ν − ı κf ϕΓ,h
− g‖20,e . (3.8)

Therefore, we introduce the global a posteriori error estimator

θ :=

{
∑

T∈T s
h

θ2T,s +
∑

T∈T f
h

θ2T,f +
∑

e∈Eh(Σ)

θ2e,Σ +
∑

e∈Eh(Γ)

θ2e,Γ

}1/2

, (3.9)

and state the main result of this section as follows.

Theorem 3.1. Assume that the homogeneous problem associated to (2.7) has only the trivial

solution, and let (σ̂, γ̂) :=
(
(σs,σf ), (γ,ϕs,ϕf )

)
∈ H×Q and

(σ̂h, γ̂h) :=
(
(σs,h,σf,h), (γh,ϕs,h,ϕf,h)

)
∈ Hh ×Qh

be the unique solutions of (2.7) and (2.20), respectively. In addition, let u ∈ L2(Ωs) and

p ∈ L2(Ωf ) be defined according to (2.6), that is u := − 1
κ2
s

(
f+divσs

)
and p = − 1

κ2

f
divσf , and

assume that the Robin datum g belongs to L2(Γ). Then, there exist Ceff , Crel > 0 independent

of h, such that

Ceff θ ≤ ‖u− uh‖0,Ωs + ‖p− ph‖0,Ωf
+ ‖σ̂ − σ̂h‖H + ‖γ̂ − γ̂h‖Q ≤ Crel θ . (3.10)
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The lower and upper estimates given by (3.10) constitute what we call the efficiency and

reliability of θ, respectively.

3.2. Reliability of the a posteriori error estimator

We begin with the upper bounds for ‖u− uh‖0,Ωs and ‖p− ph‖0,Ωf
. In fact, according to

the definitions of u and p (cf. (2.6)), uh and ph (cf. (3.7)), we easily find that

‖u− uh‖0,Ωs ≤ 1

κ2s

{
‖(I−Psh)f‖0,Ωs + ‖σs − σs,h‖div;Ωs

}
(3.11)

and

‖p− ph‖0,Ωf
≤ 1

κ2f
‖σf − σf,h‖div;Ωf

. (3.12)

We continue our analysis by recalling that the continuous dependence result given by (2.9)

(cf. Theorem 2.1) is equivalent to the global inf-sup condition for the continuous formulation

(2.7) with the constant α = 1
2Ccd

> 0. Then, by applying this estimate to the error (σ̂, γ̂) −
(σ̂h, γ̂h) ∈ H×Q, we obtain

α ‖(σ̂, γ̂)− (σ̂h, γ̂h)‖H×Q ≤ sup
(τ̂ ,η̂)∈H×Q\{0}

|E(τ̂ , η̂)|
‖(τ̂ , η̂)‖H×Q

,

where

E(τ̂ , η̂) := A(σ̂ − σ̂h, τ̂ ) + B(τ̂ , γ̂ − γ̂h) + B(σ̂ − σ̂h, η̂) + K(γ̂ − γ̂h, η̂) ,
for all

(τ̂ , η̂) := ((τ s, τ f ), (η,ψs,ψf )) ∈ H×Q,

with

ψf = (ψ
Σ
, ψ

Γ
) ∈ H1/2(Σ)×H1/2(Γ).

More precisely, thanks to the equations of the continuous variational formulation (2.7), we

deduce that

E(τ̂ , η̂) = E1(τ s) + E2(τ f ) + E3(η) + E4(ψs) + E5(ψΣ
) + E6(ψΓ

) , (3.13)

where E1 up to E6 are the linear functionals defined by

E1(τ s) :=
1

κ2s

∫

Ωs

{
f + divσs,h

}
· div τ s

−
∫

Ωs

{
C−1σs,h + γh

}
: τ s + 〈τ s ν,ϕs,h〉Σ , (3.14)

E2(τ f ) :=
1

κ2f

∫

Ωf

divσf,h div τ f −
∫

Ωf

σf,h · τ f

− 〈τ f · ν, ϕΣ,h
〉Σ + 〈τ f · ν, ϕΓ,h

〉Γ , (3.15)

E3(η) := −
∫

Ωs

σs,h : η ,

E4(ψs) := 〈σs,h ν + ϕ
Σ,h
ν,ψs〉Σ ,

E5(ψΣ
) := −〈σf,h · ν − ρf ω

2ϕs,h · ν, ψΣ
〉Σ ,

E6(ψΓ
) := 〈σf,h · ν − i κf ϕΓ,h

− g, ψ
Γ
〉Γ .



A Posteriori Error Analysis of A Fully-Mixed FEM 617

In addition, it is not difficult to see that

sup
(τ̂ ,η̂)∈H×Q\{0}

|E(τ̂ , η̂)|
‖(τ̂ , η̂)‖H×Q

≤ sup
τ s∈H(div;Ωs)\{0}

|E1(τ s)|
‖τ s‖div;Ωs

+ sup
τ f∈H(div;Ωf )\{0}

|E2(τ f )|
‖τ f‖div;Ωf

+ sup
η∈L

2

skew
(Ωs)\{0}

|E3(η)|
‖η‖0,Ωs

+ sup
ψs∈H1/2(Σ)\{0}

|E4(ψs)|
‖ψs‖1/2,Σ

+ sup
ψ

Σ
∈H1/2(Σ)\{0}

|E5(ψΣ
)|

‖ψ
Σ
‖1/2,Σ

+ sup
ψ

Γ
∈H1/2(Γ)\{0}

|E6(ψΓ
)|

‖ψ
Γ
‖1/2,Γ

. (3.16)

Furthermore, the “Galerkin orthogonality condition” arising from (2.7) and (2.20) establishes

that

E(τ̂ h, η̂h) = 0 ∀ (τ̂h, η̂h) ∈ Hh ×Qh ,

and hence, in order to estimate the above norms of the six functionals defining E(τ̂ , η̂), we could

replace (τ s, τ f ,η,ψs, ψΣ
, ψ

Γ
) by (τ s− τ s,h, τ f − τ f,h,η−ηh,ψs−ψs,h, ψΣ

−ψ
Σ,h
, ψ

Γ
−ψ

Γ,h
)

with any suitable choice of τ̂h := (τ s,h, τ f,h) ∈ Hh and η̂h := (ηh,ψs,h, (ψΣ,h
, ψ

Γ,h
)) ∈ Qh,

whenever it is necessary. However, this procedure is applied in what follows only to estimate

the first two suprema on the right hand side of (3.16).

We begin the estimates of all these suprema with the last four of them.

Lemma 3.1. There holds

‖E3‖ := sup
η∈L

2

skew
(Ωs)\{0}

|E3(η)|
‖η‖0,Ωs

≤ 1

2
‖σs,h − σt

s,h‖20,Ωs
. (3.17)

Proof. It suffices to see that σs,h = 1
2 (σs,h + σ

t

s,h) +
1
2 (σs,h − σt

s,h), which yields

∫

Ωs

σs,h : η =
1

2

∫

Ωs

(
σs,h − σt

s,h

)
: η ∀η ∈ L2

skew
(Ωs) ,

and hence the Cauchy-Schwarz inequality completes the proof. �

The upper bounds for the norms of E4, E5, and E6, being all consequence of the same

arguments, are collected in the following lemma.

Lemma 3.2. There exist C4, C5, C6 ≥ 0, independent of h, such that

‖E4‖ := sup
ψs∈H1/2(Σ)\{0}

|E4(ψs)|
‖ψs‖1/2,Σ

≤ C4

{
∑

e∈Eh(Σ)

he ‖σs,h ν + ϕ
Σ,h
ν‖20,e

}1/2

, (3.18)

‖E5‖ := sup
ψ

Σ
∈H1/2(Σ)\{0}

|E5(ψΣ
)|

‖ψ
Σ
‖1/2,Σ

≤ C5

{
∑

e∈Eh(Σ)

he ‖σf,h · ν − ρf ω
2ϕs,h · ν‖20,e

}1/2

, (3.19)
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and

‖E6‖ := sup
ψ

Γ
∈H1/2(Γ)\{0}

|E6(ψΓ
)|

‖ψ
Γ
‖1/2,Γ

≤ C6

{
∑

e∈Eh(Γ)

he ‖σf,h · ν − i κf ϕΓ,h
− g‖20,e

}1/2

. (3.20)

Proof. It follows easily from the definitions of the functionals involved that

‖E4‖ = ‖σs,h ν + ϕ
Σ,h
ν‖−1/2,Σ ,

‖E5‖ = ‖σf,h · ν − ρf ω
2ϕs,h · ν‖−1/2,Σ ,

‖E6‖ = ‖σf,h · ν − i κf ϕΓ,h
− g‖−1/2,Γ .

Next, we observe from the equations forming the Galerkin scheme (2.20), that the discrete

versions of the transmission and Robin boundary conditions become, respectively,

〈σs,h ν + ϕ
Σ,h
ν,ψs,h〉Σ = 0 ∀ψs,h ∈ Λh(Σ)× Λh(Σ) ,

〈σf,h · ν − ρf ω
2ϕs,h · ν, ψΣ,h

〉Σ ∀ψ
Σ,h

∈ Λh(Σ) ,

〈σf,h · ν − i κf ϕΓ,h
− g, ψ

Γ,h
〉Γ ∀ψ

Γ,h
∈ Λh(Γ) ,

which say, equivalently, that each expression on the left hand side of the above dualities is

orthogonal to the corresponding finite element subspace indicated at the end of each equation.

