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Abstract

A weak Galerkin finite element method with stabilization term, which is symmetric,

positive definite and parameter free, was proposed to solve parabolic equations by using

weakly defined gradient operators over discontinuous functions. In this paper, we derive the

optimal order error estimate in L2 norm based on dual argument. Numerical experiment

is conducted to confirm the theoretical results.
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1. Introduction

We consider in this paper the approximation of a parabolic problem on a bounded domain

Ω ⊂ R2 of the form

ut −∇ · (a∇u) = f, x ∈ Ω, 0 < t ≤ T, (1.1a)

u = u0, x ∈ Ω, t = 0, (1.1b)

with homogenous Dirichlet boundary condition, where ut is the time partial derivative of u(x, t);

a(x) is an uniformly positive on Ω̄ and a(x), f(x, t) and u0(x) are assumed to be sufficiently

smooth. Since the 1950s, scientists have formulated time-stepping procedures to numerically

approximate the solutions of such problems.

Numerical methods for such parabolic problems can be classified as two categories. The first

category consists of finite difference methods that use difference quotient to replace differential

quotient and the other refers to as finite element methods, see, e.g., [3, 5, 6, 11–13, 17] and

references in.

The WG-FEMs, which was first introduced by Wang and Ye [15] for solving the second order

elliptic problems, are newly developed FEMs. The novel idea of WG-FEMs is to introduce weak

functions and weak derivatives, and allows the use of totally discontinuous piecewise polynomials

in the finite element procedure. Later, The WG -FEMs were studied from implementation point

of view in [7] and applied to solve the Helmholtz problem with high wave numbers in [9].

A WG-FEM was introduced and analyzed for parabolic equations based on a discrete weak

gradient arising from local RT [10]. Due to the use of RT elements, the WG finite element
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formulation of [4] was limited to classical finite element partitions of triangles (d = 2) or

tetrahedra (d = 3). In our previous work, we presented a WG-FEM with stabilization term

for a parabolic equation. This method is symmetric, positive definite and parameter free, and

allows the use of partitions with arbitrary polygons in two dimensions, or polyhedra in three

dimensions with certain shape regularity. Optimal convergence rate in H1 norm and suboptimal

convergence rate in L2 norm for the WG approximation are derived. The objective of this paper

is to derive an optimal order error estimate in L2 norm based on dual argument technique for

the solution of the WG-FEM.

The paper is organized as follows. Section 1 is introduction. In Section 2, we define weak

gradient and present semi-discrete and full-discrete WG-FEM for problem (1.1). In Section 3,

we establish the optimal order error estimates in L2-norm to the WG-FEM for the parabolic

problem based on dual argument. Finally, in Section 4 we give some numerical examples to

verify the theory.

Throughout this paper, the notations of standard Sobolev spaces L2(Ω), Hk(Ω) and asso-

ciated norms ‖ · ‖ = ‖ · ‖L2(Ω), ‖ · ‖k = ‖ · ‖Hk(Ω) are adopted as those in [1, 2].

2. A Weak Galerkin Finite Element Method

The variational form to (1.1) is seeking u = u(x, t) ∈ L2(0, T ;H1
0 (Ω)), such that

(ut, v) + a(u, v) = (f, v), ∀ v ∈ H1
0 (Ω), t > 0, (2.1a)

u(x, 0) = u0(x), x ∈ Ω, (2.1b)

where (·, ·) denotes the inner product of L2(Ω) and a(·, ·) is defined in (2.2).

a(v, w) =

∫

Ω

a∇v · ∇wdx. (2.2)

It is well known that the solution to (2.1) is called generalized solution of (1.1).

