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Abstract

This paper detailedly discusses the locally one-dimensional numerical methods for ef-

ficiently solving the three-dimensional fractional partial differential equations, including

fractional advection diffusion equation and Riesz fractional diffusion equation. The second

order finite difference scheme is used to discretize the space fractional derivative and the

Crank-Nicolson procedure to the time derivative. We theoretically prove and numerically

verify that the presented numerical methods are unconditionally stable and second order

convergent in both space and time directions. In particular, for the Riesz fractional dif-

fusion equation, the idea of reducing the splitting error is used to further improve the

algorithm, and the unconditional stability and convergency are also strictly proved and

numerically verified for the improved scheme.
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1. Introduction

The history of fractional calculus can goes back to more than three hundred years ago [12],

almost the same as classical calculus. Nowadays it has become more and more popular among

various scientific fields, covering anomalous diffusion, materials and mechanical, signal process-

ing and systems identification, control and robotics, rheology, fluid flow, signal processing, and

electrical networks et al. [15]. Meanwhile, the diverse fractional partial differential equations

(fractional PDEs), as models, appear naturally in the corresponding field.

There are already some important progress for numerically solving the fractional PDEs. The

methods used for classical PDEs are well extended to fractional PDEs, for example, the finite

difference method [2,18-20,22], finite element method [4,8], and spectral method [14]. However,

almost all of them concentrate on one or two dimensional problems. There have been already

some useful developments for realizing the operator splitting (locally one dimension) to solve

the classical PDEs. This paper focuses on extending the alternating direction implicit (ADI)

methods to the three-dimensional fractional PDEs, and improving their efficiency.

The Peaceman and Rachford alternating direction implicit method (PR-ADI) [16] works

well for two-dimensional problems. But it can not be extended to higher dimensional problems.

Douglas type alternating direction implicit methods (D-ADI) [5-7] are valid for any dimensional
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equations. And PR-ADI and D-ADI are equivalent in two dimensional problems. In this paper,

we consider the following three-dimensional fractional advection diffusion equation,

∂u(x, y, z, t)

∂t
= dx1 xL

Dα
xu(x, y, z, t) + dx2 xD

α
xR

u(x, y, z, t)

+ dy1 yL
Dβ

yu(x, y, z, t) + dy2 yD
β
yR

u(x, y, z, t)

+ dz1 zLD
γ
zu(x, y, z, t) + dz2 zD

γ
zRu(x, y, z, t) + κx

∂u(x, y, z, t)

∂x

+ κy
∂u(x, y, z, t)

∂y
+ κz

∂u(x, y, z, t)

∂z
+ f(x, y, z, t), (1.1)

and the Riesz fractional diffusion equation

∂u(x, y, z, t)

∂t
= dx1

(
xL
Dα

xu(x, y, z, t) + xD
α
xR

u(x, y, z, t)
)

+dy1
(
yL
Dβ

yu(x, y, z, t) + yD
β
yR

u(x, y, z, t)
)
+ dz1

(
zL
Dγ

zu(x, y, z, t)

+ zD
γ
zRu(x, y, z, t)

)
+ f(x, y, z, t),

(1.1′)

both with the initial condition

u(x, y, z, 0) = u0(x, y, z), for (x, y, z) ∈ Ω, (1.2)

and the Dirichlet boundary condition

u(x, y, z, t) = 0, for (x, y, z, t) ∈ ∂Ω× (0, T ], (1.3)

where Ω = (xL, xR)×(yL, yR)×(zL, zR) ⊂ R3, 0 < t ≤ T , and the fractional orders 1 < α, β, γ <

2; and f(x, y, z, t) is a forcing function; and all the coefficients are non-negative constants. The

fractional derivatives used in (1.1) and (1.1′) are defined as, for 1 < µ < 2,

xL
Dµ

xu(x) =
1

Γ(2− µ)

∂2

∂x2

∫ x

xL

(x− ξ)
1−µ

u(ξ)dξ, (1.4)

xD
µ
xR

u(x) =
1

Γ(2− µ)

∂2

∂x2

∫ xR

x

(ξ − x)1−µu(ξ)dξ. (1.5)

From the viewpoint of conversation law, the advection term in the advection diffusion equation

should be first order classical derivative, and the fractional derivative corresponding to the

diffusion term should be Riemann-Liouville one.

For the two-dimensional case of (1.1)-(1.3), PR-ADI and D-ADI are discussed and we show

that they are equivalent for two-dimensional equations. We use D-ADI for the three-dimensional

(1.1)-(1.3). The second order finite difference scheme is used to discretize the space fractional

derivative and the Crank-Nicolson procedure to the time direction. We theoretically prove and

numerically confirm that the given numerical schemes are unconditionally stable and second

order convergent in both space and time directions. In general, the ADI methods introduce

new error term, called the splitting error, comparing with the original discretizations. Usually

the splitting error term does not affect the convergent order, but most of the time it lowers

the accuracy seriously. For (1.1′), we use the idea in [7] to reduce the splitting error from

O(τ2) to O(τ3) at reasonable computational cost and then recover the accuracy of the original

discretization, the improved ADI will be called D-ADI-II. The fractional step (FS) method is

also simply discussed to show that, after a minor modification to reduce the splitting error from

O(τ) to O(τ3), it is equivalent to D-ADI-II.
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The outline of this paper is as follows. In Section 2, we introduce the second order finite

difference schemes for the left and right Riemann-Liouville fractional derivatives (1.4) and (1.5),

and the full discretization schemes of the one-dimensional and two-dimensional case of (1.1)-

(1.3) and (1.1)-(1.3) itself are detailedly provided. Section 3 discusses improving the accuracy

and efficiency of ADI, presents D-ADI-II for (1.1′), and shows that, after a minor modification

of the FS method, it is equivalent to D-ADI-II. We do the convergence and stability analysis

for the schemes used in this paper in Section 4. The numerical results are given in Section 5

and we conclude this paper with some discussions in the last section.

2. Discretization Schemes

We use fourth subsections to derive the full discretization of (1.1), and the corresponding

schemes of (1.1′) can be obtained by letting dx1 = dx2 , d
y
1 = dy2 , d

z
1 = dz2, and κx = κy = κz = 0.

The first subsection introduces the second order finite difference schemes for the left and right

Riemann-Liouville fractional derivatives (1.4) and (1.5) in a finite interval given in [1] based

on the idea of [18]. The second to fourth subsection present the D-ADI schemes for the one-

dimensional and two-dimensional case of (1.1)-(1.3) and (1.1)-(1.3) itself, respectively.

2.1. Discretizations for the left and right Riemann-Liouville fractional derivatives

Let the mesh points xi = xL+i∆x, 0 ≤ i ≤ Nx, yj = yL+j∆y, 0 ≤ j ≤ Ny, zm = zL+m∆z,

0 ≤ m ≤ Nz and tn = nτ , 0 ≤ n ≤ Nt, where ∆x = (xR − xL)/Nx, ∆y = (yR − yL)/Ny,

∆z = (zR − zL)/Nz, τ = T/Nt, i.e., ∆x, ∆y and ∆z are the uniform space stepsizes in the

corresponding directions, τ the time stepsize. For µ ∈ (1, 2), the left and right Riemann-

Liouville space fractional derivatives (1.3) and (1.4) have the second-order approximation op-

erators δ′µ,+xu
n
i,j,m and δ′µ,−xu

n
i,j,m, respectively, given in a finite domain [1, 18], where un

i,j,m

denotes the approximated value of u(xi, yj , zm, tn).