In particular, σs,h ν + ϕ
Σ,h
ν is L2(Σ)-orthogonal to Λh(Σ)×Λh(Σ), and therefore, a straight-

forward application of [9, Theorem 2] and the fact that Σh and Σ2h are of bounded variation,

yield the existence of a constant C4 > 0, independent of h, such that, denoting by E2h(Σ) the
set of edges of Σ2h, there holds

‖σs,h ν + ϕ
Σ,h
ν‖−1/2,Σ

≤C
∑

e∈E2h(Σ)

he‖σs,h ν + ϕ
Σ,h
ν‖20,e ≤ C4

∑

e∈Eh(Σ)

he‖σs,h ν + ϕ
Σ,h
ν‖20,e ,

which shows (3.18). The proofs of (3.19) and (3.20), being also based on [9, Theorem 2] and

the above mentioned properties of Σh and Σ2h, are derived similarly. We omit further details.�

We now aim to establish the upper bounds of ‖E1‖ and ‖E2‖, for which, as announced

before, we plan to use that

E1(τ s) = E1(τ s − τ s,h) and E2(τ f ) = E2(τ f − τ f,h) ∀ τ̂h := (τ s,h, τ f,h) ∈ Hh . (3.21)

To this end, we also need the auxiliary results given in the following section.

3.2.1. Auxiliary results

We first consider the space of pure Raviart-Thomas tensors of order 0, that is

RT
s
h :=

{
τ s,h ∈ H(div; Ωs) : ct τ s,h|T ∈ RT0(T ) ∀T ∈ T s

h , ∀ c ∈ R2
}
,

which is clearly contained in Hsh (cf. (2.10)). Then, we let Πsh : H1(Ωs) → RTsh and Πfh :

H1(Ωf ) → H
f
h be the usual Raviart–Thomas interpolation operators, which are characterized

by the identities
∫

e

Πsh(ζs)ν =

∫

e

ζs ν ∀ e ∈ T s
h , ∀ ζs ∈ H1(Ωs) , (3.22)
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and

∫

e

Πfh(ζf ) · ν =

∫

e

ζf · ν ∀ e ∈ T f
h , ∀ ζf ∈ H1(Ωf ) . (3.23)

It is easy to show, using (3.22) and (3.23), that

div(Πsh(ζs)) = Psh(div ζs) and div(Πfh(ζf )) = Pfh (div ζf ) , (3.24)

where, as said before, Psh is the L2(Ωs)-orthogonal projector onto Us
h (cf. (2.18)), and Pfh is the

L2(Ωf )-orthogonal projector onto U
f
h (cf. (2.10)). In addition, it is well known (see, e.g. [8], [27],

and [20, Theorem 4.5]) that Πsh and Πfh satisfy the following approximation properties:

‖ζs −Πsh(ζs)‖0,T ≤ C hT ‖ζs‖1,T ∀T ∈ T s
h , ∀ ζs ∈ H1(Ωs) , (3.25)

‖(ζs −Πsh(ζs))ν‖0,e ≤ C h1/2e ‖ζs‖1,Te ∀ e ∈ T s
h , ∀ ζs ∈ H1(Ωs) , (3.26)

‖ζf −Πfh(ζf )‖0,T ≤ C hT ‖ζf‖1,T ∀T ∈ T f
h , ∀ ζf ∈ H1(Ωf ) , (3.27)

‖(ζf −Πfh(ζf )) · ν‖0,e ≤ C h1/2e ‖ζf‖1,Te ∀ e ∈ T f
h , ∀ ζf ∈ H1(Ωf ) , (3.28)

where Te in (3.26) (resp. in (3.28)) is a triangle of T s
h (resp. T f

h ) containing e on its boundary.

We now let Is,h : H1(Ωs) → Xs,h and If,h : H1(Ωf ) → Xf,h be the usual Clément interpo-

lation operators (cf. [12]), where

Xs,h :=
{
v ∈ C(Ω̄s) : v|T ∈ P1(T ), ∀T ∈ T s

h

}
,

Xf,h :=
{
v ∈ C(Ω̄f ) : v|T ∈ P1(T ), ∀T ∈ T f

h

}
.

A vectorial version of Is,h, say Is,h : H1(Ωs) → Xs,h := Xs,h × Xs,h, which is defined com-

ponentwise by Is,h, is also required. The following lemma provides the local approximation

properties of Is,h. Analogue estimates hold for the operator If,h.

Lemma 3.3. There exist constants c1, c2 > 0, independent of hs, such that for all v ∈ H1(Ωs)

there holds

‖v − Is,h(v)‖0,T ≤ c1 hT ‖v‖1,∆(T ) ∀T ∈ T s
h

‖v − Is,h(v)‖0,e ≤ c2 h
1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh(Ωs) ∪ Eh(Σ) ,

where

∆(T ) := ∪{T ′ ∈ T s
h : T ′ ∩ T 6= ∅}and∆(e) := ∪{T ′ ∈ T s

h : T ′ ∩ e 6= ∅}.

Proof. See [12]. �

Next, in order to define a suitable τ̂h := (τ s,h, τ f,h) ∈ Hh to be employed in (3.21), we

first demonstrate the existence of continuous Helmholtz decompositions of the spacesH(div; Ωs)

and H(div; Ωf ). More precisely, we adapt the analysis from [16, Section 3.2.2] to establish the

following result.
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Lemma 3.4. For each τ s ∈ H(div; Ωs) there exist ζs ∈ H1(Ωs) and χs := (χ1, χ2)
t ∈ H1(Ωs),

with
∫
Ωs
χ1 =

∫
Ωs
χ2 = 0, such that τ s = ζs + curlχs in Ωs and

‖ζs‖1,Ωs + ‖χs‖1,Ωs ≤ Cs ‖τ s‖div;Ωs , (3.29)

where Cs is a positive constant independent of τ s. In turn, for each τ f ∈ H(div; Ωf ) there

exist wf ∈ H1(Ωf ) and φf ∈ H1(Ωf ), such that τ f = wf + curlφf in Ωf and

‖wf‖1,Ωf
+ ‖φf‖1,Ωf

≤ Cf ‖τ f‖div;Ωf
, (3.30)

where Cf is a positive constant independent of τ f .

Proof. We proceed as in [16, Section 3.2.2] by considering first a convex domain Ω̃ containing

Ωs. Then, given τ s ∈ H(div; Ωs), we define the auxiliary function q ∈ L2(Ω̃) by

q :=

{
div τ s in Ωs
0 in Ω̃\Ω̄s

,

and let z ∈ H1
0(Ω̃) be the unique weak solution of the boundary value problem:

∆z = q in Ω̃ , z = 0 on ∂Ω̃ .

The elliptic regularity result for the above problem guarantees that z ∈ H2(Ω̃) and

‖z‖2,Ω̃ ≤ C ‖q‖0,Ω̃ = ‖div τ s‖0,Ωs .

It follows that ζs := ∇z|Ωs belongs to H1(Ωs),

div ζs = div τ s in Ωs , (3.31)

‖ζs‖1,Ωs ≤ C ‖z‖2,Ωs ≤ C ‖div τ s‖0,Ωs . (3.32)

In this way, since div(τ s − ζs) = 0 in Ωs, and Ωs is connected, there exist χs := (χ1, χ2)
t ∈

H1(Ωs), with
∫
Ωs
χ1 =

∫
Ωs
χ2 = 0, such that τ s − ζs = curlχs. Note that this identity, the

generalized Poincaré inequality, and (3.32) imply that

‖χs‖1,Ωs ≤C |χs|1,Ωs = C ‖τ s − ζs‖0,Ωs

≤C
{
‖τ s‖0,Ωs + ‖ζs‖0,Ωs

}
≤ C ‖τ s‖div;Ωs ,

which, together with (3.32) again, yields (3.29).

In turn, given τ f ∈ H(div; Ωf ), and since Ωf is not connected, we first need to perform a

suitable extension of τ f to the domain Ω := Ωs ∪ Σ ∩ Ωf . To this end, we now let v ∈ H1(Ωs)

be the unique solution of the Neumann problem:

∆ v = − 〈τ f · ν, 1〉Σ
|Ωs|

in Ωs ,
∂v

∂ν
= τ f · ν on Σ ,

∫

Ωs

v = 0 .

The unique solvability of the above problem is guaranteed by the Lax-Milgram Lemma, whose

corresponding continuous dependence result establishes that

‖v‖1,Ωs ≤ c ‖τ f · ν‖−1/2,Σ . (3.33)
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Then we define

τ̃ :=




τ f in Ωf ,

∇v in Ωs ,

which clearly belongs to H(div; Ω), and observe, using (3.33), that

‖τ̃‖div;Ω ≤ ‖τ f‖div;Ωf
+ ‖∇v‖div;Ωs ≤ ‖τ f‖div;Ωf

+ c̃ ‖τ f · ν‖−1/2,Σ ≤ C ‖τ f‖div;Ωf
.

In this way, proceeding as in the first part of the present proof, but now applied to τ̃ ∈
H(div; Ω), we deduce the existence of w̃ ∈ H1(Ω) and φ̃ ∈ H1(Ω), with

∫
Ω
φ̃ = 0, such that

τ̃ = w̃ + curl(φ̃) in Ω and

‖w̃‖1,Ω + ‖φ̃‖1,Ω ≤ C ‖τ̃‖div;Ω ≤ C ‖τ f‖div;Ωf
.

The proof is completed by defining wf := w̃|Ωf
and φf := φ̃|Ωf

. �

Finally, the following lemma provides a couple of identities involving the differential opera-

tors from (3.2) - (3.3), which will be employed below.