Let Th be a partition of the domain Ω consisting of polygons in two dimension or polyhedra

in three dimension satisfying a set of conditions [14]. Define (u, v)T =
∫

T
uvdx and 〈u, v〉∂T =

∫

∂T
uvds. We introduce a trial function space Vh, which is called weak Galerkin finite element

space, as follows

Vh :=
{

v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk(e), e ⊂ ∂T, ∀T ∈ Th

}

, (2.3)

where T 0 and ∂T denote the interior and boundary of element T ∈ Th respectively. Let Pk(T
0)

and Pk(∂T ) be the sets of polynomials on T 0 and ∂T with degree no more than k respectively.

v0 represents the value of v on T 0 and vb represents that of v on ∂T , respectively. We define

V 0
h as a subspace of Vh with zero boundary value, i.e.,

V 0
h :=

{

v = {v0, vb} ∈ Vh, vb |∂T
⋂

∂Ω= 0, ∀T ∈ Th

}

. (2.4)

For each v = {v0, vb} ∈ Vh, we define the weak discrete gradient ∇wv ∈ [Pk−1(T )]
2 of v on each

element T by the equation as:

(∇wv, q)T = −(v0,∇ · q) + 〈vb, q · n〉∂T , ∀q ∈ [Pk−1(T )]
2. (2.5)
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The semi-discrete WG-FE scheme for (1.1) as follows: Find uh = {u0(·, t), ub(·, t)} ∈ V 0
h for

(0 ≤ t ≤ T ), such that

(uh,t, v) + aw(uh, v) = (f, v0), ∀ v = {v0, vb} ∈ V 0
h , (2.6a)

uh(x, 0) = Qhu
0(x), x ∈ Ω, (2.6b)

where the bilinear form aw(v, w) is defined as

aw(v, w) :=
∑

T∈Th

(a∇wv,∇ww)T +
∑

T∈Th

h−1
T 〈v0 − vb, w0 − wb〉∂T . (2.7)

Here Qhu = {Q0u,Qbu} in which Q0 is the L2 projection from L2(T ) to Pk(T ) and Qb is the

L2 projection from L2(e) to Pk(e).

Now, we introduce a norm ‖| · |‖w,1 as

‖|v|‖w,1 :=

√

∑

T∈Th

(‖∇wv‖20,T + h−1
T ‖v0 − vb‖20,∂T ), (2.8)

which is a H1-equivalent norm for conventional finite element functions with zero boundary

value.

Let us now return to our semi-discrete problem in the formulation (2.6). A basic stability

inequality for this problem (1.1) is as follows:

Theorem 2.1. For the numerical solution to scheme (2.6) with initial setting (2.6b), there is

a good stability as follows

‖uh(t)‖
2
0 ≤ C

(

‖uh(0)‖
2
0 +

∫ t

0 ‖f(τ)‖
2
0dτ
)

, (2.9)

i.e., the numerical solution is stable with respect to initial approximate value and source term.

Proof. Taking v = uh in (2.6a), we get

(uh,t(t), uh(t)) + aw(uh(t), uh(t)) = (f, uh(t)).

From the definition of bilinear form aw(·, ·), see equation (2.7), we know that

aw(uh(t), uh(t)) ≥ 0.

Based on this fact, it is easy to know that

(uh,t(t), uh(t)) ≤ (f, uh(t)).

i.e.,

1

2

d

dt

∫

Ω

u2
h(t)dx = (uh,t(t), uh(t)) ≤

∫

Ω

fuh(t)dx

≤ C
(

∫

Ω

f2dx+

∫

Ω

u2
h(t)dx

)

.

Integrate the above inequality with respect to t, we have

‖uh(t)‖
2
0 ≤ ‖uh(0)‖

2
0 + C

∫ t

0

‖f(τ)‖20dτ + C

∫ t

0

‖uh(τ)‖
2
0dτ.
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Using Gronwall lemma, we complete the proof of this theorem 2.1. �

Let τ denote the time step size, and tn = nτ (n = 0, 1, · · · ), un
h := uh(tn) = {un

0 , u
n
b }. At

time t = tn, adopting the backward Euler difference quotient

∂̄tu
n
h = (un

h − un−1
h )/τ

to approximate uh,t in scheme (2.6), we get the fully-discrete WG-FE scheme: Find un
h =