The approximation operator of (1.4) is defined by [1, 18]

δ′µ,+xu
n
i,j,m :=

1

Γ(4− µ)(∆x)µ

i+1∑

l=0

gµl u
n
i−l+1,j,m, (2.1)

and there exists

xL
Dµ

xu(x, yj, zm, tn)
∣∣
x=xi

= δ′µ,+xu(xi, yj , zm, tn) +O(∆x)2, (2.2)

where

δ′µ,+xu(xi, yj , zm, tn) =
1

Γ(4− µ)(∆x)µ

i+1∑

l=0

gµl u(xi−l+1, yj, zm, tn),

and

gµl =






1, l = 0,

−4 + 23−µ, l = 1,

6− 25−µ + 33−µ, l = 2,

(l + 1)3−µ − 4l3−µ + 6(l − 1)3−µ

− 4(l− 2)3−µ + (l − 3)3−µ, l ≥ 3.

(2.3)

Analogously, the approximation operator of (1.5) is described as [1]

δ′µ,−xu
n
i,j,m :=

1

Γ(4− µ)(∆x)µ

Nx−i+1∑

l=0

gµl u
n
i+l−1,j,m, (2.4)
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where gµl is defined by (2.3), and it holds that

xD
µ
xR

u(x, yj , zm, tn)
∣∣
x=xi

= δ′µ,−xu(xi, yj , zm, tn) +O(∆x)2, (2.5)

where

δ′µ,−xu(xi, yj, zm, tn) =
1

Γ(4− µ)(∆x)µ

Nx−i+1∑

l=0

gµl u(xi+l−1, yj, zm, tn).

In the following, we introduce and list some discrete operators which work for the functions

of three variables x, y, and z:

D′
α,xu

n
i,j,m=

un
i+1,j,m − un

i−1,j,m

2∆x
; D′′

α,xu
n
i,j,m=κxD

′
α,xu

n
i,j,m;

δ′α,+xu
n
i,j,m=

1

Γ(4− α)(∆x)α

i+1∑

l=0

gαl u
n
i−l+1,j,m; δ′′α,+xu

n
i,j,m= dx1δ

′
α,+xu

n
i,j,m;

δ′α,−xu
n
i,j,m=

1

Γ(4− α)(∆x)α

Nx−i+1∑

l=0

gαl u
n
i+l−1,j,m; δ′′α,−xu

n
i,j,m= dx2δ

′
α,−xu

n
i,j,m.

(2.6)

The discrete operators related to the variable x or y in the above also work for functions of two

variables x and y, e.g.,

D′
α,xu

n
i,j =

un
i+1,j − un

i−1,j

2∆x
, δ′α,+xu

n
i,j =

1

Γ(4− α)∆xα

i+1∑

l=0

gαl u
n
i−l+1,j .

Similarly, it is easy to get the one-dimensional and two-dimensioanl case of (2.1)-(2.6).

Remark 2.1. ([1]) Denoting Ũn = [un
1 , u

n
2 , · · · , u

n
Nx−1]

T, and rewriting (2.1) and (2.4) as ma-

trix forms δ′α,+xŨ
n = ÃŨn + b1 and δ′α,−xŨ

n = B̃Ũn + b2, respectively, then there exists

Ã = B̃T.

2.2. Numerical scheme for 1D

Consider the full discretization scheme to the one-dimensional case of (1.1), namely,

∂u(x, t)

∂t
= dx1 xL

Dα
xu(x, t) + dx2 xD

α
xR

u(x, t) + κx
∂u(x, t)

∂x
+ f(x, t). (2.7)

In the time direction, we use the Crank-Nicolson scheme. The central difference formula,

left fractional approximation operator (2.2), and right fractional approximation operator (2.5)

are respectively used to discretize the classical second order space derivative, left Riemann-

Liouville fractional derivative, and right Riemann-Liouville fractional derivative. Taking the

uniform time step τ and space step ∆x, and taking un
i as the approximated value of u(xi, tn)

and f
n+1/2
i = f(xi, tn+1/2), where tn+1/2 = (tn + tn+1)/2, using the one-dimensioanl case of

(2.1)-(2.6), we can write (2.7) as

u(xi, tn+1)− u(xi, tn)

τ

=
1

2

[
dx1δ

′
α,+xu(xi, tn+1) + dx1δ

′
α,+xu(xi, tn) + dx2δ

′
α,−xu(xi, tn+1)

+ dx2δ
′
α,−xu(xi, tn) + κxD

′
α,xu(xi, tn+1) + κxD

′
α,xu(xi, tn)

]

+ f(xi, tn+1/2) +O(τ2 + (∆x)2), (2.8)
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where

D′
α,xu(xi, tn) =

u(xi+1, tn)− u(xi−1, tn)

2∆x
.

Multiplying (2.8) by τ , we have the following equation

[
1−

τ

2

(
dx1δ

′
α,+x + dx2δ

′
α,−x + κxD

′
α,x

)]
u(xi, tn+1)

=
[
1 +

τ

2

(
dx1δ

′
α,+x + dx2δ

′
α,−x + κxD

′
α,x

)]
u(xi, tn) + τf(xi, tn+1/2) +Rn+1

i , (2.9)

where

|Rn+1
i | ≤ c̃τ(τ2 + (∆x)2). (2.10)

Therefore, the full discretization of (2.7) has the following form

[
1−

τ

2

(
dx1δ

′
α,+x + dx2δ

′
α,−x + κxD

′
α,x

)]
un+1
i

=
[
1 +

τ

2

(
dx1δ

′
α,+x + dx2δ

′
α,−x + κxD

′
α,x

)]
un
i + τf

n+1/2
i . (2.11)

We can write (2.11) as

un+1
i −

τ

2

[
dx1

Γ(4− α)(∆x)α

i+1∑

l=0

gαl u
n+1
i−l+1 +

dx2
Γ(4− α)(∆x)α

Nx−i+1∑

l=0

gαl u
n+1
i+l−1 +

κx

2∆x

(
un+1
i+1 − un+1

i−1

)
]

= un
i +

τ

2

[
dx1

Γ(4− α)(∆x)α

i+1∑

l=0

gαl u
n
i−l+1 +

dx2
Γ(4− α)(∆x)α

Nx−i+1∑

l=0

gαl u
n
i+l−1 +

κx

2∆x

(
un
i+1 − un

i−1

)
]

+ τf
n+1/2
i . (2.12)

For the convenience of implementation, we use the matrix form of the grid functions

Un = [un
1 , u

n
2 , . . . , u

n
Nx−1]

T, Fn+1/2 = [f
n+1/2
1 , f

n+1/2
2 , . . . , f

n+1/2
Nx−1 ]T.

Therefore, the finite difference scheme (2.12) can be rewritten as

[
I −

τ

2

(
dx1

Γ(4 − α)(∆x)α
Aα +

dx2
Γ(4− α)(∆x)α

AT
α +

κx

2∆x
B

)]
Un+1

=

[
I +

τ

2

(
dx1

Γ(4− α)(∆x)α
Aα +

dx2
Γ(4− α)(∆x)α

AT
α +

κx

2∆x
B

)]
Un + τFn+1/2, (2.13)

where

Aα =




gα1 gα0 0 · · · 0 0

gα2 gα1 gα0 0 · · · 0

gα3 gα2 gα1 gα0
. . .

...
...

. . .
. . .

. . .
. . . . . .

gαNx−2

. . .
. . .

. . . gα1 gα0
gαNx−1 gαNx−2 gαNx−3 · · · gα2 gα1




, B =




0 1 0 · · · 0 0

−1 0 1 0 · · · 0

0 −1 0 1
. . .

...
...

. . .
. . .

. . .
. . . . . .

0
. . .

. . .
. . . 0 1

0 0 0 · · · −1 0




.