Lemma 3.5. Let O be a bounded domain with Lipschitz-continuous boundary ∂O. Then there

hold

〈curl(χ) · ν, ϕ〉∂O = −
〈
dϕ

ds
, χ

〉

∂O

∀χ, ϕ ∈ H1(O) , (3.34)

and

〈curlχν,ϕ〉∂O = −
〈
dϕ

ds
,χ

〉

∂O

∀χ, ϕ ∈ H1(O) . (3.35)

Proof. We first recall from [23, eq. (2.17) and Theorem 2.11] that the Green formulae in

H(div;O) and H(rot;O) establish, respectively, that

∫

O

φdiv τ +

∫

O

τ · ∇φ = 〈τ · ν, φ〉∂O ∀ τ ∈ H(div;O), ∀φ ∈ H1(O) , (3.36)

∫

O

φ rotτ −
∫

O

τ · curl(φ) = 〈τ · s, φ〉∂O ∀ τ ∈ H(rot;O), ∀φ ∈ H1(O) , (3.37)

where H(div;O) is given by (1.1) and

H(rot;O) :=
{
τ ∈ L2(O) : rotτ ∈ L2(O)

}
. (3.38)

Then, given now χ, ϕ ∈ H1(O), we first apply (3.36) with τ = curl(χ) ∈ H(div;O) and

φ = ϕ ∈ H1(Ω), and then employ (3.37) with τ = ∇ϕ ∈ H(rot;O) and φ = χ ∈ H1(Ω), to

obtain

〈curl(χ) · ν, ϕ〉∂O =

∫

O

curl(χ) · ∇ϕ =

∫

O

χ rot(∇ϕ) − 〈∇ϕ · s, χ〉∂O

=− 〈∇ϕ · s, χ〉∂O = −
〈
dϕ

ds
, χ

〉

∂O

,

which proves (3.34). The proof of (3.35) uses (3.36) and (3.37) along rows, and hence, being

similar to (3.34), is omitted. �
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3.2.2. Estimating ‖E1‖

Given τ s ∈ H(div; Ωs), we use (3.21) to estimate E1(τ s) = E1

(
τ s − τ s,h

)
with a suitable

chosen τ s,h ∈ Hsh. More precisely, as suggested by the Helmholtz decomposition for τ s provided

by Lemma 3.4, that is τ s = ζs + curl(χs), with ζs ∈ H1(Ωs) and χs ∈ H1(Ωs), we consider

in what follows

χs,h := Is,h(χs) ∈ Xs,h and τ s,h := Πsh(ζs) + curl(χs,h) ∈ RTsh ⊆ Hsh ,

which yields

τ s − τ s,h = ζs − Πsh(ζs) + curl
(
χs − χs,h

)
.

In particular, using (3.24) and (3.31) we find from the above identity that

div
(
τ s − τ s,h

)
=
(
I− Psh

)
(div ζs) =

(
I− Psh

)
(div τ s) ,

and hence, according to the definition of E1 (cf. (3.14)), we find that

E1(τ s − τ s,h) = E11(τ s) + E12(ζs) + E13(χs) ,

where

E11(τ s) =
1

κ2s

∫

Ωs

{
f + divσs,h

}
(I− Psh)(div τ s) =

1

κ2s

∫

Ωs

(I− Psh)(f) · (div τ s) ,

E12(ζs) = −
∫

Ωs

{
C−1σs,h + γh

}
: (ζs −Πsh(ζs)) + 〈(ζs −Πsh(ζs))ν,ϕs,h〉Σ ,

E13(χs) = −
∫

Ωs

{
C−1σs,h + γh

}
: curl(χs − χs,h) + 〈curl(χs − χs,h)ν,ϕs,h〉Σ .

Note that the second expression defining E11(τ s) follows from the fact that Psh is self-adjoint

and that, according to the definitions of Hsh (cf. (2.10)) and Us
h (cf. (2.18)), there holds

div
(
Hsh
)
⊆ Us

h, whence
(
I− Psh

)
(divσs,h) = 0.

The following three lemmata provide the upper bounds for E11(τ s), E12(ζs), and E13(χs).

Lemma 3.6. There holds

|E11(τ s)| ≤
1

κ2s




∑

T∈T s
h

‖(I− Psh) f ‖20,T





1/2

‖div τ s‖0,Ωs .

Proof. It follows from a straightforward application of the Cauchy-Schwarz inequality. �

Lemma 3.7. There exists C > 0, independent of µ, λ, and κs, such that

|E12(ζs)| ≤ C




∑

T∈T s
h

h2T ‖C−1σs,h + γh‖20,T +
∑

e∈Eh(Σ)

he ‖ϕs,h − uh‖20,e





1/2

‖div τ s‖0,Ωs .

Proof. The present estimate was actually proved in [16, Lemma 5]. For sake of completeness

we provide here the main aspects of the corresponding proof. We first observe, thanks to the

fact that ζs belongs to H1(Ωs), that (ζs −Πsh(ζs))ν|Σ ∈ L2(Σ), and hence

〈(ζs −Πsh(ζs))ν,ϕs,h〉Σ =
∑

e∈Eh(Σ)

∫

e

ϕs,h · (ζs −Πsh(ζs))ν . (3.39)
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Next, it is clear from (3.7) that uh ∈ Us
h, which means, in particular, that for each e ∈ Eh(Σ)

there holds uh|e ∈ P0(e), and therefore the identity (3.22) yields

∑

e∈Eh(Σ)

∫

e

uh · (ζs −Πsh(ζs))ν = 0 .

Thus, by introducing the above null expression in the right hand side of (3.39), and then

re-incorporating the resulting equation in the definition of E12, we find that

E12(ζs) = −
∑

T∈T s
h

∫

T

{
C−1 σs,h + γh

}
: (ζs −Πsh(ζs))

+
∑

e∈Eh(Σ)

∫

e

(
ϕs,h − uh

)
· (ζs −Πsh(ζs))ν ,

where we have replaced the original integration

∫

Ωs

by
∑

T∈T s
h

∫

T

. In this way, the rest of the

proof reduces to apply the Cauchy-Schwarz inequality, the approximation properties (3.25) and

(3.26), and finally the upper bound given by (3.32). We omit further details. �

Lemma 3.8. There exists C > 0, independent of µ, λ and κs, such that

|E13(χs)| ≤ C




∑

T∈T s
h

h2T ‖curl(C−1 σs,h + γh)‖20,T +
∑

e∈Eh(Ωs)

he ‖[(C−1σs,h + γh) s]‖20,e

+
∑

e∈Eh(Σ)

he

∥∥∥(C−1 σs,h + γh) s−
dϕs,h
ds

∥∥∥
2

0,e





1/2

‖τ s‖div;Ωs .

Proof. While this result is also available in several places (see, e.g. [16, Lemma 6]), here we

proceed similarly as for the previous lemma and provide an sketch of its proof. Indeed, we first

note that ϕs,h, being a continuous piecewise linear function on Σ, is the trace of a function in

H1(Ωs), say denoted again by ϕs,h. Then, a straightforward application of (3.35) yields

〈curl(χs − χs,h)ν,ϕs,h〉Σ = −
〈
dϕs,h
ds

,χs − χs,h
〉

Σ

=

∫

Σ

dϕs,h
ds

· (χs − χs,h) , (3.40)

where the last equality makes use of the fact that
dϕs,h

ds ∈ L2(Σ).

In turn, integrating by parts on each T ∈ T s
h , we obtain that

−
∫

Ωs

{
C−1σs,h + γh

}
: curl(χs − χs,h)

= −
∑

T∈T s
h

∫

T

{
C−1σs,h + γh

}
: curl(χs − χs,h)
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=
∑

T∈T s
h

{
−
∫

T

curl
(
C−1 σs,h + γh

)
· (χs − χs,h) +

∫

∂T

(
C−1 σs,h + γh

)
s · (χs − χs,h)

}

= −
∑

T∈T s
h

∫

T

curl
(
C−1 σs,h + γh

)
· (χs − χs,h)

+
∑

e∈Eh(Ωs)

∫

e

[(
C−1σs,h + γh

)
s
]
· (χs − χs,h)

+
∑

e∈Eh(Σ)

∫

e

(
C−1 σs,h + γh

)
s · (χs − χs,h) ,

which, together with (3.40), yields

E13(χs) = −
∑

T∈T s
h

∫

T

curl
(
C−1 σs,h + γh

)
· (χs − χs,h)

+
∑

e∈Eh(Ωs)

∫

e

[(
C−1σs,h + γh

)
s
]
· (χs − χs,h)

+
∑

e∈Eh(Σ)

∫

e

{(
C−1 σs,h + γh

)
s− dϕs,h

ds

}
· (χs − χs,h) .

In this way, and recalling that χs,h = Is,h(χs), the rest of the proof follows from obvious

applications of the Cauchy-Schwarz inequality and the approximation properties of the Clément

interpolation operator Is,h (cf. Lemma 3.3), taking into account as well that the number of

elements in ∆(T ) and ∆(e) are bounded and that ‖χs‖1,Ωs ≤ Cs ‖τ s‖div;Ωs (cf. (3.29)).

Further details are omitted. �

As a direct consequence of Lemmata 3.6, 3.7, and 3.8, the norm of the functional E1 (cf.

(3.14)) is estimated as follows.

Lemma 3.9. There exists C > 0, independent of µ, λ and κs, such that

‖E1‖ ≤ C





1

κ4s

∑

T∈T s
h

‖(I− Psh) f ‖20,T +
∑

T∈T s
h

h2T ‖C−1σs,h + γh‖20,T

+
∑

e∈Eh(Σ)

he ‖ϕs,h − uh‖20,e +
∑

T∈T s
h

h2T ‖curl(C−1 σs,h + γh)‖20,T

+
∑

e∈Eh(Ωs)

he ‖[(C−1 σs,h + γh) s]‖20,e +
∑

e∈Eh(Σ)

he

∥∥∥(C−1σs,h + γh) s −
dϕs,h
ds

∥∥∥
2

0,e





1/2

.