{un
0 , u

n
b } ∈ V 0

h for n = 1, 2, · · · , such that

(∂̄tu
n
h, v) + aw(u

n
h, v) = (fn, v), ∀v ∈ V 0

h , (2.10a)

u0
h = Qhu

0(x), (2.10b)

or we can equivalently write it as

(un
h, v) + τaw(u

n
h, v) = (un−1

h + τfn, v), ∀v ∈ V 0
h , (2.11a)

u0
h = Qhu

0(x). (2.11b)

The existence and uniqueness of its solution un
h = {un

0 , u
n
b } to (2.10) or (2.11) for a given

un−1
h = {un−1

0 , un−1
b } can be readily proved.

3. Error Estimate

In this section, we will present optimal order priori error estimates in L2-norm for the semi-

discrete scheme (2.6) and fully-discrete scheme (2.10) or (2.11) for smooth solution of (1.1).

For simplicity of analysis, we assume that diffusion coefficient a is a piecewise constant with

respect to the finite element partition Th. The corresponding results can be extended to variable

coefficient case, provided that the coefficient function a is piecewise sufficiently smooth.

Below we denote C (maybe with indicates) as a positive constant solely depending on the

exact solution, which may have different values in each occurrence.

3.1. Preliminaries

3.1.1. Notations of Sobolev space

Let Ω be any domain in R2. In this paper, we still use the standard definition for the Sobolev

space W s,r(Ω), which consists of functions with (distributional) derivatives of order less than or

equal to s in Lr(Ω) for 1 ≤ r ≤ +∞ and integer s. And their associated inner product (·, ·)s,r,Ω,

norm ‖ · ‖s,r,Ω, and seminorm | · |s,r,Ω. Further, ‖ · ‖∞,Ω represents the norm on L∞(Ω), and

‖ · ‖L∞([0,T ];W s,r(Ω)) the norm on L∞([0, T ];W s,r(Ω)). See Adams [1] for more details.

3.1.2. Properties of finite element space

In our analysis, we shall adopt two kinds of finite element space associated with each element

T ∈ Th. One is a scalar polynomial space in which the polynomial degree is no more than

k on T 0 and ∂T , and the other is a vector valued polynomial space [Pk−1(T )]
2 which is used

to define the discrete weak gradient ∇w in (2.5). For convenience, we denote [Pk−1(T )]
2 by

Gk−1(T ) which is called a local discrete gradient space.
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In addition, we define two local L2 projections in this paper. One is Qhv := {Q0v,Qbv}

introduced after (2.7). The other is Qhw(x), which is defined as

∫

T

Qhw(x) · q(x)dx =

∫

T

w(x) · q(x)dx, ∀q(x) ∈ Gk−1(T ). (3.1)

The following three lemmas can be found in [8, 15].

Lemma 3.1. Let Qh be the projection operator defined as in (3.1). Then, on each element

T ∈ Th, we have the following relation

∇w(Qhφ) = Qh(∇φ), ∀φ ∈ H1(Ω). (3.2)

Lemma 3.2. Let Th be a finite element partition of domain Ω satisfying corresponding shape

regularly assumptions. Then, for any φ ∈ Hk+1(Ω), we have

∑

T∈Th

‖φ−Q0φ‖
2
T +

∑

T∈Th

h2
T ‖∇(φ−Q0φ)‖

2
T ≤ Ch2(k+1)‖φ‖2k+1, (3.3)

∑

T∈Th

‖a(∇φ−Qh(∇φ))‖2T ≤ Ch2k‖φ‖2k+1. (3.4)

Lemma 3.3. Assume that Th is shape regular, we have

∣

∣

∣

∣

∣

∑

T∈Th

h−1
T 〈Q0w −Qbw, v0 − vb〉∂T

∣

∣

∣

∣

∣

≤ Chk‖w‖k+1|‖v‖|w,1, (3.5)

∣

∣

∣

∣

∣

∑

T∈Th

〈a(∇w −Qh∇w) · n, v0 − vb〉∂T

∣

∣

∣

∣

∣

≤ Chk‖w‖k+1|‖v‖|w,1, (3.6)

for ∀w ∈ Hk+1(Ω) and v = {v0, vb} ∈ V 0
h .