(2.14)
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2.3. PR-ADI and D-ADI schemes for 2D

We now examine the full discretization scheme to the two-dimensional case of (1.1), i.e.,

∂u(x, y, t)

∂t
= dx1 xL

Dα
xu(x, y, t) + dx2 xD

α
xR

u(x, y, t) + dy1 yL
Dβ

yu(x, y, t) + dy2 yD
β
yR

u(x, y, t)

+ κx
∂u(x, y, t)

∂x
+ κy

∂u(x, y, t)

∂y
+ f(x, y, t). (2.15)

Analogously we still use the Crank-Nicolson scheme to do the discretization in time direction.

Taking un
i,j as the approximated value of u(xi, yj , tn), using the two-dimensioanl case of (2.1)-

(2.6), we can write (2.15) as
[
1−

τ

2

(
δ′′α,+x + δ′′α,−x +D′′

α,x

)
−

τ

2

(
δ′′β,+y + δ

′′

β,−y +D′′
β,y

)]
u(xi, yj, tn+1)

=
[
1 +

τ

2

(
δ′′α,+x + δ′′α,−x +D′′

α,x

)
+

τ

2

(
δ′′β,+y + δ′′β,−y +D′′

β,y

)]
u(xi, yj, tn)

+ τf(xi, yj , tn+1/2) +Rn+1
i,j , (2.16)

where

|Rn+1
i,j | ≤ c̃τ

(
τ2 + (∆x)2 + (∆y)2

)
. (2.17)

Using the notations of (2.6), we further define

δα,x := δ′′α,+x + δ′′α,−x +D′′
α,x;

δβ,y := δ′′β,+y + δ′′β,−y +D′′
β,y.

Thus, the resulting discretization of (2.15) can be written as a Crank-Nicolson type finite

difference equation

un+1
i,j − un

i,j

τ
=

δα,xu
n+1
i,j + δα,xu

n
i,j + δβ,yu

n+1
i,j + δβ,yu

n
i,j

2
+ f

n+1/2
i,j , (2.18)

i.e.,
[
1−

τ

2

(
δ′′α,+x + δ′′α,−x +D′′

α,x

)
−

τ

2

(
δ′′β,+y + δ

′′

β,−y +D′′
β,y

)]
un+1
i,j

=
[
1 +

τ

2

(
δ′′α,+x + δ′′α,−x +D′′

α,x

)
+

τ

2

(
δ′′β,+y + δ′′β,−y +D′′

β,y

)]
un
i,j + τf

n+1/2
i,j , (2.19)

or (
1−

τ

2
δα,x −

τ

2
δβ,y

)
un+1
i,j =

(
1 +

τ

2
δα,x +

τ

2
δβ,y

)
un
i,j + τf

n+1/2
i,j . (2.20)

The perturbation equation of (2.20) is of the form
(
1−

τ

2
δα,x

)(
1−

τ

2
δβ,y

)
un+1
i,j =

(
1 +

τ

2
δα,x

)(
1 +

τ

2
δβ,y

)
un
i,j + τf

n+1/2
i,j . (2.21)

Comparing (2.21) with (2.20), the splitting term is given by

τ2

4
δα,xδβ,y(u

n+1
i,j − un

i,j). (2.22)

Since (un+1
i,j −un

i,j) is an O(τ) term, it implies that this perturbation contributes an O(τ2) error

component to the truncation error of the Crank-Nicolson finite difference method (2.18).

The system of equations defined by (2.21) can be solved by the following systems.
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• PR-ADI scheme [16]:

(
1−

τ

2
δα,x

)
u∗
i,j =

(
1 +

τ

2
δβ,y

)
un
i,j +

τ

2
f
n+1/2
i,j ; (2.23)

(
1−

τ

2
δβ,y

)
un+1
i,j =

(
1 +

τ

2
δα,x

)
u∗
i,j +

τ

2
f
n+1/2
i,j . (2.24)

• D-ADI scheme [5–7]:

(
1−

τ

2
δα,x

)
u∗
i,j =

(
1 +

τ

2
δα,x + τδβ,y

)
un
i,j + τf

n+1/2
i,j ; (2.25)

(
1−

τ

2
δβ,y

)
un+1
i,j = u∗

i,j −
τ

2
δβ,yu

n
i,j . (2.26)

Take

Un = [un
1,1, u

n
2,1, . . . , u

n
Nx−1,1, u

n
1,2, u

n
2,2, . . . , u

n
Nx−1,2, . . . , u

n
1,Ny−1, u

n
2,Ny−1, . . . , u

n
Nx−1,Ny−1]

T ,

Fn = [fn
1,1, f

n
2,1, . . . , f

n
Nx−1,1, f

n
1,2, f

n
2,2, . . . , f

n
Nx−1,2, . . . , f

n
1,Ny−1, f

n
2,Ny−1, . . . , f

n
Nx−1,Ny−1]

T ,

and denote

Bx =
dx1τ

2Γ(4− α)(∆x)α
I ⊗Aα +

dx2τ

2Γ(4− α)(∆x)α
I ⊗AT

α +
κxτ

4∆x
I ⊗B,

By =
dy1τ

2Γ(4− β)(∆y)β
Aβ ⊗ I +

dy2τ

2Γ(4− β)(∆y)β
AT

β ⊗ I +
κyτ

4∆y
B ⊗ I,

(2.27)

where I denotes the unit matrix and the symbol ⊗ the Kronecker product [13]. The matrices

Aα, Aβ and B are defined by (2.14) corresponding to α and β, respectively. Thus, the finite

difference scheme (2.21) has the following form

(I − Bx)(I − By)U
n+1 = (I + Bx)(I + By)U

n + τFn+1/2. (2.28)

Remark 2.2. The schemes (2.23)-(2.24) and (2.25)-(2.26) are equivalent, since both of them

come from (2.21).

2.4. D-ADI scheme for 3D

Using the notations of (2.1)-(2.6), we can write (1.1) as the following form

(
1−

τ

2
δα,x −

τ

2
δβ,y −

τ

2
δγ,z

)
u(xi, yj, zm, tn+1)

=
(
1 +

τ

2
δα,x +

τ

2
δβ,y +

τ

2
δγ,z

)
u(xi, yj, zm, tn) + τf(xi, yj , zm, tn+1/2) +Rn+1

i,j,m, (2.29)

where

δα,x := δ′′α,+x + δ′′α,−x +D′′
α,x;

δβ,y := δ′′β,+y + δ′′β,−y +D′′
β,y;

δγ,z := δ′′γ,+z + δ′′γ,−z +D′′
γ,z,

(2.30)

and

|Rn+1
i,j,m| ≤ c̃τ

(
τ2 + (∆x)2 + (∆y)2 + (∆z)2

)
. (2.31)
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Similarly, the full discretization scheme of (1.1) can be written as

(
1−

τ

2
δα,x −

τ

2
δβ,y −

τ

2
δγ,z

)
un+1
i,j,m

=
(
1 +

τ

2
δα,x +

τ

2
δβ,y +

τ

2
δγ,z

)
un
i,j,m + τf

n+1/2
i,j,m . (2.32)

The perturbation equation of (2.32) is of the form

(
1−

τ

2
δα,x

)(
1−

τ

2
δβ,y

)(
1−

τ

2
δγ,z

)
un+1
i,j,m

=
(
1 +

τ

2
δα,x

)(
1 +

τ

2
δβ,y

)(
1 +

τ

2
δγ,z

)
un
i,j,m + f

n+1/2
i,j,m τ. (2.33)

The scheme (2.33) differs from (2.32) by the perturbation term

(∆t)2

4
(δα,xδβ,y + δα,xδγ,z + δβ,yδγ,z)(u

k+1
i,j,m − un

i,j,m)−
(τ)3

8
δα,xδβ,yδγ,z

(
uk+1
i,j,m − un

i,j,m

)
.