3.2.3. Estimating ‖E2‖

We proceed analogously to the case of ‖E1‖. This means that, given τ f ∈ H(div; Ωf), we

consider from Lemma 3.4 its Helmholtz decomposition τ f = wf + curlφf in Ωf , with wf ∈
H1(Ωf ) and φf ∈ H1(Ωf ), and define

φf,h := If,h(φf ) and τ f,h := Πfh(wf ) + curl(φf,h) ,
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so that, using the second equality in (3.21), we can write E2(τ f ) = E2

(
τ f − τ f,h

)
. It follows

that

τ f − τ f,h = wf −Πfh(wf ) + curl(φf − φf,h) ,

from which, employing the second identity in (3.24), and noting from the definitions (2.11) and

(2.19) that divσf,h ∈ Ufh , we find that
∫

Ωf

divσf,h div
(
τ f − τ f,h

)
=

∫

Ωf

divσf,h
(
I− Pfh )(divwf ) = 0 .

Hence, according to (3.15) and the above computation, we get

E2(τ f − τ f,h) = E21(wf ) + E22(φf ) ,

where

E21(wf ) := −
∫

Ωf

σf,h ·
(
wf −Πfh(wf )

)
− 〈
(
wf −Πfh(wf )

)
· ν, ϕ

Σ,h
〉Σ

+ 〈
(
wf −Πfh(wf )

)
· ν, ϕ

Γ,h
〉Γ

E22(φf ) := −
∫

Ωf

σf,h · curl(φf − φf,h)− 〈curl(φf − φf,h) · ν, ϕΣ,h
〉Σ

+ 〈curl(φf − φf,h) · ν, ϕΓ,h
〉Γ . (3.41)

The following two lemmata establish the upper bounds for |E21(wf )| and |E22(φf )|.
Lemma 3.10. There exists C > 0, independent of κf and h, such that

|E21(wf )| ≤ C




∑

T∈T f
h

h2T ‖σf,h‖20,T +
∑

e∈Eh(Σ)

he ‖ϕΣ,h
− ph‖20,e

+
∑

e∈Eh(Γ)

he ‖ϕΓ,h
− ph‖20,e



 ‖τ f‖div;Ωf

.

Proof. We proceed as in the proof of Lemma 3.7. Indeed, since wf ∈ H1(Ωf ) it is clear

that (
wf −Πfh(wf )

)
· ν|Σ ∈ L2(Σ) and

(
wf −Πfh(wf )

)
· ν|Γ ∈ L2(Γ) ,

which, together with the fact that ph|e ∈ P0(e) ∀ e ∈ Eh(Σ) ∪ Eh(Γ) (cf. (3.7) and (2.11)), and

thanks to the characterization property (3.23), allow to show that

〈
(
wf −Πfh(wf )

)
· ν, ϕ

Σ,h
〉Σ =

∑

e∈Eh(Σ)

∫

e

(ϕ
Σ,h

− ph)
(
wf −Πfh(wf )

)
· ν

and

〈
(
wf −Πfh(wf )

)
· ν, ϕ

Γ,h
〉Γ =

∑

e∈Eh(Γ)

∫

e

(ϕ
Γ,h

− ph)
(
wf −Πfh(wf )

)
· ν .

In this way, we find that

E21(wf ) := −
∑

T∈T f
h

∫

T

σf,h ·
(
wf −Πfh(wf )

)
−

∑

e∈Eh(Σ)

∫

e

(ϕ
Σ,h

− ph)
(
wf −Πfh(wf )

)
· ν

+
∑

e∈Eh(Γ)

∫

e

(ϕ
Γ,h

− ph)
(
wf − Πfh(wf )

)
· ν ,
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and hence, the proof is completed by applying the Cauchy-Schwarz inequality, the approxima-

tion properties (3.27) and (3.28), and the fact that ‖wf‖1,Ωf
≤ Cf ‖τ f‖div;Ωf

(cf. (3.30)). We

omit further details. �

Lemma 3.11. There exists C > 0, independent of κf and h, such that

|E22(φf )| ≤ C




∑

T∈T f
h

h2T ‖rot(σf,h)‖20,T +
∑

e∈Eh(Ωf )

he ‖[σf,h · s]‖20,e

+
∑

e∈Eh(Σ)

he

∥∥∥σf,h · s−
dϕ

Σ,h

ds

∥∥∥
2

0,e
+

∑

e∈Eh(Γ)

he

∥∥∥σf,h · s−
dϕ

Γ,h

ds

∥∥∥
2

0,e





1/2

‖τ f‖div;Ωf
.

Proof. The analysis here is analogous to the proof of Lemma 3.8. In fact, by applying now

the identity (3.34) to the boundary terms defining E22 (cf. (3.41), that is to 〈curl(φf − φf,h) ·
ν, ϕ

Σ,h
〉Σ and 〈curl(φf − φf,h) · ν, ϕΓ,h

〉Γ, and integrating by parts on each T ∈ T f
h , we find

that

E22(φf ) = −
∑

T∈T f
h

∫

T

rot(σf,h) (φf − φf,h) +
∑

e∈Eh(Ωf )

∫

e

[σf,h · s](φf − φf,h)

−
∑

e∈Eh(Σ)

∫

e

(
σf,h · s−

dϕ
Σ,h

ds

)
(φf − φf,h) +

∑

e∈Eh(Γ)

∫

e

(
− σf,h · s+

dϕ
Γ,h

ds

)
(φf − φf,h) ,

where we have also employed that
dϕ

Σ,h

ds ∈ L2(Σ) and
dϕ

Γ,h

ds ∈ L2(Γ). Consequently, and

similarly as for Lemma 3.8, the rest of the proof follows from straightforward applications

of the Cauchy-Schwarz inequality, the approximation properties of the Clément interpolator

φf,h := If,h(φf ) (cf. Lemma 3.3), the fact that the cardinalities of ∆(T ) and ∆(e) are bounded,

and the upper bound ‖φf‖1,Ωf
≤ Cf ‖τ f‖div;Ωf

(cf. (3.30)). We omit further details. �

The norm of E2 (cf. (3.15) is bounded now as a consequence of Lemmata 3.10 and 3.11.

Lemma 3.12. There exists C > 0, independent of κf and h, such that

‖E2‖ ≤ C




∑

T∈T f
h

h2T ‖σf,h‖20,T +
∑

e∈Eh(Σ)

he ‖ϕΣ,h
− ph‖20,e

+
∑

e∈Eh(Γ)

he ‖ϕΓ,h
− ph‖20,e +

∑

T∈T f
h

h2T ‖rot(σf,h)‖20,T +
∑

e∈Eh(Ωf )

he ‖[σf,h · s]‖20,e

+
∑

e∈Eh(Σ)

he

∥∥∥σf,h · s−
dϕ

Σ,h

ds

∥∥∥
2

0,e
+

∑

e∈Eh(Γ)

he

∥∥∥σf,h · s−
dϕ

Γ,h

ds





1/2

.

We end this section by observing that the reliability estimate (cf. Theorem 3.1) is a direct

consequence of (3.11) and (3.12), together with Lemmata 3.1, 3.2, 3.9, and 3.12.

3.3. Efficiency of the a posteriori error estimator

In this section we prove the efficiency of our a posteriori error estimator θ (lower bound

in (3.10)). We begin with the first two terms defining θ2T,s (cf. (3.4)). In fact, since σs is



A Posteriori Error Analysis of A Fully-Mixed FEM 627

symmetric in Ωs, we easily notice, adding and substracting σs, that there holds

‖σs,h − σt

s,h‖20,T ≤ 4 ‖σs − σs,h‖20,T . (3.42)

Next, according to the definitions of u (cf. (2.6)) and uh (cf. (3.7)), we find that

‖
(
I− Psh)f‖20,T ≤ 2 κ4s ‖u− uh‖20,T + 2 ‖div(σs − σs,h)‖20,T . (3.43)

Throughout the rest of the section we provide the corresponding upper bounds for the terms

in (3.4), (3.5), (3.6), and (3.8) that involve the mesh parameters hT and he. Actually, most

of these estimates are already available in the literature (see, e.g. [10], [11], [16], and [19]), but

for sake of completeness we sketch here some of their proofs, which employ the localization

technique based on triangle-bubble and edge-bubble functions, together with extension opera-

tors, discrete trace and inverse inequalities, and certainly the original identities recovered by

Theorem 2.2. To this end, we now introduce further notations and preliminary results. Given

T ∈ T s
h ∪ T f

h and e ∈ E(T ), we let ψT and ψe be the usual triangle-bubble and edge-bubble

functions, respectively (see [29, eqs. (1.5) and (1.6)]), which satisfy:

i) ψT ∈ P3(T ), ψT = 0 on ∂T , supp(ψT ) ⊆ T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), ψe = 0 on ∂T \ e, supp(ψe) ⊆ we := ∪{T ′ ∈ T s
h ∪ T f

h : e ∈ E(T ′)}, and
0 ≤ ψe ≤ 1 in we.

We also recall from [28] that, given k ∈ N∪{0}, there exists an extension operator L : C(e) →
C(T ) that satisfies L(p) ∈ Pk(T ) and L(p)|e = p for all p ∈ Pk(e). Additional properties of ψT ,

ψe and L are collected in the following lemma.

Lemma 3.13. Given k ∈ N ∪ {0}, there exist positive constants c1, c2 and c3, depending only

on k and the shape regularity of the triangulations (minimun angle condition), such that for

each T ∈ T s
h ∪ T f

h and e ∈ E(T ), there hold

‖q‖20,T ≤ c1‖ψ1/2
T q‖20,T ∀q ∈ Pk(T ), (3.44)

‖p‖20,e ≤ c2‖ψ1/2
e p‖20,e ∀p ∈ Pk(e), (3.45)

‖ψ1/2
e L(p)‖20,T ≤ c3 he‖p‖20,e ∀p ∈ Pk(e). (3.46)

Proof. See [28, Lemma 1.3]. �

The following inverse and discrete trace inequalities will also be used.