3.2. Error estimate for semi-discrete WG scheme

To begin with, we will analyze semi-discrete WG scheme (2.6). To get an optimal order of

error estimate in L2, similar to Wheeler’s projection as in [16], we define a projection Ehu onto

V 0
h for the exact solution u ∈ H1

0 (Ω)
⋂

H2(Ω) of problem (1.1) as follows:

aw(Ehu, χ) = (−∇ · (a∇u), χ), ∀χ ∈ V 0
h . (3.7)

Remark. The projection operator Eh has been used in [4] for analyzing WG without stabi-

lization term for parabolic equations.

Note that Ehu is the standard WG-FEM solution applied to the second order elliptic equa-

tion if u is sufficiently smooth. We can derive the following important lemma from the results

of [8] directly.

Lemma 3.4. Assume that the exact solution of the problem (1.1) is so regular that u ∈

Hk+1(Ω). Then, there exists a constant C such that

|‖Qhu− Ehu‖|w,1 ≤ Chk‖u‖k+1. (3.8)

‖Q0u− Ehu‖ ≤ Chk+1‖u‖k+1. (3.9)
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Based on the relation between Qhu and Ehu, we have

Theorem 3.1. Let u(x, t) and uh(x, t) be the solutions to the problem (1.1) and the semi-

discrete WG scheme (2.6), respectively. Assume that the exact solution is so regular that u, ut ∈

H1
0 (Ω)

⋂

Hk+1(Ω). Then, there exists a constant C such that

‖u− uh‖
2
0 ≤ C

(

‖u0 − u0
h‖

2
0 + h2(k+1)

(

‖u0‖2k+1 +
∫ t

0
‖uτ‖

2
k+1dτ

)

)

. (3.10)

Proof. Write

ρ = u−Qhu, η = Qhu− Ehu, e = Ehu− uh.

Thus, we have

u− uh = ρ+ η + e, (3.11)

where Qh is the local L2-projection operator and Eh is defined in (3.7) and e = {e0, eb} =

{Q0u− u0, Qbu− ub}. Hence we have

‖ρ‖ ≤ Chk+1‖u‖k+1, ‖ρt‖ ≤ Chk+1‖ut‖k+1. (3.12)

Making use of Lemma 3.4 leads to

‖η‖ ≤ Chk+1‖u‖k+1, ‖ηt‖ ≤ Chk+1‖ut‖k+1. (3.13)

According to the definition of projection Ehu, for ∀v ∈ V 0
h we get

(et, v) + aw(e, v) = (Ehut, v) + aw(Ehu, v)− (uh,t, v)− aw(uh, v)

= (Ehut, v) + aw(Ehu, v)− (f, v)

= (Ehut, v)− (∇ · (a∇u), v)− (f, v)

= (Ehut, v)− (Qhut, v) + (Qhut, v)− (ut, v)

= −(ηt, v)− (ρt, v). (3.14)

Choosing the test function v = e in (3.14) and we can have

(et, e) + aw(e, e) = −(ηt, e)− (ρt, e). (3.15)

It is easy to arrive at

1

2

d

dt
‖e‖20 + C0|‖e‖|

2
w,1 ≤ (et, e) + aw(e, e) = −(ηt, e)− (ρt, e)

≤ C(‖ηt‖
2
0 + ‖ρt‖

2
0 + ‖e‖20). (3.16)

Furthermore,
d

dt
‖e‖20 ≤ C

(

‖ηt‖
2
0 + ‖ρt‖

2
0 + ‖e‖20

)

. (3.17)

Integrating (3.17) with respect to t, we can get the following inequality easily as follows

‖e(t)‖20 ≤ ‖e(0)‖20 + C

(
∫ t

0

‖ητ‖
2
0dτ +

∫ t

0

‖ρτ‖
2
0dτ +

∫ t

0

‖e‖20dτ

)