The system of equations defined by (2.33) can be solved by the D-ADI scheme [5–7]:

(
1−

τ

2
δα,x

)
un,1
i,j,m =

(
1 +

τ

2
δα,x + τδβ,y + τδγ,z

)
un
i,j,m + τf

n+1/2
i,j,m ; (2.34)

(
1−

τ

2
δβ,y

)
un,2
i,j,m = un,1

i,j,m −
τ

2
δβ,yu

n
i,j,m; (2.35)

(
1−

τ

2
δγ,z

)
un+1
i,j,m = un,2

i,j,m −
τ

2
δγ,zu

n
i,j,m. (2.36)

Similarly, we suppose

Ũn =
[
un
1,1,1, u

n
2,1,1, . . . , u

n
Nx−1,1,1, u

n
1,2,1, u

n
2,2,1, . . . , u

n
Nx−1,2,1, . . . ,

un
1,Ny−1,1, u

n
2,Ny−1,1, . . . , u

n
Nx−1,Ny−1,1,→

un
1,1,2, u

n
2,1,2, . . . , u

n
Nx−1,1,2, u

n
1,2,2, u

n
2,2,2, . . . , u

n
Nx−1,2,2, . . . ,

un
1,Ny−1,2, u

n
2,Ny−1,2, . . . , u

n
Nx−1,Ny−1,2,→

. . . un
1,1,Nz−1, u

n
2,1,Nz−1, . . . , u

n
Nx−1,1,Nz−1, u

n
1,2,Nz−1, u

n
2,2,Nz−1, . . . , u

n
Nx−1,2,Nz−1, . . . ,→

un
1,Ny−1,Nz−1, u

n
2,Ny−1,Nz−1, . . . , u

n
Nx−1,Ny−1,Nz−1

]T
,

and

Ax =
dx1τ

2Γ(4− α)(∆x)α
I ⊗ I ⊗Aα +

dx2τ

2Γ(4− α)(∆x)α
I ⊗ I ⊗AT

α +
κxτ

4∆x
I ⊗ I ⊗B,

Ay =
dy1τ

2Γ(4− β)(∆y)β
I ⊗Aβ ⊗ I +

dy2τ

2Γ(4− β)(∆y)β
I ⊗AT

β ⊗ I +
κyτ

4∆y
I ⊗B ⊗ I,

Az =
dz1τ

2Γ(4− β)(∆z)γ
Aγ ⊗ I ⊗ I +

dz2τ

2Γ(4− γ)(∆z)γ
AT

γ ⊗ I ⊗ I +
κzτ

4∆z
B ⊗ I ⊗ I,

(2.37)

where I denotes the unit matrix and the symbol ⊗ the Kronecker product [13], the matrixes

Aα, Aβ , Aγ and B are defined by (2.14) corresponding to α, β and γ, respectively. Thus, the

finite difference scheme (2.33) has the following form

(I −Ax)(I −Ay)(I −Az)Ũ
n+1 = (I +Ax)(I +Ay)(I +Az)Ũ

n + τF̃n+1/2. (2.38)

The corresponding procedure is executed as follows:



Efficient Numerical Algorithms for 3D Fractional PDEs 379

(1) First for every fixed z = zm (m = 1, . . . , Nz−1), and each fixed y = yj (j = 1, . . . , Ny−1),

solving a set of Nx−1 equations defined by (2.34) at the mesh points xk, k = 1, . . . , Nx−1,

to get un,1
k,j,m;

(2) Next alternating the spatial direction, and for each fixed x = xi (i = 1, . . . , Nx − 1), and

each fixed z = zm (m = 1, . . . , Nz − 1), solving a set of Ny − 1 equations defined by (2.35)

at the points yk, k = 1, . . . , Ny − 1, to obtain un,2
i,k,m;

(3) At last alternating the spatial direction again, and for each fixed y = yj (j = 1, . . . , Ny−1),

and each fixed x = xi (i = 1, . . . , Nx − 1), solving a set of Nz − 1 equations defined by

(2.36) at the points zk, k = 1, . . . , Nz − 1, to gain un+1
i,j,k.

3. Improved Accuracy for D-ADI and FS Procedures

This section shows that the idea of improving the accuracy of D-ADI and FS procedures [7]

also works well when used to solve Riesz fractional diffusion Eq. (1.1′). For the simpleness to

illustrate and discuss this, we focuses on two-dimensional case of (1.1′). It is natural to extend

higher dimensions. The reason why we abruptly discuss FS procedure here is because we want

to show FS method is equivalent to D-ADI after some minor modifications even when solving

fractional PDEs.

3.1. Correction term for the D-ADI method

The D-ADI scheme of (2.15) introduces the splitting error term (2.22). Even though it is

still with the order O(τ2), sometimes it will seriously impair the accuracy, see Table 3.1. If we

add
τ2

4
δα,xδβ,y(u

n
i,j − un−1

i,j ) (3.1)

to the right hand side of (2.25), then the new D-ADI, called D-ADI-II, will have the splitting

error
τ2

4
δα,xδβ,y(u

n+1
i,j − 2un

i,j + un−1
i,j ), (3.2)

then the splitting error is reduced to O(τ3). The D-ADI-II is obviously two-step method; u1
i,j

can be obtained by D-ADI first, then initiate D-ADI-II.

3.2. Correction term for the FS method

The original FS method for (2.15) should be

un,1
i,j − un

i,j

τ
=

1

2
δα,x

(
un,1
i,j + un

i,j

)
+ fn+ 1

2 ;

un+1
i,j − un,1

i,j

τ
=

1

2
δβ,y

(
un+1
i,j + un

i,j

)
,

(3.3)

which can be written as
(
1−

τ

2
δα,x

)
un,1
i,j =

(
1 +

τ

2
δα,x

)
un
i,j + τfn+ 1

2 ;
(
1−

τ

2
δβ,y

)
un+1
i,j = un,1

i,j +
τ

2
δβ,yu

n.
(3.4)
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Comparing (3.3) with (2.20), the splitting term is given by

τ2

4
δα,xδβ,y

(
un+1
i,j + un

i,j

)
, (3.5)

which is of the order O(τ) error component to the truncation error of the Crank-Nicolson finite

difference method (2.18). However, if we add

τ2

4
δα,xδβ,y(3u

n
i,j − un−1

i,j ) (3.6)

to the right hand side of the first equation of (3.4), then we get the new FS method, called

FS-II, with the splitting error (3.2), i.e., the splitting error is reduced to O(τ3) .

The FS-II is equivalent to D-ADI-II, since both of them come from the following perturbation

equation
(
1−

τ

2
δα,x

)(
1−

τ

2
δβ,y

)
un+1
i,j

=
(
1 +

τ

2
δα,x

)(
1 +

τ

2
δβ,y

)
un
i,j +

τ2

4
δα,xδβ,y(u

n
i,j − un−1

i,j ) + τf
n+1/2
i,j ,

i.e.,

un+1
i,j − un

i,j

τ

=
1

2
(δα,x + δβ,y) (u

n+1
i,j + un

i,j)−
τ

4
δα,xδβ,y(u

n+1
i,j − 2un

i,j + un−1
i,j ) + f

n+1/2
i,j . (3.7)

3.3. Accuracy and efficiency of the D-ADI, D-ADI-II, and FS-II methods

To check the accuracy and efficiency of the D-ADI, D-ADI-II, and FS-II schemes, we consider

the two-dimensional case of the Riesz fractional Eq. (1.1′), on a finite domain 0 < x < 1, 0 <

y < 1, 0 < t ≤ 1, with the coefficients dx1 = dy1 = 1, and the initial condition

u(x, y, 0) = sin
(
(2x)4

)
sin
(
(2− 2x)4

)
sin
(
(2y)2

)
sin
(
(2 − 2y)2

)

and the Dirichlet boundary conditions on the rectangle in the form u(0, y, t) = u(x, 0, t) = 0

and u(1, y, t) = u(x, 1, t) = 0 for all t ≥ 0. The exact solution to this two-dimensional Riesz

fractioanl diffusion equation is

u(x, y, t) = e−t sin
(
(2x)4

)
sin
(
(2− 2x)4

)
sin
(
(2y)4

)
sin
(
(2− 2y)4

)
.