Lemma 3.14. Let k, l, m ∈ N∪ {0} such that l ≤ m. Then there exists c > 0, depending only

on k, l, m and the shape regularity of the triangulations, such that for each T ∈ T s
h ∪ T f

h there

holds

|q|m,T ≤ c hl−mT |q|l,T ∀ q ∈ Pk(T ) . (3.47)

Proof. See [13, Theorem 3.2.6]. �

Lemma 3.15. There exists C > 0, depending only on the shape regularity of the triangulations,

such that for each T ∈ T s
h ∪ T f

h and e ∈ E(T ), there holds

‖v‖20,e ≤ C
{
h−1
e ‖v‖20,T + he |v|21,T

}
∀ v ∈ H1(T ) . (3.48)
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Proof. See [1, Theorem 3.10] or [3, eq. (2.4)]. �

The following three lemmas, whose proofs make use of the techniques and results described

above, provide the upper bounds for the remaining terms defining θ2T,s (cf. (3.4)).

Lemma 3.16. There exists C > 0, independent of h and λ, such that for each T ∈ T s
h there

holds

h2T ‖C−1σs,h + γh‖20,T ≤ C
{
‖u− uh‖20,T + h2T ‖σs − σs,h‖20,T + h2T ‖γ − γh‖20,T

}
.

Proof. See [11, Lemma 6.6]. �

Lemma 3.17. There exists C > 0, independent of h and λ, such that for each T ∈ T s
h there

holds

h2T ‖curl (C−1σs,h + γh)‖20,T ≤ C
{
‖σs − σs,h‖20,T + ‖γ − γh‖20,T

}
.

Proof. See [11, Lemma 6.3] or [6, Lemma 4.7]. �

Lemma 3.18. There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Ωs) there
holds

he ‖[(C−1σs,h + γh)s]‖20,e ≤ C
∑

T ⊆ωe

{
‖σs − σs,h‖20,T + ‖γ − γh‖20,T

}
,

where ωe := ∪
{
T ′ ∈ T s

h : e ∈ E(T ′)
}
.

Proof. See [11, Lemma 6.4]. �

At this point we remark that in the case of efficiency estimates involving jumps on an interior

edge e, such as the ones provided by Lemmas 3.18 (above) and 3.21 (below), the extension

operator L : C(e) → C(T ) is applied from e to each one of the two triangles T forming ωe.

Equivalently, one defines an extension operator L : C(e) → C(ωe) for which there holds (3.46)

with ωe instead of T .

The analogue of the above three lemmas for the terms defining θ2T,f (cf. (3.5)) are stated

next. Since it will be used in some of the forthcoming results, we now recall from the notations

introduced in Section 1 that z denotes the conjugate of a given complex number z.

Lemma 3.19. There exists C > 0, independent of h, such that for each T ∈ T f
h there holds

h2T ‖σf,h‖20,T ≤ C
{
h2T ‖σf − σf,h‖20,T + ‖p− ph‖20,T

}
.

Proof. It is a slight modification of [10, Lemma 6.3] (see also [19, Lemma 4.13]). In fact,

given T ∈ T f
h , we apply (3.44), use that σf = ∇p in Ωf and ∇ph = 0 in T (which follows from

the fact that ph is piecewise constant in virtue of (2.11) and (3.7)), and then integrate by parts.

In this way, we find that

‖σf,h‖20,T ≤ C ‖ψ1/2
T σf,h‖20,T = C

∫

T

ψT σf,h ·
{
(σf,h − σf )−∇(ph − p)

}

= C
{∫

T

ψT σf,h · (σf,h − σf ) +

∫

T

div(ψT σf,h) (p− ph)
}
.
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Then, employing the Cauchy- Schwarz inequality, the inverse estimate (3.47) (cf. Lemma 3.14),

and the fact that 0 ≤ ψT ≤ 1, we get

‖σf,h‖0,T ≤ C
{
‖σf − σf,h‖20,T + h−1

T ‖p− ph‖20,T
}
,

which implies the required bound and completes the proof. �

Lemma 3.20. There exists C > 0, independent of h, such that for each T ∈ T f
h there holds

h2T ‖rotσf,h‖20,T ≤ C ‖σf − σf,h‖20,T .

Proof. It basically follows from the general estimate provided by [6, Lemma 4.3]. Indeed,

a row-wise interpretation of this result allows to show that, given a piecewise polynomial ρh ∈
L2(Ωf ) of degree k ≥ 0 on each T ∈ T f

h , and ρ ∈ L2(Ωf ) such that rot ρ = 0 in Ωf , there exists

c > 0, independent of h, such that

hT ‖rotρh‖0,T ≤ c ‖ρ− ρh‖0,T ∀T ∈ T f
h . (3.49)

Hence, since rotσf = rot(∇p) = 0, it suffices to apply (3.49) to ρh = σf,h and ρ = σf .

Lemma 3.21. There exists C > 0, independent of h, such that for each e ∈ Eh(Ωf ) there holds

he ‖[σf,h · s]‖20,e ≤ C ‖σf − σf,h‖20,ωe
,

where ωe := ∪
{
T ′ ∈ T f

h : e ∈ E(T ′)
}
.

Proof. We first observe that a slight modification of the proof of [6, Lemma 4.4] allows to

show that, under the same hypotheses leading to (3.49), that is given a piecewise polynomial

ρh ∈ L2(Ωf ) of degree k ≥ 0 on each T ∈ T f
h , and ρ ∈ L2(Ωf ) such that rotρ = 0 in Ωf , there

exists c > 0, independent of h, such that for each e ∈ Eh(Ωf ) there holds

he ‖[ρh · s]‖20,e ≤ c ‖ρ− ρh‖20,ωe
. (3.50)

Hence, the present proof is a straightforward application of (3.50) to ρh = σf,h and ρ = σf =

∇p.

We now aim to bound the first three terms defining θ2e,Σ (cf. (3.6)).

Lemma 3.22. There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Σ) there
holds

he ‖ϕs,h−uh‖20,e ≤ C
{
‖u−uh‖20,T + h2T ‖σs−σs,h‖20,T + h2T ‖γ−γh‖20,T + he ‖ϕs−ϕs,h‖20,e

}
,

where T is the triangle of T s
h having e as an edge.

Proof. It is based mainly on the discrete trace inequality (3.48), the fact that ∇u = C−1σs+

γ in Ωs, and the upper bound for h2T ‖C−1σs,h + γh‖20,T provided by Lemma 3.16. We omit

further details and refer to [16, Lemma 22]. �
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Lemma 3.23. There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Σ) there
holds

he ‖σf,h · ν − ρf ω
2ϕs,h · ν‖20,e

≤C
{
‖σf − σf,h‖20,T + h2T ‖div(σf − σf,h)‖20,T + he ‖ϕs −ϕs,h‖20,e

}
,

where T is the triangle of T f
h having e as an edge.

Proof. We proceed similarly as in [5, Lemma 4.7] (see also [22, Lemma 3.15]). Indeed, given

e ∈ Eh(Σ), we let T be the triangle of T f
h having e as an edge, define ve := σf,h ·ν−ρf ω2ϕs,h ·ν

on e, and consider the extension operator L : C(e) → C(T ). Then, applying (3.45), recalling

that ψe = 0 on ∂T \e, extending ψe L(ve) by zero in Ωf\T so that the resulting function belongs

to H1(Ωf ), and adding and substracting σf · ν = ρf ω
2ϕs · ν on Σ, we get

‖ve‖20,e ≤ c2 ‖ψ1/2
e ve‖20,e = c2

∫

e

ψe ve (σf,h · ν − ρf ω
2ϕs,h · ν)

= c2 〈σf,h · ν − ρf ω
2ϕs,h · ν, ψe L(ve)〉Σ

=c2

{
− 〈(σf − σf,h) · ν, ψe L(ve)〉Σ + ρf ω

2 〈(ϕs −ϕs,h) · ν, ψe L(ve)〉Σ
}
, (3.51)

where, as indicated in Section 1, 〈·, ·〉Σ stands here for the duality pairing betweenH−1/2(Σ) and

H1/2(Σ). Next, integrating by parts in Ωf , and then employing the Cauchy-Schwarz inequality,

the inverse estimate (3.47) (cf. Lemma 3.14), and (3.46), we find that

〈(σf − σf,h) · ν, ψeL(ve)〉Σ

=

∫

T

∇(ψe L(ve)) · (σf − σf,h) +

∫

T

ψe L(ve) div(σf − σf,h)

≤ |ψe L(ve)|1,T ‖σf − σf,h‖0,T + ‖ψe L(ve)‖0,T ‖div(σf − σf,h)‖0,T

≤C
{
h−1
T h1/2e ‖σf − σf,h‖0,T + h1/2e ‖div(σf − σf,h)‖0,T

}
‖ve‖0,e . (3.52)

In turn, noting that (ϕs − ϕs,h) · ν ∈ L2(Σ), recalling that 0 ≤ ψe ≤ 1 in we, and applying

again the Cauchy-Schwarz inequality, we obtain

〈(ϕs −ϕs,h) · ν, ψe L(ve)〉Σ =

∫

e

(ϕs −ϕs,h) · ν ψe ve

≤‖(ϕs −ϕs,h) · ν‖0,e ‖ψe ve‖0,e ≤ ‖ϕs −ϕs,h‖0,e ‖ve‖0,e . (3.53)

Finally, inserting the estimates (3.52) and (3.53) into (3.51), and using that he ≤ hT , we get

after minor simplifications the required upper bound for he ‖σf,h · ν − ρf ω
2ϕs,h · ν‖20,e. �

Lemma 3.24. There exists C > 0, independent of h and λ, such that for each e ∈ Eh(Σ) there
holds

he ‖σs,h ν + ϕ
Σ,h
ν‖20,e

≤C
{
‖σs − σs,h‖20,T + h2T ‖div(σs − σs,h)‖20,T + he ‖ϕΣ

− ϕ
Σ,h

‖20,e
}
,

where T is the triangle of T s
h having e as an edge.
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Proof. It proceeds similarly as for Lemma 3.23. This means that given e ∈ Eh(Σ), we now

let T be the triangle of T s
h having e as an edge, consider the vector version L : C(e) → C(T )

of the extension operator L : C(e) → C(T ), define ve := σs,h ν + ϕ
Σ,h
ν on e, and extend

ψe L(ve) by zero in Ωs\T so that the resulting function belongs to H1(Ωs). The rest of the

proof follows basically by applying (3.45), using that σs ν = −ϕ
Σ
ν on Σ, integrating by parts

and applying Cauchy-Schwarz and inverse inequalities. We omit further details. �

The upper bounds for the terms of θ2e,Σ and θ2e,Γ involving tangential derivatives are given

now.