. (3.18)

By virtue of Lemmas 3.2 and 3.4,

‖e(0)‖0 = ‖Ehu
0 − u0

h‖0 = ‖Ehu
0 −Qhu

0 +Qhu
0 − u0 + u0 − u0

h‖0

≤ ‖Ehu
0 −Qhu

0‖0 + ‖Qhu
0 − u0‖0 + ‖u0 − u0

h‖0

≤ Chk+1‖u0‖k+1 + ‖u0 − u0
h‖0. (3.19)

A combination of (3.11)-(3.13), (3.18), (3.19) with Gronwall lemma leads to (3.10). �
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3.3. Error estimate for fully discrete WG scheme

Theorem 3.2. Let un and {un
h} be the solutions to the parabolic equation (1.1) and the fully

discrete WG scheme (2.10), respectively. Then

‖un − un
h‖0 ≤ C

{

‖u0 − u0
h‖0 + τ

∫ tn

0

‖utt‖0dt+ hk+1(‖u0‖k+1 +

∫ tn

0

‖ut‖k+1dt)

}

. (3.20)

Proof. We still write

un − un
h = un −Qhu

n +Qhu
n − Ehu

n + Ehu
n − un

h

≡ ρn + ηn + en, (3.21)

where un = u(tn) for convenience.

It follows from Lemmas 3.2 and 3.4 that

‖ρn‖0 ≤ Chk+1‖un‖k+1 ≤ Chk+1
(

‖u0‖k+1 +

∫ tn

0

‖uτ‖k+1dτ
)

, (3.22)

‖ηn‖0 ≤ Chk+1‖un‖k+1 ≤ Chk+1
(

‖u0‖k+1 +

∫ tn

0

‖uτ‖k+1dτ
)

. (3.23)

For en, we have

(∂̄te
n, v) + aw(e

n, v) = (∂̄tEhu
n, v) + aw(Ehu

n, v)− (∂̄tu
n
h, v)− aw(u

n
h, v)

= (∂̄tEhu
n, v) + aw(Ehu

n, v)− (fn, v)

= (∂̄tEhu
n, v)− (∇ · (a∇un), v) − (fn, v)

= (∂̄tEhu
n, v)− (ut(tn), v)

= −(∂̄tη
n, v)− (∂̄tρ

n, v)− (ut(tn)− ∂̄tu
n, v),

i.e.,

(∂̄te
n, v) + aw(e

n, v) = −(∂̄tη
n, v)− (∂̄tρ

n, v)− (ut(tn)− ∂̄tu
n, v). (3.24)

Choosing v = en in (3.24), we easily get

‖en‖0 ≤ ‖en−1‖0 + Cτ
(

‖∂̄tη
n‖0 + ‖∂̄tρ

n‖0 + ‖ut(tn)− ∂̄tu
n‖0

)

≡ ‖en−1‖0 + Cτ
(

R
n
1 +R

n
2 +R

n
3

)

≤ ‖e0‖0 + Cτ

(

n
∑

i=1

R
i
1 +

n
∑

i=1

R
i
2 +

n
∑

i=1

R
i
3

)

. (3.25)

For ‖e0‖0, we have

‖e0‖0 ≤ Chk+1‖u0‖k+1 + ‖u0 − u0
h‖0. (3.26)

Note that

R
i
1 = ‖∂̄tη

i‖0 =
1

τ

∥

∥

∥

∥

∥

∫ ti

ti−1

(Qh − Eh)utdt

∥

∥

∥

∥

∥

0

,

R
i = ‖∂̄tρ

i‖0 =
1

τ

∥

∥

∥

∥

∥

∫ ti

ti−1

(Qh − I)utdt

∥

∥

∥

∥

∥

0

,

R
i
3 = ‖∂̄tu(ti)− ut(ti)‖0 =

1

τ

∥

∥

∥

∥

∥

∫ ti

ti−1

(t− ti−1)uttdt

∥

∥

∥

∥

∥

0

.
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From Lemmas 3.4 and 3.2,

n
∑

i=1

R
i
1 ≤

1

τ

n
∑

i=1

∫ tj

ti−1

Chk+1‖ut‖k+1dt ≤ Cτ−1hk+1

∫ tn

0

‖ut‖k+1dt, (3.27)

n
∑

i=1

R
i
2 ≤

1

τ

n
∑

i=1

∫ tj

ti−1

Chk+1‖ut‖k+1dt ≤ Cτ−1hk+1

∫ tn

0

‖ut‖k+1dt. (3.28)