By the algorithm given in [3] and above conditions, it is easy to obtain the forcing function

f(x, y, t) at anywhere of the considered rectangle domain with any desired accuracy.

From Table 3.1, we further verify that the D-ADI-II is equivalent to the FS-II method, and

they may reduce the perturbation error of D-ADI procedure and improve the accuracy.

Table 3.1: The performance of the D-ADI, D-ADI-II, and FS-II methods with ∆x = ∆y = 1/100, and

the maximum errors (5.1).

α = 1.9, β = 1.9 τ = 10∆x τ = 5∆x τ = 5∆x/2 τ = ∆x

D-ADI 3.3496e-02 7.6895e-03 2.0624e-03 6.0826e-04

FS-II 2.2638e-03 1.7249e-04 2.7765e-04 3.3166e-04

D-ADI-II 2.2638e-03 1.7249e-04 2.7765e-04 3.3166e-04
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4. Convergence and Stability Analysis

In the following, we denote by H the symmetric (or hermitian) part of A if A is real (or

complex) matrix, and || · || the matrix 2-norm.

Lemma 4.1. ([1,18]) The coefficients gµl , µ ∈ (1, 2) defined in (2.3) satisfy the following prop-

erties

(1) gµ0 = 1, gµ1 = −4 + 23−µ < 0, gµ2 = 6− 25−µ + 33−µ;

(2) 1 ≥ gµ0 ≥ gµ3 ≥ gµ4 ≥ . . . ≥ 0;

(3)
∞∑

l=0

gµl = 0,
m∑

l=0

gµl < 0,m ≥ 2.

Lemma 4.2. ([17, p. 28]) A real matrix A of order n is positive definite if and only if its sym-

metric part H = A+AT

2
is positive definite; H is positive definite if and only if the eigenvalues

of H are positive.

Lemma 4.3. ([17, p. 184]) If A ∈ Cn×n, let H = A+AH

2
be the hermitian part of A, then for

any eigenvalue λ of A, the real part ℜ(λ(A)) satisfies

λmin(H) ≤ ℜ(λ(A)) ≤ λmax(H),

where λmin(H) and λmax(H) are the minimum and maximum of the eigenvalues of H, respec-

tively.

Theorem 4.1. Let matrix Aα be defined by (2.14), where α ∈ (1, 2), then for any eigen-

value λ of Aα, the real part ℜ(λ(Aα)) < 0, and the matrix Aα is negative definite. Moreover,

ℜ(λ(d1Aα + d2A
T
α)) < 0, where d1, d2 ≥ 0, d21 + d22 6= 0.

Proof. Let H =
Aα+AT

α

2
. By (2.14) we know

H ≡ (hi,j) =
1

2




2gα1 gα0 + gα2 gα3 · · · gαNx−2 gαNx−1

gα0 + gα2 2gα1 gα0 + gα2 gα3 · · · gαNx−2

gα3 gα0 + gα2 2gα1 gα0 + gα2
. . .

...
...

. . .
. . .

. . .
. . . gα3

gαNx−2

. . .
. . .

. . . 2gα1 gα0 + gα2
gαNx−1 gαNx−2 gα3 · · · gα0 + gα2 2gα1




. (4.1)

From Lemma 4.1, it is easy to check that gα0 + gα2 > 0, and the sum of the absolute value of

the off-diagonal entries on the row i of matrix H is given by

ri =

Nx−1∑

j=1,j 6=i

|hi,j | < −gα1 .

According to the Greschgorin theorem [11, p. 135], the eigenvalues of the matrix H are in the

disks centered at hi,i, with radius ri, i.e., the eigenvalues λ of the matrix H satisfies

|λ− hi,i| = |λ− gα1 | ≤ ri,
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it implies that λ(H) < 0. From Lemma 4.2 and 4.3, we obtain that ℜ(λ(Aα)) < 0 and A is

negative definite. Taking

H̃ =
(d1Aα + d2A

T
α) + (d1Aα + d2A

T
α )

T

2
= (d1 + d2)

Aα +AT
α

2
= (d1 + d2)H,

similarly, we can prove ℜ(λ(d1Aα + d2A
T
α )) < 0. �

In the following, we list some properties of the Kronecker Product.

Lemma 4.4. ([13, p. 140]) Let A ∈ R
m×n, B ∈ R

r×s, C ∈ R
n×p, and D ∈ R

s×t. Then

(A⊗B)(C ⊗D) = AC ⊗BD (∈ R
mr×pt).

Lemma 4.5. ([13, p. 140]) For all A and B, (A⊗B)T = AT ⊗BT .

Lemma 4.6. ([13, p. 141]) Let A ∈ Rn×n have eigenvalues {λi}
n
i=1 and B ∈ Rm×m have

eigenvalues {µj}
m
j=1. Then the mn eigenvalues of A⊗B are

λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµ1 . . . , λnµm.

Theorem 4.2. Let Ax, Ay and Az be defined by (2.37). Then

||(I −Aν)
−1|| ≤ 1,

||(I −Aν)
−1(I +Aν)|| ≤ 1,

where ν = x, y, z.

Proof. From Lemma 4.5 and (2.37), we obtain

Ax +AT
x

2
=

(dx1 + dx2)τ

2Γ(4− α)(∆x)α
I ⊗ I ⊗

(
Aα +AT

α

2

)
;

Ay +AT
y

2
=

(dy1 + dy2)τ

2Γ(4− β)(∆y)β
I ⊗

(
Aβ +AT

β

2

)
⊗ I;

Az +AT
z

2
=

(dz1 + dz2)τ

2Γ(4− γ)(∆z)γ

(
Aγ +AT

γ

2

)
⊗ I ⊗ I.

(4.2)

According to Theorem 4.1 and Lemma 4.6, we know that Aν + AT
ν are negative definite and

symmetric matrices, where ν = x, y, z. Then for any v = (v1, v2, . . . , vn)
T ∈ Rn, we have

vT v ≤ vT (I −AT
ν )(I −Aν)v.

Substituting v and vT by (I −Aν)
−1v and vT (I −AT

ν )
−1, respectively, leads to

vT (I −AT
ν )

−1(I −Aν)
−1v ≤ vT v.

Then, there exists

||(I −Aν)
−1|| = sup

v 6=0

√
vT (I −AT

ν )
−1(I −Aν)−1v

vT v
≤ 1.
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Similarly, we have

vT (I +AT
ν )(I +Aν)v ≤ vT (I −AT

ν )(I −Aν)v.

Taking v by (I −Aν)
−1v, then the above equation can be rewritten as

vT (I −AT
ν )

−1(I +AT
ν )(I +Aν)(I −Aν)

−1v ≤ vT v.

From Lemma 4.4, it is to check that Ax, Ay and Az commute, then it yields that

||(I −Aν)
−1(I +Aν)|| = ||(I +Aν)(I −Aν)

−1||

=sup
v 6=0

√
vT (I −AT

ν )
−1(I +AT

ν )(I +Aν)(I −Aν)−1v

vT v
≤ 1.

This completes the proof of the theorem. �

4.1. Stability and Convergence for 1D

Theorem 4.3. The difference scheme (2.11) with α ∈ (1, 2) is unconditionally stable.