Lemma 3.25. There exists C > 0, independent of h and λ, such that

∑

e∈Eh(Σ)

he

∥∥∥∥(C−1 σs,h + γh) s − dϕs,h
ds

∥∥∥∥
2

0,e

≤C





∑

e∈Eh(Σ)

{
‖σs − σs,h‖20,Te

+ ‖γ − γh‖20,Te

}
+ ‖ϕs −ϕs,h‖21/2,Σ



 ,

where, given e ∈ Eh(Σ), Te is the triangle of T s
h having e as an edge.

Proof. It makes use again of the extension operator L : C(e) → C(T ) (vector version of

L : C(e) → C(T )), the fact that ∇u = C−1σs + γ in Ωs, the boundedness of the tangential

derivative d
ds : H1/2(Σ) → H−1/2(Σ), the inverse and the Cauchy-Schwarz inequalities, and the

upper bound for h2Te
‖curl (C−1σs,h + γh)‖20,Te

(cf. Lemma 3.17). We omit further details and

refer to [16, Lemma 20] where this result was established and proved. �

We remark that the upper bound provided by Lemma 3.25 is one of the three non-local

estimates of the present efficiency analysis (see Lemma 3.27 below for the other two). How-

ever, the following lemma establishes that, under an additional regularity assumption on ϕs, a

corresponding local estimate can also be obtained.

Lemma 3.26. Assume that ϕs|e ∈ H1(e) for each e ∈ Eh(Σ). Then there exists C > 0,

independent of h and λ, such that

he

∥∥∥∥(C−1σs,h + γh) s−
dϕs,h
ds

∥∥∥∥
2

0,e

≤C

{
‖σs − σs,h‖20,Te

+ ‖γ − γh‖20,Te
+ he

∥∥∥∥
d

ds
(ϕs −ϕs,h)

∥∥∥∥
2

0,e

}
,

where, given e ∈ Eh(Σ), Te is the triangle of T s
h having e as an edge.

Proof. See [16, Lemma 21]. �

Lemma 3.27. There exist C1, C2 > 0, independent of h, such that

∑

e∈Eh(Σ)

he

∥∥∥∥σf,h · s−
dϕ

Σ,h

ds

∥∥∥∥
2

0,e

≤ C1





∑

e∈Eh(Σ)

‖σf − σf,h‖20,Te
+ ‖ϕ

Σ
− ϕ

Σ,h
‖21/2,Σ



 ,

∑

e∈Eh(Γ)

he

∥∥∥∥σf,h · s−
dϕ

Γ,h

ds

∥∥∥∥
2

0,e

≤ C2





∑

e∈Eh(Γ)

‖σf − σf,h‖20,Te
+ ‖ϕ

Γ
− ϕ

Γ,h
‖21/2,Γ



 ,
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where, given e ∈ Eh(Σ) ∪ Eh(Γ), Te is the triangle of T f
h having e as an edge.

Proof. Having the same structure of the estimate provided by Lemma 3.25, the present

bounds follow from slight modifications of the proof of [16, Lemma 20]. �

Similarly as for Lemma 3.26, the following result establishes that, under additional regularity

assumptions on ϕ
Σ
and ϕ

Γ
, corresponding local estimates can also be obtained.

Lemma 3.28. Assume that ϕ
Σ
|e ∈ H1(e) for each e ∈ Eh(Σ) and ϕ

Γ
|e ∈ H1(e) for each

e ∈ Eh(Γ). Then there exist C1, C2 > 0, independent of h, such that

he

∥∥∥∥σf,h · s −
dϕ

Σ,h

ds

∥∥∥∥
2

0,e

≤ C1

{
‖σf − σf,h‖20,Te

+ he

∥∥∥∥
d

ds
(ϕ

Σ
− ϕ

Σ,h
)

∥∥∥∥
2

0,e

}
,

he

∥∥∥∥σf,h · s −
dϕ

Γ,h

ds

∥∥∥∥
2

0,e

≤ C2

{
‖σf − σf,h‖20,Te

+ he

∥∥∥∥
d

ds
(ϕ

Γ
− ϕ

Γ,h
)

∥∥∥∥
2

0,e

}
,

where, given e ∈ Eh(Σ) ∪ Eh(Γ), Te is the triangle of T f
h having e as an edge.

Proof. These bounds follow from slight modifications of the proof of [16, Lemma 21]. �

The remaining three terms defining θ2e,Σ and θ2e,Γ are bounded in what follows.

Lemma 3.29. There exists C > 0, independent of h, such that for each e ∈ Eh(Σ) there holds

he ‖ϕΣ,h
− ph‖20,e ≤ C

{
h2T ‖σf − σf,h‖20,T + ‖p− ph‖20,T + he ‖ϕΣ

− ϕ
Σ,h

‖20,e
}
,

where T is the triangle of T f
h having e as an edge.

Proof. Adding and substracting ϕ
Σ

= p on Σ, and then employing the discrete trace

inequality (3.48) (cf. Lemma 3.15), we obtain for each e ∈ Eh(Σ)

he ‖ϕΣ,h
− ph‖20,e ≤ 2 he

{
‖ϕ

Σ,h
− ϕ

Σ
‖20,e + ‖p− ph‖20,e

}

≤C
{
he ‖ϕΣ,h

− ϕ
Σ
‖20,e + ‖p− ph‖20,T + h2T |p− ph|21,T

}
, (3.54)

where the last term uses that he ≤ hT . Then, recalling that ph is piecewise constant (cf. (3.7)),

using that σf = ∇p in Ωf , adding and substracting σf,h, and employing the upper bound

from Lemma 3.19, we find that

h2T |p− ph|21,T = h2T ‖∇p‖20,T = h2T ‖σf‖20,T ≤ 2 h2T

{
‖σf − σf,h‖20,T + ‖σf,h‖20,T

}

≤ C
{
h2T ‖σf − σf,h‖20,T + ‖p− ph‖20,T

}
. (3.55)

Finally, (3.54) and (3.55) yield the required estimate and finish the proof. �

Lemma 3.30. There exists C > 0, independent of h, such that for each e ∈ Eh(Γ) there holds

he ‖ϕΓ,h
− ph‖20,e ≤ C

{
h2T ‖σf − σf,h‖20,T + ‖p− ph‖20,T + he ‖ϕΓ

− ϕ
Γ,h

‖20,e
}
,

where T is the triangle of T f
h having e as an edge.
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Proof. It follows exactly as in the proof of Lemma 3.29 replacing Σ by Γ everywhere. �

We complete the efficiency analysis of the a posteriori error estimator θ with the upper

bound for the term concerning the Robin boundary condition on Γ. To this end, and for

simplicity, we assume that g is piecewise polynomial on Γ. Otherwise, one would proceed as

in the proof of [16, Lemma 23] by adding and substracting a suitable projection of g onto a

polynomial space.

Lemma 3.31. There exists C > 0, independent of h, such that for each e ∈ Eh(Γ) there holds

he ‖σf,h · ν − ı κf ϕΓ,h
− g‖20,e

≤C
{
‖σf − σf,h‖20,T + h2T ‖div(σf − σf,h)‖20,T + he ‖ϕΓ

− ϕ
Γ,h

‖20,e
}
,

where T is the triangle of T f
h having e as an edge.

Proof. It proceeds analogously to the proofs of Lemmas 3.23 and 3.24. We omit further

details here and refer to those lemmas. �

We end this section by remarking that the efficiency of θ follows straightforwardly from

estimates (3.42) and (3.43), together with Lemmas 3.16 - 3.25, 3.27, 3.29 - 3.31, after summing

up over triangles T ∈ T s
h ∪T s

h and edges e ∈ Eh (cf. (3.1)), and using that the number of triangles

on each domain ωe is bounded by two. In particular, note that the global efficiency estimates

induced by the terms of the form he ‖ϕs −ϕs,h‖20,e, he ‖ϕΣ
− ϕ

Σ,h
‖20,e, and he ‖ϕΓ

− ϕ
Γ,h

‖20,e
(cf. Lemmas 3.22, 3.23, 3.24, 3.29, and 3.30), follow easily from the fact that

∑

e∈Eh(Σ)

he ‖ϕs −ϕs,h‖20,e ≤ h ‖ϕs −ϕs,h‖20,Σ ≤ C h ‖ϕs − ϕs,h‖21/2,Σ ,

∑

e∈Eh(Σ)

he ‖ϕΣ
− ϕ

Σ,h
‖20,e ≤ h ‖ϕ

Σ
− ϕ

Σ,h
‖20,Σ ≤ C h ‖ϕ

Σ
− ϕ

Σ,h
‖21/2,Σ ,

∑

e∈Eh(Γ)

he ‖ϕΓ
− ϕ

Γ,h
‖20,e ≤ h ‖ϕ

Γ
− ϕ

Γ,h
‖20,Γ ≤ C h ‖ϕ

Γ
− ϕ

Γ,h
‖21/2,Σ .