Similarly
n
∑

i=1

R
i
3 ≤

n
∑

i=1

∫ ti

ti−1

‖utt‖0dt =

∫ tn

0

‖utt‖0dt. (3.29)

A combination of (3.25)-(3.29) leads to (3.20). This completes the proof of Theorem 3.2. �

4. Numerical Experiment

In this section, we present three numerical examples and consider the following parabolic

problem with proper Dirichlet boundary condition and initial condition.

ut − div(D∇u) = f, in Ω× J, (4.1)

In all three numerical examples, for simplicity, we let D = 1, 10, Ω be a unit square, i.e.,

Ω = [0, 1]× [0, 1], and time interval be J = (0, T ) = (0, 1). One can determine the initial and

boundary conditions and source term f(x, t) according to the corresponding analytical solution

of each example.

We construct triangular mesh as follows. Firstly, we partition the square domain Ω =

(0, 1) × (0, 1) into N × N sub-squares uniformly to obtain the square mesh. Then, we divide

each square element into two triangles by the diagonal line with a negative slope so that we

complete the constructing of triangular mesh. Let h = 1/N(N = 4, 8, 16, 32, 64) be mesh sizes

for triangular meshes. In the following three numerical examples, we choose the same time step

τ = 1/100.

In the first example, the analytical solution is

u = sin(πx) sin(πy) exp(x + y + t). (4.2)

For a set of simulations, different diffusion coefficients are taken, and their corresponding L2-

norm errors and convergence rates are listed in Table 4.1 for D = 1 and D = 10.

Table 4.1: Numerical results of the first example.

D = 1 D = 10

N L2 error L2 order L2 error L2 order

4 1.4332e-00 1.0095e+01

8 3.6953e-01 1.96 2.5588e-00 1.98

16 9.3643e-02 1.98 6.4177e-01 2.00

32 2.4031e-02 1.96 1.6063e-01 2.00

64 6.6010e-03 1.86 4.0226e-02 2.00

In the second example, the analytical solution is

u = sin(πx) sin(πy) exp(x + y − t). (4.3)
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Numerical error results and convergence rate are listed in Table 4.2 for D = 1 and D = 10

based on the same triangular mesh as in the first example.

Table 4.2: Numerical results of the second example.

D = 1 D = 10

N L2 error L2 order L2 error L2 order

4 2.0699e-01 1.4042e-00

8 5.2769e-02 1.97 3.5062e-01 2.00

16 1.3340e-02 1.98 8.7607e-02 2.00

32 3.4267e-03 1.96 2.1906e-02 2.00

64 9.4697e-04 1.86 5.4847e-03 2.00

In the third example, the analytical solution is

u = x(1− x)y(1 − y) exp(−t). (4.4)

Numerical error results and convergence rate are listed in Table 4.3 for D = 1 and D = 10

based on the same triangular mesh as that of the first example.

Table 4.3: Numerical results of the third example.

D = 1 D = 10

N L2 error L2 order L2 error L2 order

4 4.2506e-03 2.8688e-02

8 1.0767e-03 1.98 7.1439e-03 2.00

16 2.7216e-04 1.98 1.7843e-03 2.00

32 7.0363e-05 1.95 4.4617e-04 2.00

64 1.9899e-05 1.82 1.1176e-04 2.00

All the three numerical examples given above are in good confirmly with the theoretical

analysis in Section 3, which show that the WG finite element method (2.10) is stable and sec-

ond order convergence in L2 norm.
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