Proof. Let ũn
i (i = 1, 2, . . . , Nx − 1; n = 0, 1, . . . , Nt) be the approximate solution of un

i ,

which is the exact solution of the difference scheme (2.11). Putting ǫni = ũn
i −un

i , and denoting

En = [ǫn1 , ǫ
n
2 , . . . , ǫ

n
Nx−1], then from (2.11) we obtain the following perturbation equation

(I −M)En+1 = (I +M)En,

where

M =
τ

2

(
dx1

Γ(4− α)(∆x)α
A+

dx2
Γ(4− α)(∆x)α

AT +
κx

2∆x
B

)
. (4.3)

Denoting λ as an eigenvalue of the matrix M , and using (4.3), there exists

M +MT

2
=

τ(dx1 + dx2)

2Γ(4− α)(∆x)α
H,

where H is defined by (4.1) and negative definite by the proof Theorem 4.1, then from Lemma

4.3, we get ℜ(λ(M)) < 0.

Note that λ is an eigenvalue of the matrix M if and only if 1 − λ is an eigenvalue of the

matrix I − M or equivalently, if and only if (1 − λ)−1(1 + λ) is an eigenvalue of the matrix

(I−M)−1(I+M). Since ℜ(λ(M)) < 0, it implies that |(1−λ)−1(1+λ)| < 1. Thus, the spectral

radius of the matrix (I−M)−1(I+M) is less than 1, hence the scheme (2.11) is unconditionally

stable. �

Theorem 4.4. Let u(xi, tn) be the exact solution of (2.7) with α ∈ (1, 2), and un
i be the solution

of the finite difference scheme (2.11), then there is a positive constant C such that

||u(xi, tn)− un
i || ≤ C

(
τ2 + (∆x)2

)
, i = 1, . . . , Nx − 1; n = 0, 1, . . . , Nt.

Proof. Denoting eni = u(xi, tn)− un
i , and en = [en1 , e

n
2 , . . . , e

n
Nx−1]

T . Subtracting (2.9) from

(2.11) and using e0 = 0, we obtain

(I −M)en+1 = (I +M)en +Rn+1,
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where M is defined by (4.3), and Rn = [Rn
1 , R

n
2 , . . . , R

n
Nx−1]

T . The above equation can be

rewritten as

en+1 = (I −M)−1(I +M)en + (I −M)−1Rn+1,

and taking the 2-norm on both sides, similar to the proof of the Theorem 4.2, we can show that

||(I −M)−1(I +M)|| ≤ 1. Then, using |Rn+1
i | ≤ c̃τ(τ2 + (∆x)2) in (2.10), we obtain

||en|| ≤ ||(I −M)−1(I +M)en−1||+ ||Rn||

≤ ||en−1||+ ||Rn|| ≤

n−1∑

k=0

||Rk+1|| ≤ c
(
τ2 + (∆x)2

)
.

This completes the proof of the theorem. �

4.2. Stability and Convergence for 2D

Theorem 4.5. The difference scheme (2.21) with α, β ∈ (1, 2) is unconditionally stable.

Proof. Let ũn
i,j (i = 1, 2, . . . , Nx−1; j = 1, 2, . . . , Ny−1;n = 0, 1, . . . , Nt) be the approximate

solution of un
i,j , which is the exact solution of the difference scheme (2.21). Taking ǫni,j =

ũn
i,j − un

i,j , then from (2.21) we obtain the following perturbation equation

(I − Bx)(I − By)E
n+1 = (I + Bx)(I + By)E

n, (4.4)

where Bx and By are given in (2.27), and

En = [ǫn1,1, ǫ
n
2,1, . . . , ǫ

n
Nx−1,1, ǫ

n
1,2, ǫ

n
2,2, . . . , ǫ

n
Nx−1,2, . . . , ǫ

n
1,Ny−1, ǫ

n
2,Ny−1, . . . , ǫ

n
Nx−1,Ny−1]

T ,

and we can write (4.4) as the following form

En+1 = (I − By)
−1(I − Bx)

−1(I + Bx)(I + By)E
n. (4.5)

Using Lemma 4.4, it is to check that Bx and By commute, i.e.,

BxBy = ByBx =

(
dy1τ

2Γ(4− β)(∆y)β
Aβ +

dy2τ

2Γ(4− β)(∆y)β
AT

β +
κyτ

4∆y
B

)

⊗

(
dx1τ

2Γ(4− α)(∆x)α
Aα +

dx2τ

2Γ(4− α)(∆x)α
AT

α +
κxτ

4∆x
B

)
.

(4.6)

Then Eq. (4.5) can be rewritten as

En =
(
(I − By)

−1(I + By)
)n (

((I − Bx)
−1(I + Bx)

)n
E0.

From Lemma 4.5 and (2.27), we obtain

Bx + BT
x

2
=

(dx1 + dx2)τ

2Γ(4− α)(∆x)α
I ⊗

(
Aα +AT

α

2

)
;

By + BT
y

2
=

(dy1 + dy2)τ

2Γ(4− β)(∆y)β

(
Aβ +AT

β

2

)
⊗ I.

According to Theorem 4.1 and Lemma 4.2, the eigenvalues of
Aα+AT

α

2
and

Aβ+AT
β

2
are all negative

when α, β ∈ (1, 2). Let λx and λy be an eigenvalue of matrices Bx and By, respectively. From
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Lemma 4.6, we get ℜ(λx) < 0 and ℜ(λy) < 0. Consequently, the eigenvalues of the matrices

(I −Bx)
−1(I + Bx) and (I −By)

−1(I +By), (1− λx)
−1(1 + λx) and (1− λy)

−1(1 + λy) are less

than one. And it follows that
(
(I − By)

−1(I + By)
)n

and
(
((I − Bx)

−1(I + Bx)
)n

converge to

zero matrix (see [17, p. 26]), as n → ∞. Hence the scheme (2.19) is unconditionally stable. �

Theorem 4.6. Let u(xi, yj , tn) be the exact solution of (2.15) with α, β ∈ (1, 2), and un
i,j be

the solution of the finite difference scheme (2.21), then there is a positive constant C such that

||u(xi, yj , tn)− un
i,j || ≤ C

(
τ2 + (∆x)2 + (∆y)2

)
,

where i = 1, . . . , Nx − 1; j = 1, . . . , Ny − 1; n = 0, 1, . . . , Nt.

Proof. Taking eni,j = u(xi, yj , tn)− un
i,j, and subtracting (2.16) from (2.21), we obtain

(I − Bx)(I − By)e
n+1 = (I + Bx)(I + By)e

n +Rn+1, (4.7)

where Bx and By are given in (2.27), and

en = [en1,1, e
n
2,1, . . . , e

n
Nx−1,1, e

n
1,2, e

n
2,2, . . . , e

n
Nx−1,2, . . . , e

n
1,Ny−1, e

n
2,Ny−1, . . . , e

n
Nx−1,Ny−1]

T ,

Rn = [Rn
1,1, R

n
2,1, . . . , R

n
Nx−1,1, R

n
1,2, R

n
2,2, . . . , R

n
Nx−1,2, . . . , R

n
1,Ny−1, R

n
2,Ny−1, . . . , R

n
Nx−1,Ny−1]

T ,

and |Rn+1
i,j | ≤ c̃τ(τ2 + (∆x)2 + (∆y)2) is given in (2.17).