4. Numerical results

In this section we present some numerical results confirming the reliability and efficiency of

the a posteriori error estimator θ analyzed in Section 3. We begin by introducing additional

notations. The variable N stands for the number of degrees of freedom defining the finite

element subspaces Hh and Qh (equivalently, the number of unknowns of (2.20)), and the

individual and global errors are denoted by:

e(σs) := ‖σs − σs,h‖div;Ωs , e(σf ) := ‖σf − σf,h‖div;Ωf
, e(γ) := ‖γ − γh‖0,Ωs ,

e(ϕs) := ‖ϕs −ϕs,h‖1/2,Σ , e(ϕ
Σ
) := ‖ϕ

Σ
− ϕ

Σ,h
‖1/2,Σ , e(ϕ

Γ
) := ‖ϕ

Γ
− ϕ

Γ,h
‖1/2,Γ ,

e(σ̂) :=
{
[e(σs)]

2 + [e(σf )]
2
}1/2

, e(γ̂) :=
{
[e(γ)]2 + [e(ϕs)]

2 + [e(ϕ
Σ
)]2 + [e(ϕ

Γ
)]2
}1/2

,

e(u) := ‖u− uh‖0,Ωs , e(p) := ‖p− ph‖0,Ωf
,
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and

e :=
{
[e(σ̂)]2 + [e(γ̂)]2 + [e(u)]2 + [e(p)]2

}1/2

,

where ϕf := (ϕ
Σ
, ϕ

Γ
) ∈ H1/2(Σ)×H1/2(Γ) and

ϕf,h := (ϕ
Σ,h
, ϕ

Γ,h
) ∈ Q

f
h := Λh(Σ)× Λh(Γ).

Bear in mind here that uh and ph are the postprocessed variables computed according to (3.7).

Also, we define the effectivity index

eff(θ) := e/θ .

In turn, we let r(σs), r(σf ), r(γ), r(ϕs), r(ϕΣ
), r(ϕ

Γ
), r(u), r(p), and r be the experimental

rates of convergence given by

r(%) :=
log
(
e(%)/e′(%)

)

log(h/h′)
∀% ∈ {σs, σf , γ, ϕs, ϕΣ

, ϕ
Γ
, u, p} , and r :=

log
(
e/e′

)

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with corresponding individual errors e(%)

and e
′(%), and global errors e and e

′, respectively. However, when the adaptive algorithm is

applied (see details below), the expression log(h/h′) is replaced by − 1
2 log(N/N ′), where N

and N ′ denote the corresponding degrees of freedom of each triangulation.

In what follows we describe the examples to be considered. For Example 1 we consider

Ωs := (−0.2, 0.2) × (−0.4, 0.4) and let the artificial boundary Γ be the ellipse centered at the

origin with minor and major semiaxis given by 0.4 and 0.6, respectively, that is

Ωf :=

{
(x1, x2)

t ∈ R2 :
x21
0.42

+
x22
0.62

< 1

}
\Ωs.

We take ρs = ρf = λ = µ = 1, and the rest of parameters are given as follows: v0 = 1, ω =

5, κs = 5, κf = 5. Furthermore, let K0, K1 and K2 be the modified Bessel functions of the

second kind and order 0, 1, and 2, respectively, and let H
(1)
0 be the Hankel function of the first

kind and order zero. Then, we choose the data in such a way that the exact solution of (2.5)

(or (2.7)) is determined by

u(x) =




1

2π
ψ(x) − (x1 − 1)2

r21
χ(x)

− (x1 − 1)x2
r21

χ(x)


 ∀x := (x1, x2)

t ∈ Ωs ,

p(x) = H
(1)
0 (κf |x|) ∀x ∈ Ωf ,

where

r1 :=
√
(x1 − 1)2 + x22 ,

ψ(x) := K0(ı ω r1) +
1

ı ω r1

{
K1(ı ω r1) − 1√

3
K1

(
ı ω r1√

3

)}
,

χ(x) := K2(ı ω r1) − 1

3
K2

(
ı ω r1√

3

)
.
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Table 4.1: Convergence history for σs, σf , and γ (Example 1).

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)

2π/64 1117 6.150E−02 − 8.865E−01 − 6.642E−03 −

2π/96 2090 4.264E−02 0.903 5.996E−01 0.964 3.975E−03 1.266

2π/128 3686 3.112E−02 1.095 4.414E−01 1.065 2.570E−03 1.516

2π/192 7869 2.107E−02 0.962 3.044E−01 0.917 1.530E−03 1.279

2π/256 13666 1.586E−02 0.987 2.249E−01 1.053 1.018E−03 1.415

2π/384 31282 1.038E−02 1.046 1.489E−01 1.017 6.623E−04 1.061

2π/512 55438 7.784E−03 1.000 1.106E−01 1.035 4.324E−04 1.482

2π/768 125069 5.152E−03 1.017 7.397E−02 0.991 2.745E−04 1.121

2π/1024 221848 3.871E−03 0.994 5.540E−02 1.005 2.034E−04 1.041

2π/1536 498545 2.579E−03 1.001 3.670E−02 1.016 1.298E−04 1.109

2π/2048 887629 1.927E−03 1.014 2.770E−02 0.978 9.678E−05 1.019

Table 4.2: Convergence history for ϕs, ϕΣ
, and ϕ

Γ
(Example 1).

N e(ϕs) r(ϕs) e(ϕ
Σ
) r(ϕ

Σ
) e(ϕ

Γ
) r(ϕ

Γ
)

1117 9.684E−03 − 1.689E−01 − 4.819E−02 −

2090 4.899E−03 1.681 7.439E−02 2.022 2.030E−02 2.133

3686 2.727E−03 2.037 4.415E−02 1.813 1.226E−02 1.752

7869 1.427E−03 1.598 2.362E−02 1.542 5.610E−03 1.928

13666 8.446E−04 1.822 1.348E−02 1.951 3.850E−03 1.308

31282 4.023E−04 1.829 6.741E−03 1.708 1.834E−03 1.830

55438 2.521E−04 1.625 3.849E−03 1.948 1.187E−03 1.511

125069 1.266E−04 1.699 1.896E−03 1.746 6.280E−04 1.571

221848 8.236E−05 1.494 1.290E−03 1.339 4.437E−04 1.208

498545 4.112E−05 1.713 6.765E−04 1.592 2.231E−04 1.695

887629 2.633E−05 1.550 4.455E−04 1.452 1.533E−04 1.305

Table 4.3: Convergence history for u, p, e, and effectivity index (Example 1).

N e(u) r(u) e(p) r(p) e r eff(θ)

1117 2.207E−03 − 3.419E−02 − 9.065E−01 − 0.7495

2090 1.547E−03 0.877 2.317E−02 0.960 6.065E−01 0.991 0.7315

3686 1.131E−03 1.087 1.706E−02 1.064 4.452E−01 1.075 0.7424

7869 7.671E−04 0.958 1.177E−02 0.916 3.063E−01 0.922 0.7328

13666 5.781E−04 0.983 8.700E−03 1.050 2.260E−01 1.057 0.7437

31282 3.781E−04 1.044 5.760E−03 1.017 1.495E−01 1.019 0.7417

55438 2.840E−04 0.999 4.277E−03 1.035 1.110E−01 1.036 0.7377

125069 1.881E−04 1.018 2.863E−03 0.991 7.423E−02 0.992 0.7445

221848 1.413E−04 0.993 2.144E−03 1.005 5.559E−02 1.005 0.7413

498545 9.417E−05 1.001 1.420E−03 1.016 3.682E−02 1.016 0.7366

887629 7.036E−05 1.013 1.072E−03 0.978 2.779E−02 0.978 0.7360

Actually, u is the fundamental solution, centered at (1, 0)t, of the elastodynamic equation,

which yields f = 0 in Ωs, and p is the fundamental solution, centered at the origin, of the

Helmholtz equation in Ωf .

Then, for Example 2 we let Ωs be the L-shaped domain (−0.3, 0.3)2 \ (0, 0.3)2 and consider
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Table 4.4: Convergence history for σs, σf , and γ (quasi-uniform scheme, Example 2).

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)

2π/64 2215 9.127E−01 − 4.267E−01 − 3.210E−02 −

2π/96 4767 6.802E−01 0.725 1.896E−01 2.000 1.371E−02 2.098

2π/128 8495 5.408E−01 0.797 1.185E−01 1.634 9.156E−03 1.403

2π/192 19067 4.465E−01 0.472 6.492E−02 1.484 4.033E−03 2.022

2π/256 33331 3.898E−01 0.472 4.851E−02 1.013 2.828E−03 1.234

2π/384 75077 2.800E−01 0.816 3.053E−02 1.142 1.630E−03 1.359

2π/512 133497 2.351E−01 0.607 2.317E−02 0.960 1.049E−03 1.532

2π/768 299000 1.883E−01 0.547 1.528E−02 1.026 6.357E−04 1.235

2π/1024 534105 1.493E−01 0.807 1.139E−02 1.023 4.391E−04 1.286

2π/1536 1199275 1.109E−01 0.735 7.601E−03 0.997 2.663E−04 1.233

Table 4.5: Convergence history for u, p, e, and effectivity index (quasi-uniform scheme, Example 2).

