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Abstract

A numerical solution of the quadratic matrix equations associated with a nonsingular

M -matrix by using the alternately linearized implicit iteration method is considered. An

iteration method for computing a nonsingular M -matrix solution of the quadratic matrix

equations is developed, and its corresponding theory is given. Some numerical examples

are provided to show the efficiency of the new method.
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1. Introduction

We consider the numerical solution of the following matrix equation

X2 −BX − C = 0, (1.1)

where B,C,X ∈ Rn×n, all off-diagonal elements of B are nonnegative and C is a nonsingular

M -matrix. The nonlinear matrix equation has numerous applications in control theory, signal

processing and so on [1,2]. Some methods [3-6] have been developed extensively for solving

the matrix equation. By simply transforming the quadratic matrix equation into an equivalent

fixed-point equation, Bai et al. [3] constructed a successive approximationmethod and a Newton

method based on the fixed-point equation. Higham and Kim [4] incorporated exact line searches

into Newton method to solve the quadratic matrix equation.

Recently, Bai, Guo and Xu [7] proposed an alternately linearized implicit (ALI) iteration

method for computing the minimal nonnegative solution of the algebraic Riccati equations

(AREs). This method is more feasible and effective than the other methods. Applying this

method, in this paper we propose a new numerical method for solving the quadratic matrix

equation (1.1). The method for computing a nonsingular M -matrix solution of the quadratic

matrix equation (1.1) is developed and its corresponding theory is given. Some numerical

examples are provided to show the efficiency of the new method.
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We first define some notations and introduce several basic results. For any matrices A,B ∈

Rn×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij) for all i, j. A real square matrix A is

called a Z -matrix if all its off-diagonal elements are nonpositive. It follows that any Z -matrix

A can be written as the form A = sI −B, with s a positive real and B a nonnegative matrix.

A Z-matrix A is called an M -matrix if s ≥ ρ(B), where ρ(B) denotes the spectral radius of B.

It is called a singular M -matrix if s = ρ(B); It is called a nonsingular M -matrix if s > ρ(B).

‖A‖ denotes the Frobenius norm of a matrix A.

Lemma 1.1. ([8]) For a Z -matrix A , the following statements are equivalent:

(1) A is a nonsingular M -matrix;

(2) A−1 ≥ 0;

(3) Av > 0 for some vector v > 0.

Lemma 1.2. ([7]) Let

K =

[

D −C

−B A

]

.

If K is a nonsingular M -matrix, then the algebraic Riccati equation (ARE)

ℜ(X) = XCX −XD −AX +B = 0 (1.2)

has a minimal nonnegative solution S , where A,B,C and D are real matrices of sizes m ×

m,m× n, n×m and n× n, respectively.

Bai et al. [7] established a class of alternately linearized implicit (ALI) iteration methods

for computing the minimal nonnegative solutions of the ARE (1.2) by the following algorithm.

Algorithm 1.1. ([7]) (The ALI iteration method)

1) Set X0 = 0 ∈ Rm×n .

2) For k = 0, 1, · · · , until {Xk} convergence, compute {Xk+1} from {Xk} by solving the

following two systems of linear matrix equations:

{

Xk+ 1

2

(αI + (D − CXk)) = (αI −A)Xk +B,
(

αI +
(

A−Xk+ 1

2

C
))

Xk+1 = Xk+ 1

2

(αI −D) +B,

where α > 0 is a given iteration parameter.

The ALI iteration method is better than both the Newton iteration method and the fixed-

point iteration method.

We consider the numerical solution of the quadratic matrix equation (1.1) associated with

a nonsingular M -matrix by using the ALI iteration method. The paper is organized as follows.

First, the quadratic matrix equation (1.1) is transformed into the algebraic Riccati equations.

Second, a numerical method for computing an M -matrix solution of the quadratic matrix

equation is proposed in Section 2. Then, some numerical examples are provided in Section 3.

Finally, conclusions are given in Section 4.
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2. The Alternately Linearized Implicit Iteration Method

In order to solve the quadratic matrix equation (1.1), we will convert the quadratic matrix

equation (1.1) into an algebraic Riccati equation.

By letting X = αI − Y as in [6], we can rewrite the equation (1.1) as

(αI − Y )2 −B(αI − Y )− C = 0,

which gives

Y 2 − Y (αI) − (αI −B)Y + (α2I − αB − C) = 0, (2.1)

where α is a real constant. Let

R =

[

αI −I

−α2I + αB + C αI −B

]

(2.2)

and α > 0 be a parameter such that α2I − αB − C ≥ 0, that is

{

α2 − αbii − cii ≥ 0,

−αbij − cij ≥ 0,
(2.3)

where bii and cii are the i-th diagonal elements of B and C, and bij and cij(i 6= j) are the off-

diagonal elements of B and C, respectively. By means of (2.3), it is necessary that α ∈ [α0,+∞),

with

α0 = max
1≤i≤n

(

(bii +
√

b2ii + 4cii)/2
)

> 0, |cij | ≥ αbij , (i 6= j). (2.4)

Theorem 2.1. If the condition (2.4) be satisfied and C is a nonsingular M -matrix, then R is

a nonsingular M -matrix and the equation (2.1) has a minimal nonnegative solution Sa.