Since Bx and By commutes in (4.6), then Eq. (4.7) can be rewritten as

en+1 = (I − Bx)
−1(I + Bx)(I − By)

−1(I + By)e
n + (I − By)

−1(I − Bx)
−1Rn+1,

and taking the 2-norm on both sides, similar to the proof of Theorem 4.2, it can be proven that

‖(I − Bx)
−1(I + Bx)(I − By)

−1(I + By)‖

≤ ‖(I − Bx)
−1(I + Bx)‖ · ‖(I − By)

−1(I + By)‖ ≤ 1,

and

||(I − By)
−1(I − Bx)

−1|| ≤ ||(I − By)
−1|| · ||(I − Bx)

−1|| ≤ 1.

Then we get

||en|| ≤

n−1∑

k=0

||Rk+1|| ≤ c
(
τ2 + (∆x)2 + (∆y)2

)
.

This completes the proof of the theorem. �

By almost the same proof to the theorems of 2D, we can prove the following results for 3D.

Theorem 4.7. The difference scheme (2.33) of the fractional convection diffusion Eq. (1.1)

with α, β, γ ∈ (1, 2) is unconditionally stable.

Theorem 4.8. Let u(xi, yj , zm, tn) be the exact solution of (1.1) with α, β, γ ∈ (1, 2), and un
i,j,m

be the solution of the finite difference scheme (2.33), then there is a positive constant C such

that

||u(xi, yj , zm, tn)− un
i,j,m|| ≤ C

(
τ2 + (∆x)2 + (∆y)2 + (∆z)2

)
,

where i = 1, . . . , Nx − 1; j = 1, . . . , Ny − 1; m = 1, . . . , Nz − 1; n = 0, 1, . . . , Nt.
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4.3. Stability and Convergence of (1.1′) by using D-ADI-II and FS-II

To prove the stability and convergence of D-ADI-II and FS-II for (1.1′), we need the following

two lemmas.

Lemma 4.7. ([9, p. 396]) If P and P +Q are m-by-m symmetric matrices, then

λk(P ) + λm(Q) ≤ λk(P +Q) ≤ λk(P ) + λ1(Q), k = 1, . . . ,m,

with eigenvalues λ1(·) ≥ λ2(·) ≥ · · · ≥ λm(·).

Lemma 4.8. ([10, p. 84]) Let the quadratic equation be λ2− bλ+ c = 0, where b and c are both

real parameters, then all roots satisfy |λ| < 1 if and only if |b| < 1 + c < 2.

Theorem 4.9. The difference scheme (3.7) corresponding to two-dimensional case of (1.1′)

with α, β ∈ (1, 2) is unconditionally stable.

Proof. For the two-dimensional case of (1.1′), Eq. (2.27) has the following form

Bx =
dxτ

2Γ(4− α)(∆x)α
I ⊗ (Aα +AT

α ) =
τ

2
B̃x,

where B̃x =
dx

Γ(4− α)(∆x)α
I ⊗ (Aα +AT

α ),

By =
dyτ

2Γ(4− β)(∆y)β
(Aβ +AT

β )⊗ I =
τ

2
B̃y,

where B̃y =
dy

Γ(4− β)(∆y)β
(Aβ +AT

β )⊗ I,

(4.8)

and B̃x and B̃y commute, i.e.,

B̃xB̃y = B̃yB̃x =
dx

Γ(4− α)(∆x)α
·

dy

Γ(4− β)(∆y)β
(Aβ +AT

β )⊗ (Aα +AT
α ).

Let ũn
i,j (i = 1, 2, . . . , Nx−1; j = 1, 2, . . . , Ny−1; n = 0, 1, . . . , Nt) be the approximate solution

of un
i,j, which is the exact solution of the difference scheme (3.7). Taking ǫni,j = ũn

i,j − un
i,j , then

from (3.7) we obtain the following perturbation equation

(I − Bx)(I − By)E
n+1 = (I + Bx)(I + By)E

n + BxByE
n − BxByE

n−1,

i.e.,

En+1 = (P +Q)En −QEn−1, (4.9)

where

En = [ǫn1,1, ǫ
n
2,1, . . . , ǫ

n
Nx−1,1, ǫ

n
1,2, ǫ

n
2,2, . . . , ǫ

n
Nx−1,2, . . . , ǫ

n
1,Ny−1, ǫ

n
2,Ny−1, . . . , ǫ

n
Nx−1,Ny−1]

T ,

P = (I − Bx)
−1(I + Bx)(I − By)

−1(I + By), Q = (I − Bx)
−1Bx(I − By)

−1By.

Therefore, Eq. (4.9) can be rewritten as

Vn+1 = MVn,
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with

Vn+1 =

[
En+1

En

]
, and M =

[
P +Q −Q

I 0

]
.

From [21, p. 128], we know that the eigenvalues of M are the same as the eigenvalues of L,

where

L =

[
λk(P +Q) −λk(Q)

1 0

]
.

Then the eigenvalue λ of M satisfies

λ2 − λk(P +Q)λ+ λk(Q) = 0, k = 1, . . . ,m (m = Nx − 1 ·Ny − 1).

Similar to the above proof, we know that B̃x and B̃y are negative definite and symmetric

matrices, and the matrix B̃xB̃y or B̃yB̃x is positive definite and symmetric, it follows that

λk(P +Q) and λk(Q) are real numbers, and we have

|λk(P )| < 1 and 0 < λk(Q) < 1,

According to Lemma 4.7 and 4.8, we get

−1− λk(Q) < λk(Q) + λm(P ) < λk(P +Q) < λk(Q) + λ1(P ) < λk(Q) + 1.

Thus, the difference scheme is unconditionally stable. �

Theorem 4.10. Let u(xi, yj, tn) be the exact solution of (2.15) corresponding to two-dimensional

case of (1.1′) with α, β ∈ (1, 2), and un
i,j be the solution of the finite difference scheme (3.7),

then there are a positive constant C and some kind of norm ‖| · |‖ such that

‖|u(xi, yj , tn)− un
i,j‖| ≤ C

(
τ2 + (∆x)2 + (∆y)2

)
,

where i = 1, . . . , Nx − 1; j = 1, . . . , Ny − 1; n = 0, 1, . . . , Nt.

Proof. For the two-dimensional case of (1.1′), taking eni,j = u(xi, yj , tn) − un
i,j, from (2.16)

and (3.7), we obtain

(I − Bx)(I − By)e
n+1 = (I + Bx)(I + By)e

n + BxBy(e
n − en−1) +Rn+1, (4.10)

where Bx and By are given in (4.8), and

en = [en1,1, e
n
2,1, . . . , e

n
Nx−1,1, e

n
1,2, e

n
2,2, . . . , e

n
Nx−1,2, . . . , e

n
1,Ny−1, e

n
2,Ny−1, . . . , e

n
Nx−1,Ny−1]

T ,

Rn = [Rn
1,1, R

n
2,1, . . . , R

n
Nx−1,1, R

n
1,2, R

n
2,2, . . . , R

n
Nx−1,2, . . . , R

n
1,Ny−1, R

n
2,Ny−1, . . . , R

n
Nx−1,Ny−1]

T ,

and |Rn+1
i,j | ≤ c̃τ(τ2 + (∆x)2 + (∆y)2) is given in (2.17). Similarly, take

P = (I − Bx)
−1(I + Bx)(I − By)

−1(I + By),

Q = (I − Bx)
−1Bx(I − By)

−1By,

S = (I − Bx)
−1(I − By)

−1.

Then Eq. (4.10) can be rewritten as

Vn+1 = MVn +NRn+1, (4.11)
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with

Vn+1 =

[
en+1

en

]
, Rn+1 =

[
Rn+1

Rn

]
, M =

[
P +Q −Q

I 0

]
, and N =

[
S 0

0 0

]
.