N e(u) r(u) e(p) r(p) e r eff(θ)

2215 9.444E−03 − 5.476E−02 − 1.155E−00 − 0.6179

4767 5.899E−03 1.161 2.980E−02 1.501 7.360E−01 1.111 0.6313

8495 4.430E−03 0.996 2.024E−02 1.345 5.645E−01 0.922 0.6546

19067 2.942E−03 1.010 1.292E−02 1.107 4.529E−01 0.543 0.7241

33331 2.189E−03 1.028 9.722E−03 0.988 3.935E−01 0.488 0.7679

75077 1.459E−03 1.000 6.359E−03 1.047 2.819E−01 0.823 0.7943

133497 1.091E−03 1.009 4.801E−03 0.977 2.364E−01 0.612 0.8232

299000 7.360E−04 0.971 3.191E−03 1.008 1.890E−01 0.552 0.8679

534105 5.567E−04 0.971 2.388E−03 1.008 1.498E−01 0.809 0.8806

1199275 3.685E−04 1.018 1.594E−03 0.996 1.111E−01 0.736 0.9004

Γ as the boundary of the unit circle B(0, 1). In addition, we take ρs = ρf = λ = µ = 1,

v0 = 10, and ω = 10, so that κs = 10 and κf = 1. Then, we choose the data in such a way that

the exact solution of (2.5) (or (2.7)) is given by

u(r, θ) := r5/3 sin
(
(2 θ − π)/3

)
(

1 + ı

1 + ı

)
∀ (r, θ) ∈ Ωs ,

in polar coordinates, and

p(x) = H
(1)
0 (κf |x+ (0.15, 0)|) ∀x ∈ Ωf ,

Note that u becomes singular at the origin, the corner of the L. More precisely, it is not difficult

to see that around this singularity divσs behaves of order r
−1/3. It follows that divσs belongs

to H2/3−ǫ(Ωs) for each ǫ > 0, and hence, according to Theorem 2.3, we expect experimental

rates of convergence, particularly r(σs), close to 2/3. According to the preceding remarks,

this example is utilized to illustrate the behavior of the adaptive algorithm associated with θ,

which applies the usual procedure from [29] with the blue-green strategy for refinement. We just
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Table 4.6: Convergence history for σs, σf , and γ (adaptive scheme, Example 2).

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)

0.1169 2215 9.127E−01 − 4.267E−01 − 3.210E−02 −

0.1169 2503 7.145E−01 4.006 2.996E−01 5.786 2.589E−02 3.520

0.1169 3471 5.377E−01 1.739 2.607E−01 0.851 2.394E−02 0.478

0.1169 4459 4.417E−01 1.570 1.713E−01 3.354 1.472E−02 3.883

0.1169 6355 3.477E−01 1.351 1.401E−01 1.134 1.299E−02 0.707

0.1169 9410 2.753E−01 1.189 1.088E−01 1.287 9.272E−03 1.717

0.1169 11985 2.411E−01 1.097 9.418E−02 1.196 8.363E−03 0.853

0.1169 19655 1.882E−01 1.002 7.556E−02 0.890 5.892E−03 1.416

0.0934 38391 1.406E−01 0.870 5.126E−02 1.159 4.545E−03 0.775

0.0832 65934 1.058E−01 1.051 4.117E−02 0.810 3.321E−03 1.161

0.0832 98472 9.131E−02 0.736 3.519E−02 0.783 3.022E−03 0.470

0.0622 125924 8.021E−02 1.055 3.056E−02 1.146 2.723E−03 0.847

0.0511 151119 7.225E−02 1.146 2.681E−02 1.436 2.257E−03 2.060

0.0493 196274 6.617E−02 0.673 2.456E−02 0.670 2.161E−03 0.331

0.0471 241916 6.067E−02 0.830 2.287E−02 0.684 2.065E−03 0.436

0.0467 282385 5.684E−02 0.843 2.144E−02 0.830 1.904E−03 1.051

0.0400 343470 4.852E−02 1.617 1.836E−02 1.586 1.581E−03 1.900

0.0298 570415 3.694E−02 1.075 1.382E−02 1.120 1.177E−03 1.162

0.0244 894088 3.037E−02 0.872 1.139E−02 0.861 9.605E−04 0.905

0.0240 1269053 2.654E−02 0.769 9.882E−03 0.811 8.686E−04 0.574

0.0234 1635325 2.360E−02 0.926 8.777E−03 0.935 7.831E−04 0.817

0.01

0.1

1

10

1000 10000 100000 1e+06 1e+07

e

quasi-uniform refinement

+

+
+

+ +
+

+
+

+
+

+
adaptive refinement

♦
♦
♦
♦

♦
♦♦

♦
♦

♦ ♦♦♦♦♦♦♦
♦

♦ ♦♦

♦

Fig. 4.1. Example 2, total error e vs. N for the quasi-uniform and adaptive schemes.

mention that the error indicators θT on each triangle T ∈ T s
h ∪ T f

h are computed as follows:

θ2T :=





θ2T,s +
1

2

∑

e∈E(T )∩Eh(Σ)

θ2e,Σ if T ∈ T s
h ,

θ2T,f +
1

2

∑

e∈E(T )∩Eh(Σ)

θ2e,Σ +
∑

e∈E(T )∩Eh(Γ)

θ2e,Γ if T ∈ T f
h .

The numerical results shown below were obtained using a MATLAB code. In Tables 4.1 up
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Table 4.7: Convergence history for u, p, e, and effectivity index (adaptive scheme, Example 2).

N e(u) r(u) e(p) r(p) e r eff(θ)

2215 9.444E−03 − 5.476E−02 − 1.155E−00 − 0.6179

2503 8.923E−03 0.928 4.779E−02 2.229 8.576E−01 4.868 0.5530

3471 6.348E−03 2.083 4.289E−02 0.661 6.693E−01 1.516 0.5277

4459 5.179E−03 1.625 3.797E−02 0.974 4.949E−01 2.411 0.4727

6355 4.091E−03 1.332 3.583E−02 0.328 3.880E−01 1.374 0.4537

9410 3.008E−03 1.566 3.101E−02 0.735 3.014E−01 1.287 0.4249

11985 2.772E−03 0.678 2.814E−02 0.803 2.628E−01 1.133 0.4205

19655 2.196E−03 0.942 2.250E−02 0.904 2.059E−01 0.986 0.4089

38391 1.549E−03 1.042 1.499E−02 1.214 1.510E−01 0.927 0.4300

65934 1.215E−03 0.899 1.223E−02 0.752 1.146E−01 1.018 0.3973

98472 1.013E−03 0.908 1.045E−02 0.786 9.870E−02 0.747 0.4051

125924 9.152E−04 0.822 9.149E−03 1.077 8.653E−02 1.070 0.4050

151119 8.144E−04 1.280 7.918E−03 1.585 7.762E−02 1.192 0.4108

196274 7.452E−04 0.679 7.221E−03 0.704 7.109E−02 0.672 0.4082

241916 6.858E−04 0.795 6.727E−03 0.678 6.532E−02 0.809 0.3933

282385 6.388E−04 0.917 6.308E−03 0.832 6.121E−02 0.842 0.4030

343470 5.594E−04 1.356 5.398E−03 1.591 5.225E−02 1.616 0.4038

570415 4.196E−04 1.134 4.004E−03 1.178 3.969E−02 1.084 0.4075

894088 3.470E−04 0.846 3.315E−03 0.840 3.264E−02 0.871 0.4025

1269053 3.032E−04 0.770 2.886E−03 0.792 2.850E−02 0.773 0.3792

1635325 2.680E−04 0.972 2.565E−03 0.931 2.534E−02 0.928 0.4013

Fig. 4.2. Example 2: adapted meshes for N ∈ {9410, 19655}.

to 4.3 we summarize the convergence history of our fully-mixed finite element scheme (2.20) as

applied to Example 1 for a finite sequence of quasi-uniform triangulations of the computational

domain Ωs∪Ωf . While this example coincides with one presented in [14, Section 5], the novelty

now is certainly the computation of the effectivity indexes. We observe in those tables, looking

at the corresponding experimental rates of convergence, that the O(h) predicted by Theorem

2.3 when δ = 1 (see [14, Theorem 4.1]) is attained in all the unknowns for this example. In

addition, we notice from the last column of Table 4.3 that the effectivity indexes eff(θ) remain

always in a neighborhood of 0.74, which illustrates the reliability and efficiency of θ in the case

of a regular solution.

Then, in Tables 4.4 up to 4.7 we provide most details on the convergence history of the

quasi-uniform and adaptive refinements, as applied to Example 2. As already announced, we

notice in the quasi-uniform case that r(σs) oscillates in fact around 2/3, whereas the rates of

convergence of the other unknowns are not affected by the lack of regularity of σs. However,
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Fig. 4.3. Approximate and exact real part of σs,21 (Example 2).
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Fig. 4.4. Approximate and exact imaginary part of σf,1 (Example 2).

since e(σs) is the dominant component of the total error e, the above feature is also reflected in

the global rate of convergence r (see Table 4.5). Furthermore, it is clear from these tables that

the total errors of the adaptive scheme decrease faster than those obtained by the quasi-uniform

one, which is confirmed by the global experimental rates of convergence provided in Table 4.7.

This fact is also illustrated by Fig. 4.1 where we display the total errors e vs. the number

of degrees of freedom N for both refinements. Moreover, as shown by these values of r, the

adaptive method is able to recover the quasi-optimal rate of convergence O(h) for e. On the

other hand, the effectivity indexes remain bounded from above and below for both the quasi-
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uniform and adaptive schemes, which confirms the reliability and efficiency of θ in the present

case of a non-smooth solution. Intermediate meshes obtained with the adaptive refinement are

displayed in Fig. 4.2. We remark from there that the method is able to recognize the origin

as a singularity of the solution of this example. Finally, some components of the approximate

(left) and exact (right) solutions of Example 2 are displayed in Figs. 4.3 and 4.4 for N = 65934.

The fact that the approximate and exact solutions do not distinguish from each other in all

the components shown illustrates the accurateness of the proposed fully-mixed method and the

corresponding adaptive scheme.

Acknowledgments. The authors are thankful to Antonio Márquez for performing the com-

putational code and running the numerical examples.

This research was partially supported by BASAL project CMM, Universidad de Chile, by
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