Proof. It is clear that R is a Z-matrix, by the condition (2.4). If C is a nonsingular

M -matrix, then by Lemma1.1, Cv > 0 for some v > 0. Take δ > 0 small enough so that

Cv − δ(α2I − αB − C)v > 0. It follows that

[

αI −I

−α2I + αB + C αI −B

] [

v + δv

αv

]

=

[

αδv

Cv − δ(α2I − αB − C)v

]

> 0.

Hence,

R =

[

αI −I

−α2I + αB + C αI −B

]

is a nonsingular M -matrix. It follows from Lemma 1.2 that the Eq. (2.1) has a minimal

nonnegative solution Sa under the condition (2.4). �

In order to find Sa, we can apply Algorithm 1.1 to the equation (2.1) with Y0 = 0 ∈ Rn×n.

A specific algorithm is described as follows.

Algorithm 2.1.

1) Set Y0 = 0 ∈ Rn×n.

2) For k = 0, 1, · · · , until {Yk} convergence

2.1) determine α0 = max
1≤i≤n

{

(bii +
√

b2ii + 4cii)/2
}

> 0 and β ≥ max

{

max
1≤i≤n

(α− bii), α

}

subject to α ∈ [α0,+∞) and |cij | ≥ αbij (i 6= j).
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2.2) compute {Yk} form the following matrix equations

{

Yk+ 1

2

((β + α)I − Yk) = ((β − α)I +B)Yk + (α2I − αB − C),

((β + α)I −B − Yk+ 1

2

)Yk+1 = Yk+ 1

2

((β − α)I) + (α2I − αB − C).

2.3) If ‖Yk+1 − Yk‖ ≤ ε, stop; else set k = k + 1 , go to 2.2).

We know from Theorem 2.1 and Theorem in [7] that the matrix sequence {Yk} generated

by Algorithm 2.1 is convergent to Sa.

It is clear that αI − Sa is the solution of the quadratic matrix equation (1.1) by the rela-

tionship between the equations (1.1) and (2.1). Moreover, we can easily prove that αI − Sa

is a nonsingular M -matrix, which means that we find a nonsingular M -matrix solution of the

equation (1.1).

3. Numerical Results

In this section, Algorithm 2.1 is applied to solve the quadratic matrix equation (1.1). We

give some examples to illustrate the performance of the proposed algorithm. All experiments

are carried out in Matlab 6.5. We compute the number of iteration steps, the CPU time and

the residual norm of the solution.

Example 3.1. The quadratic matrix equation (1.1) is defined by

B = −

[

aI10
−bI10

]

, C = −













−1 0.5
. . .

. . .

. . . 0.5

1 −1













,

where a = 1, b = −1 and C is a nonsingular M -matrix. It can be verified that B, C satisfy the

conditions in Theorem 2.1. Taking Y0 = 0 , we apply Algorithm 2.1 to compute the M -matrix

solution of the quadratic matrix equation (1.1) with the parameters α = 4, β = 6 . The quality

δ is defined as the residual norm, i.e., δ =
∥

∥X2
k −BXk − C

∥

∥ , where Xk is the k-th approximate

solution. The residual norm is shown in Table 3.1 and the CPU time τ = 0.015′. For different

values of α, β satisfing the conditions of Algorithm 2.1, we can obtain the numerical solution

by Algorithm 2.1.

Table 3.1: The residual norm of the solution.

k ‖Yk+1 − Yk‖ δ =
∥

∥X
2
k −BXk − C

∥

∥

5 0.0961 0.2409

10 0.0602 0.0520

15 0.0046 0.0118

20 0.0011 0.0028

25 2.7668e-004 7.2203e-004

30 7.2579e-005 1.8994e-004

38 8.9059e-006 2.3369e-005
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Fig. 3.1.

Example 3.2. The quadratic matrix equation (1.1) is defined by

B = −




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


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

, C = −




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


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
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,

where B,C ∈ R20×20 satisfy the conditions in Theorem 2.1. We set α = 4, β = 6. Algorithm

2.1 converges after 21 iterations. The residual norm is δ =
∥

∥X2
k −BXk − C

∥

∥ = 3.67 × 10−5

and the CPU time τ = 0.063′. Fig. 3.1 shows that Algorithm 2.1 is feasible and effective.

4. Conclusions

Using the alternately implicit iteration method, a new method for solving the quadratic

matrix equation is developed. The corresponding theory of the method is presented. The

numerical results show that the proposed method is effective.
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