Similarly, we can prove |λk(N)| < 1, then there exists some kind of norm ‖| · |‖ such that

‖|M|‖ ≤ 1, and ‖|N‖| ≤ 1. Taking the norm on both sides of (4.11) leads to

‖|en‖| ≤ ‖|Vn‖| ≤

n−1∑

k=0

‖|Rk+1‖| ≤ c
(
τ2 + (∆x)2 + (∆y)2

)
.

This completes the proof of the theorem. �

All the theoretical results for the three-dimensional case (1.1′) can be obtained by the same

way of the two-dimensional case of (1.1′). For the briefness of the paper, we omit them here.

5. Numerical Results

Here we verify the above theoretical results including convergent order and stability. Intro-

ducing the vectors U∆x(t) = [uh(x0, t), . . . , uh(xn, t)]
T, where U is the approximated value, and

u∆x(t) = [u(x0, t), . . . , u(xn, t)]
T, where u is the exact value and the stepsize in space is ∆x,

i.e., ∆x = xi+1 − xi, in the following numerical examples the errors are measured by

||U∆x(t)− u∆x(t)||∞, (5.1)

where || · ||∞ is the maximum norm for the n+ 1 vectors.

5.1. Numerical results for 1D

Let us consider the one-dimensional two-sided fractional convection diffusion Eq. (2.7),

where 0 < x < 1 and 0 < t ≤ 1, with the coefficients dx1 = dx2 = κx = 1, and the forcing

function

f(x, t) = −e−t
[
x2 (1− x)

2
+
(
4x3 − 6x2 + 2x

)
+

Γ(3)

Γ(3− α)

(
x2−α + (1− x)2−α

)

− 2
Γ(4)

Γ(4− α)

(
x3−α + (1− x)3−α

)
+

Γ(5)

Γ(5− α)

(
x4−α + (1− x)4−α

)]
,

the initial condition u(x, 0) = x2(1−x)2, the boundary conditions u(0, t) = u(1, t) = 0, and the

exact solution of the equation is u(x, t) = e−tx2(1− x)2.

In Table 5.1, we show that the scheme (2.11) is second order convergent in both space and

time.

5.2. Numerical results for 2D

Consider the two-dimensional two-sided space fractional convection diffusion Eq. (2.15), on

a finite domain 0 < x < 2, 0 < y < 2, 0 < t ≤ 2, and with the coefficients

dx1 = Γ(3− α)xα, dx2 = Γ(3 − α)(2− x)α, κx =
1

4
x,

dy1 = Γ(3− β)yβ , dy2 = Γ(3− β)(2 − y)β , κy =
1

4
y,
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and the forcing function

f(x, y, t) =− 4e−tx2y2(x− 2)(y − 2)(3xy − 5x− 5y + 8)

− 32e−ty2(2− y)2

[
x2 + (2− x)2 −

3
(
x3 + (2− x)3

)

3− α
+

3
(
x4 + (2− x)4

)

(3− α)(4 − α)

]

− 32e−tx2(2− x)2

[
y2 + (2− y)2 −

3
(
y3 + (2 − y)3

)

3− β
+

3
(
y4 + (2 − y)4

)

(3− β)(4 − β)

]
,

and the initial condition u(x, y, 0) = 4x2(2−x)2y2(2−y)2 and the Dirichlet boundary conditions

on the rectangle in the form u(0, y, t) = u(x, 0, t) = 0 and u(2, y, t) = u(x, 2, t) = 0 for all t > 0.

The exact solution to this two-dimensional two-sided fractional convection diffusion equation is

u(x, y, t) = 4e−tx2(2− x)2y2(2 − y)2.

Comparing Table 5.2 with Table 2 of [1], we further confirm that the PR-ADI and D-

ADI are equivalent for solving two-dimensional equations, since they have the completely same

maximum error values. Table 5.2 numerically shows that the D-ADI scheme (2.25)-(2.26) is

second order convergent and this is in agreement with the order of the truncation error.

5.3. Numerical results for 3D

Consider the three-dimensional two-sided fractional convection diffusion Eq. (1.1), on a

finite domain 0 < x < 2, 0 < y < 2, 0 < z < 2, 0 < t ≤ 2, and with the coefficients

dx1 = Γ(3− α)xα, dx2 = Γ(3 − α)(2− x)α, κx =
1

4
x,

dy1 = Γ(3− β)yβ , dy2 = Γ(3− β)(2 − y)β , κy =
1

4
y,

dz1 = Γ(3− γ)zγ, dz2 = Γ(3− γ)(2− z)γ , κz =
1

4
z,

and the zero Dirichlet boundary conditions on the cube for all t > 0, the exact solution to this

three-dimensional two-sided fractional convection diffusion equation is

u(x, y, z, t) = 4e−tx2(2 − x)2y2(2− y)2z2(2− z)2.

According to the above conditions, it is easy to get the forcing function f(x, y, z, t).

Table 5.3 also shows the maximum error, at time t = 2 and τ = ∆x = ∆y = ∆z, between

the exact analytical value and the numerical value obtained by applying the D-ADI scheme

(2.34)-(2.36), and the scheme is second order convergent and this is in agreement with the

order of the truncation error.

Table 5.1: The maximum errors (5.1) and convergent orders for the scheme (2.11) of the one-dimensional

two-side fractional convection diffusion Eq. (2.7) at t = 1 and ∆t = ∆x.

∆t, ∆x α = 1.1 Rate α = 1.5 Rate α = 1.9 Rate

1/10 0.0022 0.0011 0.0010

1/20 4.5729e-004 2.2916 2.6284e-004 2.0596 2.5502e-004 1.9917

1/40 1.0712e-004 2.0939 6.2954e-005 2.0618 6.4257e-005 1.9887

1/80 2.5242e-005 2.0853 1.5067e-005 2.0628 1.6169e-005 1.9906

1/160 5.9414e-006 2.0869 3.6083e-006 2.0620 4.0594e-006 1.9939
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Table 5.2: The maximum errors (5.1) and convergent orders for the scheme (2.25)-(2.26) of the two-

dimensional two-sided fractional convection diffusion Eq. (2.15) at t = 2 with τ = ∆x = ∆y.

τ, ∆x, ∆y α = 1.1, β = 1.2 Rate α = 1.5, β = 1.4 Rate α = 1.9, β = 1.9 Rate

1/10 0.0133 0.0116 0.0109

1/20 0.0033 1.9966 0.0029 1.9830 0.0028 1.9750

1/40 8.3408e-004 1.9985 7.4001e-004 1.9876 7.0378e-004 1.9739

1/80 2.0877e-004 1.9982 1.8612e-004 1.9913 1.7900e-004 1.9752

1/160 5.2231e-005 1.9990 4.6726e-005 1.9940 4.5468e-005 1.9770

Table 5.3: The maximum errors (5.1) and convergent orders for the scheme (2.34)-(2.36) of the three-

dimensional two-sided fractional convection diffusion Eq. (1.1) at t = 2 with τ = ∆x = ∆y = ∆z.

τ α = β = γ = 1.2 Rate α = 1.4, β = 1.5, γ = 1.6 Rate α = β = γ = 1.9 Rate

1/10 1.2063e-002 1.3349e-002 1.5558e-002

1/20 3.0047e-003 2.0053 3.3242e-003 2.0057 3.7859e-003 2.0390

1/40 7.5079e-004 2.0008 8.3225e-004 1.9979 9.4168e-004 2.0073

1/80 1.8773e-004 1.9997 2.0875e-004 1.9952 2.3625e-004 1.9949

6. Conclusions

This work provides an algorithm which can efficiently solve three-dimensional space frac-

tional PDEs. The idea is to solve higher dimensional problem by the strategy of dimension by

dimension. When realizing the idea, the splitting errors may be introduced, so the techniques

of diminishing the influences of splitting errors are also discussed. The effectiveness of the

algorithm is theoretically proved and numerically verified.
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